8 minute read

References

Virology | 167

sent with the addition of ten ORF coding for accessory proteins. The genome follows the sequence; 5’-cap, 5’ UTR, ORF1a/b (replicase gene), spike (S), ORF3a, ORF3b, envelope (E), Membrane (M), ORF6, ORF7a, ORF7b, OPRF8, nucleocapsid (N), ORF9, ORF10, 3’ UTR, 3’-tail, (Sardar 2020, Romano 2020). Mutations are the main source of variation within a viral genome and drive viral evolution. There can be numerous consequences on the virion ranging from detrimental (death or incompetent virus) to inconsequential, to favourable (increased virulence, transmissibility or pathogenicity capabilities, immune escape, and drug resistance). Generally, RNA viruses are susceptible to high mutation rates due to their lack of proof reading mechanism. Unique to CoV RNA is NSP14, a 3’ to 5’ exoribonuclease enzyme with proofreading capabilities. It is speculated this assists in maintaining the uncharacteristically large RNA genome. All human SARS-CoV-2 genomes sequenced to dateare extremely similar to one another demonstrating low heterogenicity. Intersequence identity among all isolates to date is reported to be above 99% suggesting that the genome is mostly stable (Ceraolo 2020, Zhang X 2020). Despite this high level of conservation, there are notable regions in the genome of high variability. Mutations in NSP3 and NSP12, both of which are key proteins in viral RNA synthesis, are speculated to confer unfavourable effects on replication and pathogenicity(Sardar 2020, Pachetti 2020). Other mutations such as those seen in NSP14, may lead to a significant increase in rate of viral mutations due to loss of proofreading activity (Sardar 2020). The S1 subunit of the Sglycoprotein is subject to higher variability in comparison to the stable S2 subunit. Mutations most commonly affect the RBM and receptor binding motif with the resultant effect a decrease in protein stability. On the contrary, there have been over 2300 nonsynonymous substitution mutations identified in the SARS-CoV-2 genome of which none have shown to have any significant functional implications (MacLean 2020). Disease severity appears to be associated with host factors, rather than genetic variability (Zhang X 2020). Determining genomic features and mutation hotspots of SARS-CoV-2 may provide insight into various properties such as virulence, pathogenicity and transmissibility. This could be crucial in identifying targets for diagnostics, prognostication and treatment interventions.

Almeida “Virology: Coronaviruses”. Nature. 220 (5168): 650. Bibcode:1968Natur.220..650.. Fulltext: https://doi.org/10.1038/220650b0 Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV2. Nat Med. 2020 Apr;26(4):450-452. PubMed: https://pubmed.gov/32284615. Fulltext: https://doi.org/10.1038/s41591-020-0820-9

168 | CovidReference.com

Berger A, Drosten Ch, Doerr HW, Stürmer M, Preiser W. Severe acute respiratory syndrome (SARS) - paradigm of an emerging viral infection. J Clin Virol. 2004 Jan; 29 (1): 1322. PubMed: https://pubmed.gov/14675864 . Fulltext: https://doi.org/10.1016/j.jcv.2003.09.011 Ceraolo C, Giorgi FM. Genomic variance of the 2019-nCoV coronavirus. J Med Virol. 2020

May;92(5):522-528. PubMed: https://pubmed.gov/32027036. Fulltext: https://doi.org/10.1002/jmv.25700 Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020 Apr;92(4):418-423. PubMed: https://pubmed.gov/31967327. Fulltext: https://doi.org/10.1002/jmv.25681 Corman VM, Baldwin HJ, Tateno AF, et al. Evidence for an Ancestral Association of Human

Coronavirus 229E with Bats. J Virol. 2015 Dec;89(23):11858-70. PubMed: https://pubmed.gov/26378164. Full-text: https://doi.org/10.1128/JVI.01755-15 Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species

Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and

naming it SARS-CoV-2. Nat Microbiol. 2020 Apr;5(4):536-544. Pub-

Med: https://pubmed.gov/32123347. Full-text: https://doi.org/10.1038/s41564-020-0695-z Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E. The spike glycoprotein of

