1 minute read

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Advertisement

Volume 11 Issue III Mar 2023- Available at www.ijraset.com

In conclusion, the ethical issues and mitigation techniques in artificial intelligence are intricate and varied, necessitating continuous analysis, review, and modification. We can advance the creation of ethical and just AI systems that benefit society as a whole by encouraging a more thorough and diverse approach to AI ethics.

References

[1] G. Narayanan, A., & Lohia, P. (2020)”On the ethics of AI applications in healthcare. Journal of Chemical Information and Modeling”, 60(5), 2140-2147.

[2] Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., ... & Gebru, T. (2019). “Model cards for model reporting”.. In Proceedings of the conference on fairness, accountability, and transparency (pp. 220-229).

[3] Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J. W., Wallach, H., Daumeé III, H., & Crawford, K. (2018). Datasheets for datasets. arXiv preprint arXiv:1803.09010.

[4] Buolamwini, J., & Gebru, T. (2018)”Gender shades: Intersectional accuracy disparities in commercial gender classification”.In Conference on Fairness, Accountability and Transparency (pp. 77-91).

[5] Sweeney, L. (2013)” Discrimination in online ad delivery. Communications of the ACM”, 56(5), 44-54.

[6] Narayanan, A., & Pentland, A. (2017)” A.I. as personhood? How we can think about intelligent machines and moral considerability”. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (pp. 3884-3891). AAAI Press.

[7] Caliskan, A., Bryson, J. J., & Narayanan, A. (2017). “Semantics derived automatically from language corpora contain human-like biases. Science”, 356(6334), 183-186.

[8] Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016)”The ethics of algorithms: Mapping the debate. Big Data & Society”, 3(2), 2053951716679679.

[9] Zhang, B. H., Lemoine, B., & Mitchell, M. (2018). “Mitigating unwanted biases with adversarial learning”. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society (pp. 335-340). ACM.

[10] Buolamwini, J., & Gebru, T. (2018). “Gender shades: Intersectional accuracy disparities in commercial gender classification”. In Conference on fairness, accountability and transparency (pp. 77-91).

[11] Suresh, H., & Guttag, J. V. (2019)” A framework for understanding unintended consequences of machine learning”.arXiv preprint arXiv:1901.10002.

[12] European Union Agency for Fundamental Rights. (2018). Handbook on European data protection law. Publications Office of the European Union.

This article is from: