
3 minute read
The Mystery of Construction Scheduling: Would Automation unfold the Complexity?
For many centuries, improving the scheduling of construction activities has continually been an interest for many researchers and practitioners. Unlike other industries, every construction project is unique in nature, complexity, and characteristics. With the introduction of digitalised processes such as BIM, construction scheduling has experienced a promising revolution through allowing more automated processes, improved collaboration between different stakeholders and informed decision-making. However, to date, most construction projects are facing many complexities when managing construction schedules, hence this article aims to shed the light on issues that constitute the complexities associated with scheduling and suggest practically hybrid mechanisms to mitigate many of the risks associated with them.
Coordination between design and scheduling: the unsolvable mystery
Advertisement
It is imperative to state that construction schedules are primarily dependent on the accuracy of design information, which goes through a series of changes and modifications before proceeding to the construction phase. Design information begins conceptual, develops to become more engineered, and matures to become the basis for on-site work. Whilst integrated processes such as BIM were introduced to manage design complexities, this did not improve the construction scheduling process. In fact, with the introduction of interactive scheduling technologies such as 4D BIM, decision-making remains mostly reliant on classic techniques such as the Critical Path Method (CPM) and Earned Value Method (EVM). The level of scheduling complexity can go beyond the norm in infrastructure projects where complex design activities will need to be scheduled to manage the design process and ensure that data/information is supplied in the planned time. To simulate the complexity of scheduling, the left figure shows design activities that occur at parallel or separate times and how they connect to different activities in a schedule. The real issue lies in poor coordination between design data and schedules especially for activities that embed interdisciplinary data, and more importantly, in those that have an implication on multiple activities in a schedule. Hence, many organisations nowadays have started to use weekly dashboards and statistics to gauge the completeness of data/information and communicate this data accordingly to construction planners. This requires careful tracking and tracing of design changes, assigning whose responsibility, expected time of delivery, and indicating implications on different parties. Simultaneously, poorly traceable design changes and variations are recognised as major drawbacks in construction schedules causing unplanned delays and cost overruns. In response to this, Common Data Environments (CDE) may be seen as one of the immediate remedies to track changes and improve collaboration, as it provides a centralised hub for data/ information related to a project. However, with all the mechanisms enabled by technological advancements, the question remains, why coordination between design and construction remains an unsolvable mystery?
Design and Schedule alignment: the need to decentralise Workflows
Inevitably, digitalisation can be seen as the main enabler toward improving many (if not most) processes during the whole lifecycle of a construction project. One of the initial steps, yet significantly stressed, is to ensure that data/information is centralised between all involved parties in a project, as this will support a more traceable approach toward changes/variations. However, for construction schedules, whilst data/information in a project is centralised, it is important to decentralise workflows for different tasks. Although this may pose a contradicting viewpoint as to what digitalisation is promoting, it supports acknowledging the value of data/ information depending on a task. One of the most common examples of this can be detailed costing by Quantity Surveyors who usually require a set of data (e.g., plans, elevations, unit rates, specifications, etc.) to convey more accurate costs. The decentralisation of construction workflows would perhaps allow a better appreciation of data types (Numerical, Textual or Graphical) so that design data can be more informatively aligned with construction schedules. Hence, recent technological developments have begun to unveil the value of Artificial Intelligence to provide more informed decisions, however, this is yet to be appreciated or tangibly acknowledged within the context of construction schedules. The below figure simulates a process flow to achieve more traceable construction workflows, which could potentially support overcoming complexities faced as a result of misalignment between design data and construction schedules. The approach suggests obtaining data from a centralised platform (e.g., BIM Platform), and this follows by assigning the data/information to different design requirements. Design requirements would then be aligned to tasks (activities that will occur on-site), and this will allow capturing data types (Numerical, Textual or Graphical) that are appropriate for different activities.
Dr. Mohammad Mayouf (Birmingham City University) is a Senior Lecturer in Digital Built Environment and the Course Leader for MSc Digital Construction and MSc Building Surveying with Facilities Management at Birmingham City University. His expertise also includes the use of a variety of BIMbased software applications across the whole lifecycle of a construction project. Mohammad is also a committee at the UK BIM Alliance (West Midlands) where his focus is to promote Industry-University initiatives to improve processes and boost collaboration opportunities.

Rana Al-Tibi (Plan-Analytics Ltd / Mott McDonald) is currently a Planning Engineer at the High Speed 2 (HS2) Project at Birmingham. She is responsible for the management and coordination of scheduling data using data analytics to support improved data visualisation and communicate this across different teams. Rana has worked for over 2 years as a Project Engineer looking after high-rise construction projects in the UAE. Rana holds a BSc in Civil Engineering from the UAE and obtained her MSc in Construction Project Management in the UK.

Consequently, this would aid more focused insight into construction workflows where this would mitigate many of the uncertainties associated with construction tasks by having more aligned design data/ information.