the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of

the same clade. Antiviral Res. 2020 Apr;176:104742. PubMed: https://pubmed.gov/32057769. Fulltext: https://doi.org/10.1016/j.antiviral.2020.104742 Dallavilla T, Bertelli M, Morresi A, et al. Bioinformatic analysis indicates that SARS-CoV-2 is unrelated to known artificial coronaviruses. Eur Rev Med Pharmacol Sci. 2020 Apr;24(8):4558-4564. PubMed: https://pubmed.gov/32373995. Fulltext: https://doi.org/10.26355/eurrev_202004_21041 Holmes KV. SARS-associated coronavirus. N Engl J Med. 2003 May 15;348(20):1948-51. PubMed: https://pubmed.gov/12748314. Full-text: https://doi.org/10.1056/NEJMp030078 Hu B, Ge X, Wang LF, Shi Z. Bat origin of human coronaviruses. Virol J. 2015 Dec 22;12:221. PubMed: https://pubmed.gov/26689940. Full-text: https://doi.org/10.1186/s12985-0150422-1 Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 2020 Sep;41(9):1141-1149. PubMed: https://pubmed.gov/32747721. Fulltext: https://doi.org/10.1038/s41401-020-0485-4 Huynh J, Li S, Yount B, et al. Evidence supporting a zoonotic origin of human coronavirus strain NL63. J Virol. 2012 Dec;86(23):12816-25. PubMed: https://pubmed.gov/22993147. Full-text: https://doi.org/10.1128/JVI.00906-12 Kahn JS, McIntosh K. History and recent advances in coronavirus discovery. Pediatr Infect Dis J. 2005 Nov;24(11 Suppl):S223-7, discussion S226. PubMed: https://pubmed.gov/16378050. Full-text: https://doi.org/10.1097/01.inf.0000188166.17324.60 Knipe, D.M. Coronaviridae. In: et al. (eds.) FIELDS Virology. Philadelphia: Lippincott Williams & Wilkins; 2013. p. 825-858. Korsman, S.N.J. Human coronaviruses. In: et al. (eds.) Virology An Illustrated Colour Text. China: Elsevier Ltd; 2012. p. 227-232. Kuiken T, Fouchier RA, Schutten M, et al. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet. 2003 Jul 26;362(9380):263-70. PubMed: https://pubmed.gov/12892955. Full-text: https://doi.org/10.1016/S01406736(03)13967-0 Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020 May;581(7807):215-220. PubMed: https://pubmed.gov/32225176. Full-text: https://doi.org/10.1038/s41586-020-2180-5

Virology | 169

Lau SKP, Luk HKH, Wong ACP, et al. Possible Bat Origin of Severe Acute Respiratory

Syndrome Coronavirus 2. Emerg Infect Dis. 2020 Jul;26(7):1542-1547. PubMed: https://pubmed.gov/32315281. Full-text: https://doi.org/10.3201/eid2607.200092 Liu SL, Saif LJ, Weiss SR, Su L. No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2. Emerg Microbes Infect. 2020 Feb 26;9(1):505-507. PubMed: https://pubmed.gov/32102621. Fulltext: https://doi.org/10.1080/22221751.2020.1733440 Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020 Feb 22;395(10224):565-574. PubMed: https://pubmed.gov/32007145. Fulltext: https://doi.org/10.1016/S0140-6736(20)30251-8 Malaiyan J, Arumugam S, Mohan K, Gomathi Radhakrishnan G. An update on the origin of

SARS-CoV-2: Despite closest identity, bat (RaTG13) and pangolin derived

coronaviruses varied in the critical binding site and O-linked glycan residues. J Med Virol. 2020 Jul 7:10.1002/jmv.26261. PubMed: https://pubmed.gov/32633815. Fulltext: https://doi.org/10.1002/jmv.26261 Malik YA. Properties of Coronavirus and SARS-CoV-2. PubMed: https://pubmed.gov/32342926. Full-text: https://doi.org/ MacLean O, Orton RJ, Singer JB, et al. No evidence for distinct types in the evolution of SARS-

CoV-2. Virus Evolution, veaa034, https://doi.org/10.1093/ve/veaa034. Full-text: https://academic.oup.com/ve/advancearticle/doi/10.1093/ve/veaa034/5827470?searchresult=1 Menachery VD, Yount BL Jr, Debbink K, et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med. 2015 Dec;21(12):1508-13. PubMed: https://pubmed.gov/26552008. Full-text: https://doi.org/10.1038/nm.3985 Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J Microbiol Immunol Infect. 2020 Mar 31. PubMed: https://pubmed.gov/32265180. Fulltext: https://doi.org/10.1016/j.jmii.2020.03.022 Naqvi AAT, Fatima K, Mohammad T, et al. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim Biophys Acta

Mol Basis Dis. 2020 Oct 1;1866(10):165878. PubMed: https://pubmed.gov/32544429. Fulltext: https://doi.org/10.1016/j.bbadis.2020.165878 O’Leary VB, Ovsepian SV. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).

Trends in Genetics. Published August 26, 2020. Full-text: https://doi.org/10.1016/j.tig.2020.08.014 Perlman S, McIntosh K. Coronaviruses, Including Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). In: Bennett JE, Dolin R, Blaser MJ (2019). Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases, p. 2072. Elsevier Inc. https://expertconsult.inkling.com/read/bennett-mandell-douglas-principle-practiceinfect-diseases-9e/chapter-155/coronaviruses-including-severe Romano M, Ruggiero A, Squeglia F, Maga G, Berisio R. A Structural View of SARS-CoV-2 RNA

Replication Machinery: RNA Synthesis, Proofreading and Final Capping. Cells. 2020

May 20;9(5):1267. PubMed: https://pubmed.gov/32443810. Fulltext: https://doi.org/10.3390/cells9051267 Ruch TR, Machamer CE. The coronavirus E protein: assembly and beyond. Viruses. 2012

