6 minute read

Rescue

Elevated Water Storage Tank Rescues

In the rescue service, rescuers can expect to receive the call Bob Twomey that a person on an above ground water tank requires rescue. Generally you would expect this to be maintenance or service personnel who have had something go wrong and now require assistance.

Advertisement

Twenty-four-foot NFPA rated extension ladder placed against the side of the tank, tip above victim. However, it could be a child who, as we all did growing up, was just exploring and now finds himself in a predicament requiring assistance. It happens — and we need to be prepared to handle it — just like all the other rescues that will confront us.

Water tanks come in all shapes, sizes and types and configurations. Often, the placement of a water tank and its shape or design are based upon the expected use of the water and how quickly a certain stored volume of water is needed. Certainly, you expect to find water tanks around industrial facilities. Likewise, many residential developments have water supply tanks atop a hill or mountain to supply the needs of the residents. Water tanks are everywhere and used for nearly any imaginable use.

My department ran a series of classes to instruct rescuers in various methods of rescue from tanks. But one of the main focus goals was to get the rescuers to study the tank’s location, access and configuration, so that they could determine one of the most efficient rescue methods available to them. The idea was to dispel the “tunnel vision syndrome,” to see the tank and its available appurtenances that could be useful in the rescue, and to determine any hazards around the tanks that could impede rescue. As is typical in my training scenarios, I chose to emphasize the “rescue tools in the toolbox” principle: determine tank site access, study the situation, look at surrounding hazards, perform rescuer and patient risk analysis/size up, establish an efficient ICS system and do the rescue.

“Tunnel vision syndrome” is a situation affecting fire and rescue personnel. It often occurs when rescuers arriving on scene fail to perform proper scene size-up, base rescue plans on observed conditions, and who fail to understand that the simplest (but safest) method of rescue is not always the one involving complex rescue rigging. While some rescues will require multi-stage complex rigging, most will not. So, my point here is keep it safe and simple.

Obviously, high-level rescue requires substantial knowledge, skill and ability, called KSAs. KSAs come from recurrent, diligent and dedicated training in reallife scenarios. This takes time, and along the way, rescue experience plays a major role in all of this. Rescue abilities, in any field, come from training and hard-earned experience. Seasoned rescuers know that keeping a rescue as simple as possible reduces the risk of a failed rescue. Likewise, technical rescue tools of many types and varieties and rigging knowledge and how to use these tools accordingly and safely round out the necessary requirements to perform rescue safely.

The tank utilized in our training is a residential and small business water supply tank, approximately 30 feet high, holding nearly 250,000 gallons. It is on a hill accessed by a very steep, narrow service road, which eliminated the possibility of victim access by a ladder truck. Therefore, rescue rigging and ladder skills again proved to be the only way to accomplish a rescue, at least on this tank.

Scenario one was that of a maintenance technician who was servicing valves atop the tank. He had a safety harness on and it was attached to a hard point on the top of the tank. However, his measurement on his safety line was miscalculated. During his work, he slipped on the smooth metal top of the tank, striking his head on the steel surface, rendering him unconscious. As he rolled off of the top of the tank, his safety line did arrest his fall to the ground; however, in tying the line off, he misjudged the distance from the center of the tank (his anchor point) to the outer edge. Instead of his safety line catching his weight before the edge of the tank, he rolled off the edge and was suspended approximately six feet below the top edge of the water tank, suspended by his safety harness.

Given the tight quarters around this tank inside the security fence and the steep terrain outside of the fence, rescuers were told to perform a “leaning ladder” rescue. Basically, the leaning ladder rescue involves leaning the tip of the ladder against the structure and above the victim, and securing the ladder such that it does not move during the rescue. In this scenario, the base of the ladder is secured with round lashing around the beams and pickets driven alongside the base of the ladder, and the ladder is tied off onto hardpoints on the tank itself. A lowering line is attached to the base of the ladder in a change-ofdirection pulley, up to another changeof-direction pulley secured at the top of the ladder around the beams and over the rung of the ladder, onto which the victim’s weight will be transferred. Once the rescuer is at and slightly above the victim, this lowering line is then attached to the victim. The lowering line is then utilized briefly as a “haul line” to raise the victim up a few inches so that the victim’s safety line may be disconnected from his harness. Rescuers on the ground, under direction of the rescuer on the ladder, then begin a smooth lower of the victim to the ground. The victim descends between the underside of the ladder and the tank wall. As the victim approaches the ground, rescuers are present to receive the patient at ground level.

As you can see, this is a very simple way to safely lower the stranded victim from the side of the tank to the ground. Basic ladder and rigging skills were used along with rescuers on the lowering line providing the initial raise to free the victim from his safety line, then lower him to the ground. This technique would also be very effective if frost or ice was on the tank surface, or the tank was otherwise slippery on top. There are limitations. The tank has to be accessible by a 24 foot or 36-foot rescue ladder. Taller tanks would require other methods to safely complete a rescue.

What if there were no viable “hard points” on the side of the tank to tie the securing ropes onto the ladder, thereby “pulling” the ladder against (towards) the tank? An alternative would be to tie opposing top guy lines onto the ladder, anchoring them to pickets or other secure anchors. This would prevent the ladder from sliding sideways against the tank wall during the rescue. This would be very similar to the tying of side guylines onto a ladder in a ladder-as-a-derrick configuration. The bottom line is to prevent the ladder from shifting sideways while against the tank.

The next scenario we trained on was that of a man who had climbed up and around the tank access ladder guard in an attempt to ascend the ladder to the top of the tank. During his climb, his wet boots slipped off of one of the ladder rungs, causing him to strike his head against the ladder cage, rendering him unconscious. During his short fall, his leg and an arm wedged into the bars of the ladder guard and the ladder, causing him to