2 minute read

Introduction

3MATERIALS FOR THE FUTURE

In the past decades, steel has been a driver in reducing energy consumption and CO2 emissions through enabling weight reduction (increased strength), extending lifetime (improved corrosion resistance and wearability), optimising operating conditions (higher creep resistance, allowing higher operating temperatures in electricity generation), etc. As one of the leading product development labs, OCAS has been involved in the conception and industrial upscaling of the various steel grades and coatings enabling those environmental improvements. Of course, we continue to develop steel grades with further improved performance while the steel industry is unfolding plans to move towards net zero CO2 emission steel making. A first important driver is the further development of new generations of high strength steels, with a focus on both pushing known metallurgies such as high strength low alloy steels or martensites to the ultimate limit of their performance, as well as enabling the industrialisation of exciting new metallurgical concepts such as high Mn austenitic or intermetallic precipitation strengthened steels. Another enabler to further push the lifetime of a steel component is to optimise its protective coating. Driven by the enormous success of the Magnelis® new high

performing zinc-aluminium-magnesium alloyed corrosion coating which is substituting pure Zn in record time, OCAS is already preparing the next upgrade based on extensive lab screening and pilot scale production. At the same time, the steel making journey towards net zero calls for numerous process-related, logistical, and metallurgical alternatives. OCAS is therefore initiating R&D support to face these challenges. An initial major step in the journey to zero carbon emission lies in the increased use of scrap, resulting in a direct reduction of the CO2 emissions per tonne of liquid steel. This perfectly illustrates the potential of the circularity of steel making, but unfortunately increases the level of impurity elements in steel. OCAS is investigating which levels of impurities can be tolerated whilst still ensuring the correct product and application properties. ArcelorMittal is making clear progress with their XCarb™ initiatives, facilitating their customers’ plans to decarbonise, as well as making investments to foster the development of the technologies needed to further increase production capacity of these grades. OCAS is fine-tuning and validating metallurgical routes to ensure the product quality of this new product range. Simultaneously, OCAS is expanding its lab synthesis product offer and combinatorial capabilities towards more complex and higher melting point metals, such as Nb-alloys and high entropy alloys, which should allow us to expand our customer base and move into new market segments. In order to further align our capabilities with customers’ requests, we continually work to improve our quality and to enlarge our competence in the production of specialised steel alloys such as high N steels, Ta-alloyed steels, etc.

Nico De Wispelaere & Tom Waterschoot

This article is from: