Ocean Energy Resources | 1 2021

Page 1

SERVING THE OIL, GAS AND RENEWABLE ENERGY COMMUNITIES

NR. 1 - 2021 0

JAARGANG 38

Half of insurance claims cable-related

SUPPORTED BY:



OCEAN ENERGY RESOURCES

1 | 2021

04 DECOMMISSIONING 04 TEST WITH JET-GUN

In nauwe samenwerking met Allseas heeft offshore en subsea contractor GBM Works has developed a new method to reduce noise pollution

Bluestream uit Den Helder afgelopen zomer in het kader van de ontmanteling caused by driving foundation piles for wind turbines into the seabed. van een in 1978 geïnstalleerd large UKCS East of Shetland olieplatform, een There will be significantly less noise with the aid of the Jet-gun. uniek rope access project succesvol afgerond. Het betrof een platform dat niet meer als zodanig geclassificeerd was.

04

12 SUCTION PILE TECHNOLOGY 08 ARBOCATALOGUS

Offshore (SPT) frommet Woerden, Netherlands, one ofcontractor the few samenwerking Allseasthe heeft offshore en is subsea SInPTnauwe

international who afgelopen managed to win in thehet trust of van Chinese clients. Bluestream uitplayers Den Helder zomer kader de ontmanteling The company is geïnstalleerd specialised inlarge suction foundations SIPs for the van een in 1978 UKCSpile East of Shetlandand olieplatform, een development of marginal oil and gas fields and wind farms.dat uniek rope access project succesvol afgerond. Hetoffshore betrof een platform niet meer als zodanig geclassificeerd was.

12 08

12 ASSET MANAGEMENT 22 SUBSEA CABLES In nauwe samenwerking met Allseas heeft offshore en subsea contractor

Bluestream N early half uit of all claims inzomer the offshore windvan industry Deninsurance Helder afgelopen in het kader de ontmanteling are comprisinglarge overUKCS three-quarters of insurance claimeen van cable-related, een in 1978 geïnstalleerd East of Shetland olieplatform, pay-outs. to reduce risk for subsea uniek ropeHow access project ground succesvol afgerond. Het cables? betrof een platform dat niet meer als zodanig geclassificeerd was.

22

20

SOUTHEAST ASIA

38

In nauwe samenwerking met Allseas heeft offshore en subsea contractor MAKING TURBINE BLADES RECYCLABLE Bluestream uit Den Helder afgelopen zomer in het kader van de ontmanteling

van een in 1978 geïnstalleerd large UKCS East of Shetland olieplatform, een In an industry that seeks to be truly sustainable throughout the uniek rope access project succesvol afgerond. Het betrof een platform dat product life cycle, establishing these end-of-life blade recycling niet meer als zodanig geclassificeerd was. solutions will be essential.

38 Publisher: Uitgeverij Tridens P.O. Box 526 1970 AM IJmuiden The Netherlands

Digital version: www.oceanenergyresources.com

Editor-in-Chief: Han Heilig E-mail: han@practica.nl

Art Director: Peter Ruiter Practica Productions BV

Contributing editors: Marloes Kraaijeveld (IRO)

Advertising: Pascal van der Molen pascal@ocean-energyresources.com

Copyright While every care has been taken in Ocean Energy Resources is owned the preparation of this publication, and published by Uitgeverij Tridens. neither the publisher nor the editor are responsible for the views The publisher, authors and and opinions expressed in this contributors reserve their rights in publication or for any inaccuracies regard to copyright of their work. in the articles. No part of this work covered by the copyright may be reproduced, stored or transmitted in any form or by any means without the written consent of the publisher. ISSN: 2598-7853

3


OCEAN ENERGY RESOURCES

1 | 2021

NEW METHOD TO REDUCE THE NOISE POLLUTION

GBM Works tests Jet-gun in piledriving for offshore wind turbines 4


GBM Works from the Netherlands has developed a new method to reduce the noise pollution caused by driving foundation piles for wind turbines into the seabed. The seabed is, as it were, fluidised with water jets that spray water into the seabed, reducing the friction on the inside of the pile. With the aid of the Jet-gun and due to vibrations the monopile sinks into the seabed under its own weight - faster and with significantly less noise. To test the system, vibrations and deformations of the monopiles were measured using strain gauages, supplied by HBK. The results from this trial, at the Maasvlakte site, provided more information than first expected.

Ben Arntz, founder and director of GBM Works, describes the problem: “Driving foundation piles for wind turbines into the seabed causes vibrations, pressure waves and - in particular - also a great deal of noise. When a steel foundation pile with a diameter of eight metres is driven, the noise production can reach a level up to 180 decibels. The vibrations, the pressure waves and the loud noise have a negative effect on underwater life. Not only are animals startled by the vibrations and the seabed disturbance, but communication between marine mammals such as dolphins and whales - is disrupted. Regulations have therefore been adopted to reduce the noise production in piledriving activities at sea. In German waters, a limit of 160 decibels at a distance of 750 metres from piledriving activities is currently in effect. In the Netherlands the rules are somewhat more flexible, with a limit of 160 170 decibels, but the expectation is that international guidelines will become stricter in the coming years. GBM Works has set the goal that the new method for installing the foundation for wind turbines in the seabed, should be an established alternative for the traditional pile hammer in combination with a sound mitigation system in 2025.”

Fluidising the seabed

The method of GBM Works for installing the pile silently is actually quite straightforward. On the inside of the pile, dozens of water jets spray seawater into the seabed. As a result, the seabed takes on properties comparable to those of quicksand. The seabed becomes ‘fluid’, decreasing the resistance of the seabed so that the foundation

pile sinks into the seabed faster. The second part of the solution is a vibratory hammer that replaces the hydraulic piledriving rig. In a traditional piledriving rig, a steel pile hammer strikes a foundation, made from the same material, which produces a great deal of noise. The vibratory hammer consists of rotating disks mounted on top of the monopile. These cause the monopile to vibrate so that it sinks into

5


OCEAN ENERGY RESOURCES

1 | 2021

The jet gun system works for sand, clay or a multilayer seabed.

the fluidised seabed layer.” The jet gun system works for sand, clay or a multilayer seabed. For optimal functioning of the water jet system, GBM Works has developed a simulation model that calculates the ideal combination of water pressure, flow and jet direction for a sand or clay substrate.

Test series in the Maasvlakte

To assess the operation of the system and demonstrate the added value of the new method in practice, a series of tests was conducted at the Maasvlakte in September 2020. “The aim was, among other things,

6

to collect information on the vibrations that arise, the water pressure that is needed, the behaviour of the soil and - of course - the effect on noise damping. The tests were financially supported by the Netherlands Enterprise Agency (RVO) in the framework of the ‘Stimulation of sustainable energy production and climate transition’ programme (SDE++),” explains Wouter Verschueren, data & model engineer at GBM Works. “We tested four setups; two with the jet gun system and the vibratory hammer on monopiles with a diameter of 70 and 120 centimetres, and two tests with the vibratory hammer alone on the same foundation piles. In all, 62 test installations were executed in


an area of about 5000 square metres over a period of three weeks. The area was divided into plots, for which we had mapped out the soil structure and composition in advance, to also enable us to map the effect of the soil composition on the results.”

Strain gauges

GBM Works chose to use strain gauges from HBK, as it had read about other test and research projects that HBK had worked on involving the foundation and other components of wind turbines. HBK advised GBM Works on using the right strain gauges and attached them to the monopiles. “The strain in the monopiles was measured with the strain gauges. When you exert pressure on steel monopiles, deformation occurs, and vibrations arise that cause noise. The pattern of the deformation and the vibrations are very different in the two methods. Thanks to the strain gauges, we also got information on fatigue in the foundation piles. Traditional piledriving can cause damage and have a negative effect on the lifespan of monopiles. They are therefore often over dimensioned by engineers. With the new method that’s not necessary and you cut costs.”

Noise reduction of 90 to 95 percent

“Most of the data now has been analysed,” Verschueren explains. “The results are far above expectations. We saw, for example, that the foundation piles with the vibratory hammer alone penetrated the

ground no farther than three or four metres because the soil resistance became too high. With the jet gun and the vibratory hammer, the piles easily went to a depth of 10 metres, while the speed at constant force quadrupled. The vibrations were reduced by 25 to 75% when the jet gun was used. Moreover, the force of the vibrations increases as the installation speed decreases. In a subsequent test cycle underwater the noise production of the solution with the vibratory hammer and the jet gun will be compared to that of a traditional pile hammer. A piledriving rig in combination with a sound mitigation system is currently used. These are complex systems that operate with an underwater shield around the foundation pile to damp the vibrations and noise. GBM Works expects a noise reduction of 90 to 95 percent thanks to the new system.”

Logistics advantages

Aside from the noise reduction when the system is used and the acceleration of the process of installing the foundation, Arntz also points out the logistics advantages for contractors: “The traditional piledriving rig with sound mitigation system is a complex installation. The contractor must rent all the equipment and transport it to the location. With our system an underwater shield is not needed, so that the logistics process is simplified and the installation time reduced. We cannot yet make any firm statements about the possible cost savings of our method, but if you assume a cost savings of just ten percent on the piledriving process alone, then the savings for an

7


OCEAN ENERGY RESOURCES

1 | 2021

MAKING SEAWATER INTO POTABLE WATER

Unique Floating Wind Turbine set for Middle East debut The Middle East might soon be home to a unique floating wind turbine project led by a group of European companies.

8


The floating utility solution is easy to mobilize at short notice, ideal for emergencies and any kind of temporary mission.

Namely, unlike the other floating wind projects currently developed or being worked on, aimed purely at producing electricity, this project, named Floating WINDdesal (FWD) is envisioned as ‘floating water utility’, to be used to make seawater into potable water for coastal regions.

The project, led by German-based SYNLIFT Industrial Products (SIP), consists of a seawater desalination plant and a wind turbine, both supported by a floating semi-submersible structure.

stationary onshore desalination plants - is significantly reduced or, at best, not required at all. FWD is therefore intended to enable sustainable and cost-effective seawater desalination even in locations where conventional desalination could not be financed.” Floating WINDdesal combines the aspects of security of supply, sustainability, flexibility and cost efficiency and therefore provides a consistent answer to one of the central challenges of our time supplying clean drinking water under growing climate and demographic pressure.

