
1 minute read
Greater Protection Against Lethal Toxins
Chemical weapons continue to present serious danger to soldiers and civilians alike in war zones across the world. And since World War II, there’s been little technological advancement in protective gear. Current offerings rely on activated carbon materials, which only adsorb but do not neutralize the chemical warfare agent — and often make the equipment heavy, hot and hard to wear.
Gregory Parsons, the Alcoa Professor in the Department of Chemical and Biomolecular Engineering, and his graduate student Sarah Morgan have developed “ChemBuckler,” which has the potential to be a revolutionary, next-generation protective fabric that not only adsorbs but also neutralizes chemical warfare agents on contact using zirconium-based metalorganic framework catalysts. Their technology produces durable fabric composites that can be used to create better-fitting gear, which provides greater protection against toxins — with less burden on the wearer. The technology also has applications in personal protection from agricultural pesticides.
Advertisement
CIF support will be used to develop samples for the U.S. Army to test against its key performance characteristics.

Chronic wounds affect millions of Americans each year. These types of wounds — which can take months to heal, if they ever do — also present a significant challenge in veterinary medicine, as well. When left untreated, chronic wounds can lead to infection, amputation and even death.