1 minute read

Electrical steels to power vehicle electrification

At OCAS, our ambition is to remain at the forefront of technology and innovation in electrical steels, driven by the global car electrification.

Nikolas Mavrikakis, Elvan Ekiz & Jan Rens

Climate awareness and global CO2 emission targets are leading the way towards a carbon-free future. Energy and transportation are two key sectors for CO2 reduction. Electrical steels, which constitute the core of electrical motors, are at the epicentre of this ‘technological revolution’. Electrical steels are key materials for harnessing the kinetic energy from wind, hydro, and generators in general, for sustainable energy installations. In more compact motors, they power the electric engines that drive car electrification. Automotive production is expected to be driven by car electrification and e-mobility in the EU over the coming years, with a forecast of a 15 times increase in electrical steel demand by 2030 for the expected production of more than 17 million electric vehicles.

As the unique R&D centre of ArcelorMittal for electrical steel product development, OCAS is at the forefront of this global transition, developing new and ever better non-oriented electrical steel products. Through cutting-edge research, from European research consortiums to industrial activities support, our ambition is to remain in the vanguard of technology and innovation in electrical steels towards a greener future. Working closely with, and in support of, the ArcelorMittal plants, we bring the know-how to constantly expand the ArcelorMittal iCARe® products, offering very low core losses, high torque density, and high strength for future e-motors. To support our material research activities, we rely on our advanced electromagnetic characterisation laboratory, which is well equipped to fully characterise all magnetic and electrical aspects of electrical steel and its coating. Furthermore, special methodologies have been developed to also measure the properties of the electrical steel when it is incorporated in its final application.

This article is from: