7 minute read

Eco-Digital Design

Vernacular architecture represents eco-design in its finest form. When designers set the design strategy, the space usability becomes king and the site, is the kingdom.

Vernacular architecture respects the spaces’ needs as well as the character of the inhabitants. The best example of this is Petra the Rose city in Jordan. There, houses, water channels and temples were engraved in mountains.

Advertisement

Another modern example is a secondary school in Africa – Malawi. A wooden structure with hay bales envelope. Nuru Karim and co., the designers, took the African sustainable architecture into a new level of site connectivity and glamourous user experience.

Reflecting on two examples from different eras, we can realise that the first element of design suitability is material. Vernacular designs use local materials. Some examples for such designs include but are not limited to, the huge pyramids of Egypt and the Great Wall of China. As designers, each time we use local materials, we significantly reduce the emissions of green gases and we also eliminate aggressive material extraction in other parts of the world.

A designer can follow several principles to ensure the design’s sustainability. This article will highlight the best three green design principles in my practices. The first might be very basic, it is the usability of the design. A designer must keep in mind that every design must serve its purpose. If a design meets the needs, making it beautiful becomes possible. Whereas unusable designs are very costly, they end up amended or disposed of before the end of their life cycle. Here is a tip: Design in sections. After understanding the design material build the design using sections. A good proportional functional section can rarely belong to a bad design.

The second principle considers the design lifecycle. Long-term thinking will save your clients time and money. Yet, the design owners and benefits change during the lifecycle. This can be very challenging. Thus, keep it simple and basic. We are in the era of the circular economy. First and foremost, choose the material and understand the parts. It is very rare to find an element in design that would carry on with the same value all along the design lifecycle.

Some design elements affect all design users and owners during the lifecycle. One of these elements is the design of areas and spaces. A correct definition of areas and spaces starts from the draft idea to the time we decide to demolish or renovate. Areas affect every system and element in the design. It affects natural light calculations, ventilation, spaces affect moods and well-being and much more. Needless to mention, spaces and volumes stand as one of the main economic units in any design type.

The third and last, but certainly not least, design with the impact in mind. Energy and other sustainability measures might not seem attractive to designers. Some see emissions and sustainability measures as evil must. While targeting prestigious certifications. Many designers will meet the requirements by adding bicycle racks in a city with no biking lanes. Unfortunately, this created a room and wide doors for greenwash. Though, new certifications focus on sustainability measures that affect the environment significantly. Energy, water and embodied energy in materials. These systems are more effective as design users can track and upgrade the certification during the buildings’ lifecycles.

Eco-design, sustainable design and green design are not modern trends. In reality, they are the bases of historical and vernacular architecture. A time when designers were part of the community and designs were the natural innovative reaction to mankind’s needs. Technological and industrial development can be used to recover from the toxic environments we have created. A designer that lives in the era of digital twins has no excuse to produce a poor design, whether in functionality or in aesthetic elements. I would prefer to call it environmental design as it should respect the environment inside out.

‘Form follows function’ as the form is a composition of different geometries. Geometry demands understanding the design elements from a different viewpoint. A designer must care about communication and create different communication strategies for each design stakeholder. In order to design and manifest great projects, a designer must communicate the design correctly and clearly. To simplify, in a 2D world each line must represent information because poor readability leads to big cost problems.

Once the design tools became sophisticated, we entered the digital literacy era. It is never enough to know the modelling software. Designers must master the utilization of the continuously evolving tools. In 2004, as university students, we had our first exposure to the cloud points generated by laser scanners. The project was scanning Petra, the historical Nabatean city. It seemed like magic, we could never imagine a better way to document and renovate such architectural treasures.

The second exposure to the latest technologies was 3D printing in 2007. The first instruction aimed to prepare a 3D model that consumes a minimal amount of 3D printing powder. 10 years ago, these technologies used to be very costly. Building information modelling and management come with benefits but also traps. Therefore, designers of the new era have a lot to learn in order to become BIM competent.

As a reader, you might question the qualities of a smooth BIM transition. Transition hierarchy within old school practices exposure goes like this: Systems, people, technology. You cannot start BIM without systematic project management. Teams ‘people’ must know the results of each production process before they start. This enables updating effective KPIs and improving the system. Teaching the software without the process is a timewaster. A process without good skills will give bad results. A BIM change manager should have a clear roadmap customised to every organisation. This road map should put the outputs ‘results and targets’ first. Keep in mind that continuous learning and systems improvement will become part of the organisational culture.

Nowadays, while design technology develops, the know-how of best utilisation fades. The main challenge in BIM is the multi-layered standards combined with the lack of practical expertise. The second challenge is the different users all along the design lifecycle which affects the ownership and the authorship of the model. Good designers and good BIM managers know a secret that is not often shared. This secret is to build a strong process

Why do we need Reality Capture?

Reality capture is often a term that many professionals haven’t heard of or don’t understand in the digital construction/ AECO industry. Many stakeholders including owners, contractors, and designers do not really understand the real value behind reality capture and laser scanning.

What is this term reality capture? This literally means capturing reality, capturing the real existing world with technology, allowing us to have a 3D visual and virtual representation on our computers and phones. It is that simple in terms of meaning, but very complex and advanced in terms of strategy and process which brings massive benefits in the short and long run. As an example, check the image below of the Dubai International Airport (DXB) data capture Urban Surveys used to provide the client with accurate as built data for renovation and redesign.

In the short run or in other words immediately, you can have accurate existing conditions data that is reliable and captured within a fraction of time compared to traditional surveying which would not only take 10 times the time or more, but would also have a high margin of error, inefficiency, and carry a risk physically and commercially. This allows stakeholders to take immediate decisions without delay. In the long run, this provides a priceless return on investment as it leads to and promotes risk mitigation, claims avoidance, facilities management, digital twins, and much more.

What about BIM? One may ask. If you look closely above, you will see that I mentioned the term 3D, which means also that those benefits come in the form of 3D models that start at a visual geometric representation and can go all the way up to a BIM model with a high level of information need or in other words that I don’t usually prefer, can go up to LOD500. That is why, I have stated facilities management and digital twins previously, which can be reached by adding meta-data and all the necessary for your BIM production lines. A strong process can adapt a different software, easy enough to be understood by the team and serve a particular goal. information to the model that was initiated thanks to reality capture and laser scanning.

The conclusion after 20 years of exposure to the latest building materials and technologies: Material is the key element of both design and BIM. This conclusion led me to build MTiPx, a design PAAS that helps designers to build effective digital twins. MTiPX uses materialbased processes to assess the environmental impact of the materials with a focus on emissions and end-user wellbeing. It will also include a XEROWASTE certification. A digital twin with XEROWASTE certificate is verified as BIM competent and scores waste prevention points that help in gaining recognition in preventing material waste caused by poor design processes and methodologies.

Not convinced yet? Looking at the image below, we can understand that in the US 80% of non-residential buildings are more than 20 years old, while in the UK 70% of the infrastructure projects are over 100 years old. Both of which indicate the need to capture those assets before being able to take further decisions about what to do next. Similarly in Germany, as those bridges need to be rebuilt, it is essential to capture the existing ones to understand how they can be renovated or be completely rebuilt with the same design for example. Imagine looking at similar statistics for the whole world.

In conclusion, you can now see that reality capture is in fact the start point for digital twins specifically for the existing assets. If you just do a quick Google search about how many assets have outdated/inaccurate as built drawings, or do not have drawings at all, you will see that there is a complete lack of accurate data available. This is costing governments and asset owners vast amounts of time and money in lawsuits and claims. Just type in the search ‘how many assets have inaccurate drawings’.

This article is from: