5 minute read

The Metaverse of BIMness

Pritymoy Ganguly

What does BIM have to do with any of this?

Advertisement

I’ll try to answer this question to the best of my ability..

1. The Word Metaverse

The term ‘Metaverse’ was coined as a combination of the words ‘meta’ and ‘universe’ in the 1992 science fiction novel Snow Crash by Neal Stephenson. It’s essentially a network that emphasizes social interaction in 3D virtual settings. In futurism and science fiction, it is frequently characterized as a hypothetical iteration of the Internet as a single, worldwide virtual environment that is aided by the use of virtual and augmented reality headsets. Many in the technology community have anticipated a future form of the Internet, if not a quasi-successor to it, called the ‘Metaverse’, from the late 1970s and early 1980s. It would change not only the digital world’s infrastructure, but also a large portion of the physical world, and also all the applications and systems that lie on top of it. Even though the Metaverse’s whole vision is difficult to explain, appears outlandish, and is decades distant, the components have begun to feel very real. And, as is customary with this type of transformation, the journey is as long and unpredictable as the payoff.

As a result, several of the world’s tech behemoths have made the Metaverse their newest macro-goal. Epic Games, the company behind the Unreal Engine and Fortnite, has made it a clear goal. It’s also the driving force behind Facebook’s acquisition of Oculus VR and the recently revealed Horizon virtual world/meeting space, as well as a slew of other initiatives, including AR eyewear and brain-to-machine interfaces and communication. Similarly, the tens of billions of dollars that will be invested in cloud gaming over the next decade are premised on the idea that such technologies will underlie our online-offline virtual future.

Movies like ‘Ready Player One’ and ‘Matrix’ may give you an idea of what life in the metaverse might be like, where anything we can imagine can exist and we can connect to the metaverse at any time to extend our real lives with extraordinary experiences.

2. The BIM Connection – Why does it matter for the AEC industry?

To keep consumers entertained, the Metaverse requires a lot of material. Virtual theme parks, virtual theatres, virtual events, virtual restaurants, virtual schools, virtual conventions, and whatever else you can think of are all needed. The metaverse is a virgin field full of possibilities for AEC design businesses, and a Utopia free of the limits of the physical world. Designers may also create digital assets such as communities, structures, equipment, artworks, 3d point cloud, patterns, and so on, and sell them to virtual worlds, and other applications several times. This is fairly similar to the setting in which peoples work on a game or film. Engineers can create design ‘formulas’ that users can modify the parameters to obtain numerous outputs, such as grasshopper script, in addition to static designs.

2.1. The Digital Twin:

A digital twin is a virtual representation of a physical object or activity that acts as its real-time digital equivalent. Though the notion had been around for a while, NASA came up with the first realistic definition of digital twin in 2010 as part of an effort to improve physical model simulation of spacecraft.

Let’s discuss about what a digital twin can achieve for you?

2.2. Model it first:

Modeling something, such as the physical environment, is one of the first things you can do. That can include buildings, energy distribution, grids, warehouses, and factories, among other things.

Once it’s been modelled, the most crucial or intriguing part is to bring that digital counterpart to life and synchronise it with the physical world. You can start applying software approaches to that model once you’ve synchronised it with the physical world.

Now: One of the first things you can do is use the digital counterpart to monitor the physical environment. It gives you operational visibility into what’s going on in these environments at any given time.

· The Past: The next thing you can do is look into its history.

The Future: Once you’ve traced its past, you can use analytic programmes to uncover insights regarding previous states, abnormalities, and anything else that’s significant to you in the physical representation that this digital copy represents. And this allows you to do something quite powerful: you can begin to forecast future conditions.

2.3. Start Analyze and Simulate:

You may begin to anticipate when equipment will require service before it occurs, and you can begin to anticipate occupancy requirements before they occur. You can now anticipate the future states of everything that can be analysed using software. ‘Simulation’ is the final nail in the coffin. The digital twin can be duplicated via simulation. That’s effectively is the operational visibility of that physical environment, as well as the ability to duplicate it and conduct simulations on it. The purpose of these simulations can then be to uncover optimizations that are too complicated to be specified only by observing the physical environment. All of this may be done using the digital twin’s software copy and then when the simulation is over, you can apply the insights that you gained on the copy of that digital twin back to the real digital twin and affect inputs into the physical environment.

2.4. Here Comes the benefit:

· Once you’ve done that, you’ll be able to start providing autonomous control. You can begin automating mundane and repetitive tasks. Improve them over time with systems that learn and improve. This improves and optimises the physical environment.

· Interacting with this is, one of the most powerful things you can do with it. You can interact with the digital replica that is superimposed on the real world. This digital copy can provide you with detailed metadata and insights into anything you’re doing in the physical world.

You can also interact with colleagues and experts from all over the world in pure virtual space over long distances.

Consider our current world. People and automobiles, Businesses, Buildings, hospitals, factories, entire cities, and the billions of devices that link us to the rest of the world. This is the physical world, but what if we could turn it into its digital counterpart?

A digital twin that is constantly connected to the physical world. That is something we can see in mixed reality. With whom we can work together. That we can use to run simulations and figure out what’s important to us. Artificial intelligence (AI) can be used to learn, predict, and act. To save time and money, reduce carbon emissions, protect natural resources, increase safety, and bring us all closer together. This is already happening around the world; businesses are capitalising on the new wave of innovation that is trending toward interconnectedness, enabling the Metaverse..

Everything in the Metaverse can be modelled to reflect the status of its physical counterpart, including interactions and relationships between things. By utilising this power, we are able to push the boundaries of what this technology can accomplish. The possibilities are endless. Data from connected environments can now be tracked and analysed. Patterns, trends, and anomalies can be identified. We can now simulate any scenario and assess the results. Determine how any change or condition will affect you. We can now use AI to perceive the physical world, improve and automate tasks, and empower your employees with superpowers. We can now empower everyone in your organisation to create apps and workflows to collaborate with one another in this virtual space, sharing and receiving expertise at the right time and in the right context. Using mixed reality, you can access relevant information about the physical world’s digital counterpart whenever and wherever you need it.

This article is from: