Healthcare Artificial Intelligence: Elevating Outpatient Medical Coding Automation

Page 1

Healthcare Artificial Intelligence: Elevating Outpatient Medical Coding Automation

Artificialintelligence(AI)andmachinelearning(ML)algorithmsare transformingalmosteveryindustry,andhealthcareisnoexception.Many healthcareorganizationsareleveragingAItobetterallocateresources,predict patientoutcomes,andschedulepersonnel.AIandMLcanhelptoaugment medicalcoders-codingoutpatientservicesefficientlyandaccurately–allowingcoderstodevotemoretimetocomplextasks.

How does Artificial Intelligence help outpatient medical coding?

Manualoutpatientcodinghasseveraldrawbacks,includinglower productivity,lowercasereviewrates,andalongerphysicianresponsetime, allofwhichslowreimbursement.TheDiagnosticRelatedGrouping(DRG) assignmentisnotoptimizedthroughmanualcoding,andthestaffwillbe unabletotrackquerieseffectively.AIisapowerfulautomationtoolthat addressestheflawsinmanualoutpatientcodingprocesses.ThiscanaidHIMs optimizethecodingquality,ensuringpromptreimbursement,better

managinghospitalfinances,andimprovingpatientcare.Experiencedcoders don'tneedtowastetimecodingsimplechartswhentheycanfocusonmore complextasksthatmachinescan'thandle.

Benefits of AI in Outpatient

Medical Coding

• Tailored Patient Care

HealthcareAIanalyzestheoutpatientdatacollectedfromphysician’srecords, diagnosticresults,andlabtestsandcomparesthemwithmedicalprotocols, recommendations,andclinicalprocedures.Medicalstaffcanusetheresultsto determinewhetheranyadditionaltestingisrequiredandthebestcourseof treatmentforthepatient.AIallowsmedicaltreatmenttobetailoredto outpatientcare.

• Computer Assisted Coding (CAC)

Computer-AssistedCoding,orCAC,amalgamatesvariousfeaturesofAIand NaturalLanguageProcessing(NLP).AI-poweredCACsoftwarecanevaluate andinterpretphysiciannotes,assignmodifiers,detecterrors,andrecognize codingedits,freeingmedicalcoderstofocusonothertasks.Itsdedicated algorithmscanextractclinicalfactsandassigntheappropriateE/Mcode. Identifying,extracting,andfeedingitintothesystemarenolongerconcerns forphysicians.Additionally,AI-poweredCACprovidesreal-timefeedbackto thehealthcaresystemandphysiciansabouttheprecisionofE/Mcodesused duringoutpatientvisits.Cloud-basedsystemsarenotonlysecure,butthey alsooffereasyaccesstodata,enhancedatascalability,andreduceprocess downtime.

• Computer-Assisted Clinical Documentation Improvement (CDI)

NLP-enabledCDIsynchedwithEHRs(ElectronicHealthRecords)help medicalstafffillgapsinclinicaldata.Thistoolcanexaminedocumentationin real-time,enablingCDIs,coders,andphysicianstoworkconcurrentlyin improvingdocumentquality.Chartscanbeprioritizedbasedonsuggested queriesandheldinaworkqueuepriortocodingtoensurequeriesarenot missed.Eachchartcanbepredictivelycodedbasedoncurrentdocumentation andqueriessuggestedbasedonpotentialcodingopportunitiesormissing support.

• Real-time feedback

Real-timefeedbackhelpscodersimprovefaster.Assumeanewcodermakesa mistakeincodinganoutpatientchart.TheAIassistantwillimmediatelyflag theerror,suggestasolution,andnotifythecoderofthechange's repercussions.Thisway,theaccuracyissueiscaughtthesamedaywhilethe caseisnewandbeforeitissenttobilling.

• Improved Billing Procedures

HealthcareAItechnologyallowsmedicalbillingstafftoimprovetheefficacy andefficiencyoftheoutpatientcodingandbillingprocess.Manycompanies areadoptingAIapplicationstosimplifymanualcodinglabor.AIinhealthcare cansignificantlyreduceworkinghoursandhumanerror,inadditionto processingcodesandlargedatavolumes.

• Interaction analysis

Interactionanalysissystemsforoutpatientcarearetypicallydonemanually. Theseprovetobetime-consuming,costly,andcomplex.Thecomputerized algorithmsofAIcanmakethisprocessmorecost-effectiveand straightforward.Wecanalsogobeyondtheestablishedboundariesofpatientphysiciancommunicationwiththehelpoftechnology.

Onalargescale,AI/MLsolutionscanpinpointcommonmistakesinoutpatient medicalcoding,tightenthefloodgatesagainstcodingerrors,andimprove documentation.Throughreal-timefeedback,coderscanenhancetheirskills. Top-tiercoderscandevotemoretimetocomplexcasesratherthanmundane tasks.AGSrecommendsthishybridapproachascodersarealsoableto validatethecomputer’sproposedcodes–ensuringaccuracyandmaximizing reimbursements.

Source of content: Healthcare Artificial Intelligence - Elevating Outpatient Medical Coding Automation

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Healthcare Artificial Intelligence: Elevating Outpatient Medical Coding Automation by AGSHealth_ - Issuu