CHARGED Electric Vehicles Magazine OCT/NOV 2012

Page 35

the tech

Photo courtesy of Wildcat Discovery Technologies

At Wildcat, one scientist is capable of synthesizing 400 to 500 materials all at the same time. All different materials.

how useful they are. The concept is similar to the way discoveries are made in life sciences, such as pharmaceuticals. In the area of battery materials, however, Wildcat is one of only a few organizations that can do it, and it has its own completely proprietary equipment and methods. “There’s a whole heck of a lot of money invested in unique-in-the-world equipment that we designed and built here at Wildcat,” Gresser says. “We have a process for this type of discovery that is unique. Secondly, we obviously think our scientists are great. But also they’ve been trained now over years in executing discovery protocol based on this unique equipment and really know how best to use this process.” As a result, Wildcat can synthesize energy storage materials up to 100 times faster than standard labs. “In conventional research, a scientist conceives of an idea for an experiment - say a cathode chemistry,” Gresser says. “The first step is to figure out how to make a small quantity of that cathode chemistry. Once successfully made, there may be other analytics performed on the material. Eventually, if the material looks promising it will be converted into an electrode slurry, then an electrode film, then that film will be put into a battery construction, and then the battery will be tested. We’ve figured out how to do all of those steps in a highly automated fashion, and not just one at a time. In conventional research, a scientist may take a couple weeks or longer to go through that process and get a battery built. At Wildcat, one scientist is capable of synthesizing 400 to 500 materials all at the same time. All different materials. And you end up with a full-cell battery to test, except now you’re testing 500 batteries instead of one, and each of the batteries is different. Our 10 scientists or so can together do about 5,000 in parallel. It has a real accelerating effect. We’re able to do research very rapidly and

compress the timeline for discovery. Whatever a scientist in a conventional lab would like to do in the next few years, we can do that in the next few weeks.” Wildcat’s synthesis method produces small samples of materials effectively in a similar manner to large-scale production. As a side benefit, the company also finds out how easy materials are to make, as well as how well they may perform. Because battery testing is highly dependent on charge and discharge rates, Wildcat’s process doesn’t shorten the testing process much. According to Gresser, it still takes them four or five days to find out if a material is interesting enough to take it off line and test it further under various different conditions. But it’s the ability to synthesize hundreds of materials of interest - whether electrolyte, cathode, or andode - in parallel and then test that same number of different materials in full-cell batteries that has made Wildcat so attractive to its clients.

Battery mitosis for hire

So far, Wildcat has worked with about 40 different customers on 64 collaborative projects, in addition to its internally-funded programs. “We’ve got a lot of repeat customers now that are starting to come back,” Gresser says, “and we continue to increase the size of the collaborative projects that we work on.” Although Wildcat’s customers typically want to keep

OCT/NOV 2012 35


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.