12 minute read

Fight Aging!

Reports From the Front Line in the Fight Against Aging

Reported by Reason

Fight Aging! exists to help ensure that initiatives with a good shot at greatly extending healthy human longevity become well known, supported, and accepted throughout the world. To this end, Fight Aging! publishes material intended to publicize, educate, and raise awareness of progress in longevity science, as well as the potential offered by future research. These are activities that form a vital step on the road towards far healthier, far longer lives for all.

The Path to the Clinic for First Generation Senolytic Therapies

August 2022

Senolytic therapies selectively destroy lingering senescent cells in old tissues, improving health as a result. Senescent cells, while never very large in absolute numbers, even in late life, actively maintain a degraded state of tissue and organ function via secretions that provoke chronic inflammation, detrimental alterations to the behavior of normal cells, and harmful remodeling of tissue structure, such as the development of fibrosis. A large number of animal studies have demonstrated rapid rejuvenation and reversal of aspects of specific age-related conditions to result from clearance of senescent cells. The best of the early senolytic approaches, small molecule drugs and plant extracts that sabotage senescent cell resistance to apoptosis, such as the dasatinib and quercetin combination, manage to destroy as many as half of the senescent cells in a given tissue, with the degree of clearance varying widely between therapies and tissues.

Given the animal data, which is far and away the most robust and impressive of all of the approaches to the treatment of aging attempted to date, there is an enthusiasm for human clinical trials. Unfortunately, these early small molecule drugs are largely off-patent or close to it, and so near all of the sizeable funding in the field goes towards the development of new, patentable senolytic therapies rather than the validation of existing lowcost treatments that might be more rapidly brought to the clinic. Still, a number of clinical trials of early, low-cost senolytic drugs are ongoing, as noted by the authors of this open access paper. In the years ahead, those will be joined by the second generation senolytic therapies under development, hopefully at least marginally better as a result of the effort put into their development, and what has been learned to date about the ways in which early senolytics work. This is all moving far too slowly, however!

Epigenetic aging: Biological age prediction and informing a mechanistic theory of aging

Cellular senescence and senolytics: the path to the clinic

The elimination of senescent cells has emerged as a plausible therapeutic strategy for preventing, delaying, or alleviating multiple diseases and age-related dysfunction. Promising results of senolytics in preclinical models suggest therapeutic and preventive opportunities for delaying multimorbidity and increasing healthspan. A key priority should be the identification of reliable, sensitive and specific gerodiagnostics – biomarkers to quantify senescent cell abundance, the senescence-associated secretory phenotype (SASP), and senolysis as well as other pillars of aging.

Fundamental aging mechanisms can be grouped into socalled hallmarks or 'pillars' of aging; these include genomic instability, progenitor cell exhaustion/dysfunction, telomeric and epigenetic changes, dysregulated protein homeostasis, altered nutrient sensing, mitochondrial dysfunction, altered intercellular communication, chronic low-grade inflammation, fibrosis, microbiome dysregulation and cellular senescence. The Geroscience Hypothesis holds that these pillars of aging, including cellular senescence, tend to progress in concert and may be root-cause contributors to the pathophysiology of multiple diseases, age-related dysfunction and loss of resilience. The Unitary Theory of Fundamental Aging Mechanisms builds on the Geroscience Hypothesis by positing that interventions targeting any one fundamental mechanism may target the others. For example, interventions that target cellular senescence tend to attenuate other fundamental aging mechanisms leading to reduced inflammation, attenuated exhaustion of progenitors, decreased fibrosis, alleviated mitochondrial dysfunction, and a partially restored microbiome in experimental animal models of aging and chronic diseases

Based on promising results in preclinical models, over 20 clinical trials of senolytic therapies are completed, ongoing or planned. Because side effects of senolytics in humans are not yet fully known, and to maximize benefit-risk ratios, the first clinical trials are underway in patients with serious health conditions, such as diabetic kidney disease, Alzheimer's disease, frailty and idiopathic pulmonary fibrosis (IPF). The first in-human trial of senolytics (dasatinib and quercetin, D + Q), the Hematopoietic Stem Cell Transplant Survivors Study, is still underway (NCT02652052; first patient dosed on 1 April 2016). The first senolytic clinical trial published was an open-label pilot study in which 14 patients with IPF were treated with intermittent D + Q on 3 days per week for 3 weeks. Results suggested that senolytics improved physical function in these frail patients. Furthermore, post hoc analysis of a study involving 20 patients with IPF showed that urine levels of the 'geroprotective' factor α-Klotho were higher after oral D + Q than before treatment. In an open-label phase 1 pilot study in 9 patients with diabetic kidney disease, a 3-day course of oral D + Q was sufficient to decrease adipose tissue senescent cell burden, inflammation, fibrosis and circulating SASP factors for at least 11 days after the last dose of senolytics, indicating target engagement and suggesting that an intermittent dosing regimen may be effective in humans.

These early data warrant evaluation in larger randomized, double-blind, placebo-controlled trials for senescenceassociated disorders and diseases, some of which are underway.

Link: https://www.nature.com/articles/s41591-022-01923-y

Epigenetic Aging Slows During Hibernation in a Common Bat Species

August 2022

This open access paper on epigenetic age and hibernation in bats makes an interesting companion piece to similar research into marmots from earlier in the year. It seems that hibernation may slow epigenetic aging in a range of species, though it may not be enough to explain differences in life span between all similar hibernating and non-hibernating species. Nonetheless, researchers have for some years shown interest in the biochemistry of hibernation in the context of aging. It remains to be seen what there is to learn here, and whether it can form the basis for therapies or enhancements in human medicine.

Comparative analyses of bats indicate that hibernation is associated with increased longevity among species. However, it is not yet known if hibernation affects biological ageing of individuals. Here, we use DNA methylation (DNAm) as an epigenetic biomarker of ageing to determine the effect of hibernation on the big brown bat, Eptesicus fuscus. First, we compare epigenetic age, as predicted by a multi-species epigenetic clock, between hibernating and non-hibernating animals and find that hibernation is associated with epigenetic age. Second, we identify genomic sites that exhibit hibernationassociated change in DNAm, independent of age, by comparing samples taken from the same individual in hibernating and active seasons.

This paired comparison identified over 3000 differentially methylated positions (DMPs) in the genome. Genome-wide association comparisons to tissue-specific functional elements reveals that DMPs with elevated DNAm during winter occur at sites enriched for quiescent chromatin states, whereas DMPs with reduced DNAm during winter occur at sites enriched for transcription enhancers. Furthermore, genes nearest DMPs are involved in regulation of metabolic processes and innate immunity. Finally, significant overlap exists between genes nearest hibernation DMPs and genes nearest previously identified longevity DMPs. Taken together, these results are consistent with hibernation influencing ageing and longevity in bats.

In conclusion, application of a multi-species bat epigenetic clock provides strong evidence that hibernation is associated with slower epigenetic ageing. The multi-species clock explains 94% of the variation in the chronological ages of both hibernating and non-hibernating big brown bats; however, the clock estimates are equal to or greater than the chronological age, suggesting big brown bats age slightly faster than a 'typical' bat, especially during the active period.

Link: https://doi.org/10.1098/rspb.2022.0635

First Generation Stem Cell Therapies Remain Comparatively Poorly Understood

August 2022

We are something like thirty years into the increasingly widespread use of first generation stem cell therapies. Cells are derived from a variety of sources, processed, and transplanted into patients. Nearly all of these transplanted cells die, but while they survive they secrete signals that suppress inflammation and encourage native cells to change their behavior for the better. It is fair to argue that these treatments have not yet realized the potential originally hoped for, the robust regeneration of damaged tissues. While suppression of inflammation is reliably achieved, regeneration and restored function for organs occurs in only some patients, and to a varying, modest degree.

More generally, not enough is known of how these therapies produce beneficial effects, or of the way in which cells interact in these circumstances. That leads to discussions such as the one offered in this open access paper, in which clinicians look over their data to make the empirical observation that some sources of cells are better than others for treating specific conditions. Why this might be the case, or even whether it would still be the case in broader datasets, is an open question. Too little is known, much more research is needed, and this is the case decades into the development of this field!

If the original vision for cell therapies is to be realized, then the future of this field must be one in which the challenges of cell survival and cell integration into tissues are solved, allowing the wholesale replacement of damaged and dysfunctional stem cell populations. This may require the rejuvenation of tissues that make up stem cell niches, as at least some of the evidence accumulated to date suggests that stem cell populations can be functional, even in later life, if only protected from age-related changes in the signaling environment provided by the niche and surrounding tissues. That is a somewhat harder problem to solve than issues involving the transplanted cells themselves. But at the end of the day, defeating the challenges of stem cell therapies may require defeating the challenges of degenerative aging.

Stem cell-based therapy for human diseases

From a cellular and molecular perspective and from our own experience in a clinical trial setting, adipose-derived mesenchymal stem cells (AD-MSCs), bone marrow-derived MSCs (BM-MSCs) and umbilical cord derived MSCs (UC-MSCs) exhibit different functional activities and treatment effectiveness across a wide range of human diseases. In this paper, we have provided up-to-date data from the most recently published clinical trials conducted in neuronal diseases, endocrine and reproductive disorders, skin regeneration, pulmonary dysplasia, and cardiovascular diseases. The implications of the results and discussions presented in this review and in a very large body of comprehensive and excellent reviews as well as systematic analyses in the literature provide a different aspect and perspective on the use of MSCs from different sources in the treatment of human diseases.

We strongly believe that the field of regenerative medicine and MSC-based therapy will benefit from active discussion, which in turn will significantly advance our knowledge of MSCs. Based on the proposed mechanisms presented in this review, we suggest several key mechanistic issues and questions that need to be addressed in the future:

1. The confirmation and demonstration of the mechanism of action prove that tissue origin plays a significant role in the downstream applications of the originated MSCs.

2. Is it required that MSCs derived from particular cell sources need to have certain functionalities that are unique to or superior in the original tissue sources?

3. As mechanisms may rely on the secretion of factors from MSCs, it is important to identify the specific stimuli from the wound environments to understand how MSCs from different sources can exhibit similar functions in the same disease and whether or not MSCs derived from a particular source have stronger effects than their counterparts derived from other tissue sources.

4. Should we create "universal" MSCs that could be functionally equal in the treatment of all diseases regardless of their origin by modeling their genetic materials?

5. Can new sources of MSCs from either perinatal or adult tissues better stimulate the innate mechanisms of specific cell types in our body, providing a better tool for MSCbased treatment?

6. A potential 'priming' protocol that allows priming, activating, and switching the potency of MSCs from one source to another with a more appropriate clinical phenotype to treat certain diseases. This idea is potentially relevant to our suggestion that each MSC type could be more beneficial in downstream applications, and the development of such a "priming" protocol would allow us to expand the bioavailability of specific MSC types.

From our clinical perspective, the underlying proposal in our review is to no longer use MSCs for applications while disregarding their sources but rather to match the MSC tissue source to the application, shifting from one cell type for the treatment of all diseases to cell source-specific disease treatments. Whether the application of MSCs from different sources still shows their effectiveness to a certain extent in the treatment of diseases or not, the transplantation of MSCs derived from different sources for each particular disease needs to be further investigated, and protocols need to be established via multicentre, randomized, placebo-controlled phase II and III clinical trials.

Link: https://www.nature.com/articles/s41392-022-01134-4

A Better Way of Measuring Senescent Cell Burden Across Tissues and Species

August 2022

Researchers here propose a better way of measuring the burden of cellular senescence in aged tissues, one that works well across different tissues and species. It is complicated, involving expression of many genes, but the existing simple metrics, such as measurement of senescence-associated beta-galactosidase levels, are increasingly thought inadequate to the task. Senescent cells likely vary in character and metabolism between tissues in ways that have become meaningful now that researchers are past the period of early validation of therapies targeting senescent cells. Now it is important to obtain a much better idea as to the effectiveness of various potential treatments in mice or humans than is presently the case.

Cellular senescence is now recognized as a fundamental mechanism of aging in animals and humans. Senescent cells can develop a senescence-associated secretory phenotype (SASP), consisting of pro-inflammatory cytokines, chemokines, extracellular matrix-degrading proteins, and other factors that have deleterious paracrine and systemic effects. Further, because senescent cells accumulate in multiple tissues in temporal and spatial synchrony with age-associated functional decline in both animals and humans, they have been hypothesized to drive the deterioration linked to numerous chronic diseases. Importantly, the SASP as a feature of cellular senescence represents not just a locally or systemically detrimental set of factors that, in the aging organism, cause physical, metabolic, and cognitive decline, but is also a therapeutic target of interest. Thus, given the broad availability of next-generation sequencing, there is considerable interest in monitoring responses to senolytic treatments. However, this has been challenging, especially at the single cell level. In part, this is due to an imprecise definition of the heterogeneous population of senescent cells and their associated SASP which complicates appropriate monitoring of senescent cell clearance.

Due to variations in the composition of a "senescence gene set" in the current literature, in the present study we sought to identify commonly regulated genes in various age-related datasets in a transcriptome-wide approach that included whole-transcriptome as well as single cell RNA-sequencing (scRNA-seq). Based on an extensive review of the literature, we defined a panel of 125 genes as our senescence gene set ("SenMayo"), which we then validated in our own as well as publicly available datasets of tissues from aged humans and mice, including changes in this gene set following the clearance of senescent cells. Recognizing the difficulty of identifying senescent cells within scRNA-seq analyses, we next applied SenMayo to available scRNA-seq data from human and murine bone marrow/bone hematopoietic and mesenchymal cells, ascertained the identity of the senescent cells in these analyses, and characterized the communication patterns of senescent hematopoietic or mesenchymal cells with other cells in their microenvironment. Finally, we experimentally validated key predictions from our in silico analyses in a mouse model of aging and following genetic clearance of senescent cells.

Link: https://doi.org/10.1038/s41467-022-32552-1

More Evidence Against Herpesvirus

Infection as a Meaningful Contribution to Alzheimer's Disease

September 2022

There is a continuing debate over the role of persistent viral infection in the development of neurodegenerative disease. It seems plausible that such infection could increase chronic inflammation, and inflammation in brain tissue is a hallmark of neurodegenerative conditions. Just because the mechanism exists doesn't mean it is the primary, or even important, component of the disease process however. This is ever the challenge in complex age-related diseases, determining which of the many mechanisms in play are in fact those that primarily cause the condition. So there is a back and forth of epidemiological studies in recent years, attempting to settle the role of viral infection, particularly by herpes viruses, in neurodegenerative conditions such as Alzheimer's disease. At present neither side has a convincing advantage in weight of evidence, which suggests that there may be a more complex set of interactions going on under the hood.

The causes of Alzheimer's disease are not fully understood. There are clear associations with the accumulation of abnormal proteins in the brain, beta-amyloid and tau. There is also clear evidence of neuroinflammation, and there appears to be evidence of immune dysfunction in microglia, a type of immune cell found within the brain. One recurring theory is that herpes viruses, which are responsible for cold sores, genital herpes and other infections, might cause Alzheimer's disease.

However, researchers studying 1,009 participants in the Baltimore Longitudinal Study of Aging (BLSA) have found that while symptomatic herpes viruses were associated with neurological and cognitive symptoms, there was no evidence to support the long-held theory that they are linked to Alzheimer's disease. The participants who were diagnosed with herpes had higher cognitive scores at the beginning of their participation but demonstrated greater longitudinal decreases in attention performance. The study did not find a link between herpes virus infection and the volume of total brain or gray matter, or in areas associated with Alzheimer's disease. Of the total participants, 119 had a record of symptomatic herpes infection. These infections were linked to longitudinal decreases in white matter volume, particularly in the temporal lobe. Being treated with antivirals slowed the declines in occipital white matter.

Link: https://www.biospace.com/article/study-symptomaticherpes-viruses-linked-to-brain-changes-but-not-alzheimer-s/