Mar;4(3):363-82. PubMed: https://pubmed.gov/22590676. Fulltext: https://doi.org/10.3390/v4030363 Sardar R, Satish D, Birla S. Integrative analyses of SARS-CoV-2 genomes from different

geographical locations reveal unique features potentially consequential to host-virus

interaction, pathogenesis and clues for novel therapies. Heliyon August 20, 2020. Fulltext: https://doi.org/10.1016/j.heliyon.2020.e04658 Satarker S, Nampoothiri M. Structural Proteins in Severe Acute Respiratory Syndrome Coronavirus-2. Arch Med Res. 2020 Aug;51(6):482-491. PubMed: https://pubmed.gov/32493627.

Full-text: https://doi.org/10.1016/j.arcmed.2020.05.012

170 | CovidReference.com

Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020 May;581(7807):221-224. PubMed: https://pubmed.gov/32225175. Fulltext: https://doi.org/10.1038/s41586-020-2179-y Tan W, Zhao X, Ma X, et al. A Novel Coronavirus Genome Identified in a Cluster of Pneumonia

Cases — Wuhan, China 2019−2020. China CDC Weekly, 2020, 2(4): 61-62. Full text: 10.46234/ccdcw2020.017 Van der Hoek L, Pyrc K, Jebbink MF, et al. Identification of a new human coronavirus. Nat Med. 2004 Apr;10(4):368-73. PubMed: https://pubmed.gov/15034574. Full-text: https://doi.org/10.1038/nm1024 Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020 Apr 16;181(2):281-292.e6. PubMed: https://pubmed.gov/32155444. Fulltext: https://doi.org/10.1016/j.cell.2020.02.058 Wang LF, Anderson DE. Viruses in bats and potential spillover to animals and humans. Curr Opin Virol. 2019 Feb;34:79-89. PubMed: https://pubmed.gov/30665189. Full-text: https://doi.org/10.1016/j.coviro.2018.12.007 Wang Q, Zhang Y, Wu L, et al. Structural and Functional Basis of SARS-CoV-2 Entry by Using

Human ACE2. Cell. 2020 May 14;181(4):894-904.e9. PubMed: https://pubmed.gov/32275855. Full-text: https://doi.org/10.1016/j.cell.2020.03.045 Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-specific glycan analysis of the

SARS-CoV-2 spike. Science. 2020 Jul 17;369(6501):330-333. PubMed: https://pubmed.gov/32366695. Full-text: https://doi.org/10.1126/science.abb9983 Wu Y, Ho W, Huang Y, et al. SARS-CoV-2 is an appropriate name for the new coronavirus. Lancet. 2020 Mar 21;395(10228):949-950. PubMed: https://pubmed.gov/32151324. Fulltext: https://doi.org/10.1016/S0140-6736(20)30557-2 Woo PC, Lau SK, Chu CM, et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol. 2005 Jan;79(2):884-95. PubMed: https://pubmed.gov/15613317. Full-text: https://doi.org/10.1128/JVI.79.2.884-895.2005 Xiao C, Li X, Liu S, Sang Y, Gao SJ, Gao F. HIV-1 did not contribute to the 2019-nCoV genome. Emerg Microbes Infect. 2020 Feb 14;9(1):378-381. PubMed: https://pubmed.gov/32056509. Fulltext: https://doi.org/10.1080/22221751.2020.1727299. eCollection 2020 Xiao K, Zhai J, Feng Y, et al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature. 2020 Jul;583(7815):286-289. PubMed: https://pubmed.gov/32380510.

Full-text: https://doi.org/10.1038/s41586-020-2313-x Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020 Mar 27;367(6485):1444-1448. Pub-

Med: https://pubmed.gov/32132184. Full-text: https://doi.org/10.1126/science.abb2762 Zhang X, Tan Y, Ling Y, et al. Viral and host factors related to the clinical outcome of COVID19. Nature. 2020 May 20. PubMed: https://pubmed.gov/32434211. Full-text: https://doi.org/10.1038/s41586-020-2355-0 Zhou H, Chen X, Hu T, et al. A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains

Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein. Curr Biol. 2020 Oct 5;30(19):3896. PubMed: https://pubmed.gov/33022232. Fulltext: https://doi.org/10.1016/j.cub.2020.09.030 Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020 Mar;579(7798):270-273. Pub-

Med: https://pubmed.gov/32015507. Full-text: https://doi.org/10.1038/s41586-020-2012-7 Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020 Feb 20;382(8):727-733. PubMed: https://pubmed.gov/31978945. Full-text: https://doi.org/10.1056/NEJMoa2001017

Virology | 171

Zuckerman AJ. Coronaviruses and Toroviruses. In: et al. (eds.) Principles and Practice of

Clinical Virology. Wiley; 2009. p. 511-531. Richman.

172 | CovidReference.com