The FWD development is carried out and supported by a European industry initiative with the participation of system partners (thyssenkrupp Industrial Solutions, CRIST Shipyard, SYNLIFT Industrial Products) as well as technology partners (Prysmian Group, Boll & Kirch Filterbau, AEROVIDE, StoGda Ship Design & Engineering, EMS Maritime Offshore). Both project management and general planning lie with the Potsdambased company SYNLIFT Industrial Products (SIP), which specializes in the field of seawater desalination powered by renewable energies. A first FWD project implementation - most probably in the Middle East is to begin this year. Through the innovative combination of flexible processing, integrated energy and load management and extra-long blade wind technology, FWD seawater desalination is almost entirely powered by wind energy. With three module sizes in preparation, the daily water treatment capacity of what SYNLIFT says is an eco-water-utility is 15,000, 30,000 or 50,000 m3 per day. The largest FWD module can provide drinking water for up to half a million people. Applying the semi-submersible technology - originally developed for deep-sea oil drilling and today increasingly also used for offshore wind energy - locations with greater water depths can also be activated costeffectively for FWD with a minimized impact of seawater desalination on the maritime and terrestrial environment, the company explains. The floating utility solution is easy to mobilize at short notice, ideal for emergencies and any kind of temporary mission. According to the head of the Floating WINDdesal project, Joachim Käufler (SIP), it also offers an additional potential: “Our floating utility unit is ’mobile’. If necessary, the entire plant can be relocated by sea. As a result of that, requirement for customers to provide securities and guarantees - indispensable for the long-term operation of

9


OCEAN ENERGY RESOURCES

1 | 2021

IHC IQIP IS WORKING ON INNOVATIVE SOLUTION

Putting pressure on pile removal With the first offshore windfarms nearing the end of their operational life, solutions for efficient pile removal are set to become pivotal to the piling industry within the next five to ten years. IHC IQIP is working on an innovative solution to allow for complete pile removal and, where that is not possible, a safer and more efficient partial removal.

10


As wind energy on- and offshore continues to grow so does the number of piles driven into the ground and seabed all over the world. However, with a typical pile lifespan of 20-25 years, the next decade will see an increasing need not just for more pile i nstallations but for efficient, safe, and environmentally responsible pile decommissioning. Currently, environmental conditions require the removal of all foundations above ground and several meters below seabed level. This can be challenging, especially underwater, as current removal techniques consist of dredging and cutting the piles; something which only gets more complicated as piles grow and reach deeper depths. However, with the new method being developed by IQIP, the health and safety risks to the divers currently carrying out the underwater cutting can be avoided. Furthermore, with more steel to sell as scrap, costs can be reduced. Joop van Dijk, product manager, explains. “To remove an installed hollow pile (tube), we can use the well-known technique of closing the pile at the topside, filling the pile with a medium, liquid, and by pressurizing the liquid, the pile will raise out of the soil by the built-up pressure.” However, there are a number of challenges in the realisation of this method including the possibility of the liquid medium leaking into the soil and preventing the needed pressure from being created. This is one of several challenges, IQIP is currently solving with new methods and technologies.

Sealing soil

To solve the issue of the pressurising liquid leaking into the ground, IQIP is set to start testing the use of natural polymers, fluids that have the properties to seal the soil, in 2021. The viscosity of the natural polymers (protein chains) will raise by a dynamic load, and this means that while the fluid is pressed into the pores of the soil, the flow will decrease, enabling the pressurising of the pile. “The advantage of using polymers as a sealing material is that it is harmless for the environment and therefore may remain in the environment,” explains Paul Hitzerd, manager advisory services. In cases where calculations show that the friction between the pile and soil will become too high for this method to work without passing the yield point of the pile material by the internal pressure, the pile can be partly or completely dredged. This may be combined with internally cutting the pileand then partly filling the pile with soil and polymers to pressurise and finally retract the pile.

New technology to increase safety

To ensure that there are no safety issues when it comes to cutting the pile, IQIP and DECO have jointly developed a fully automated abrasive waterjet cutting technology. “It cuts from the inside of the pile, and it’s completely safe because it can be operated by remote control, therefore no people are involved underwater. The only risk is for the tool to be damaged,” explains Joop. This method can, of course, also be used in cases where the pile will need to be cut off underneath seabed level and partially removed. “But when possible, a complete removal will always be the best choice,” stresses Joop. “For environmental and safety reasons, you have to make sure the pile doesn’t resurface, and that’s the tricky part because as the seabed moves, the pile may pop up again. For us, that’s an undesirable situation to avoid if possible. Governmental and environmental organisations share this opinion.”

Combining the proven techniques of pressurising and lifting with the use of natural polymers to seal the ground will thus provide a much-needed alternative for the industry.

With tests planned in 2021, the technique will, together with newly designed equipment to lift, extract, and upend even the largest of monopiles, enable complete, safe and cost-efficient pile removal of pile foundations not just for windfarms, but all kind of structures such as bridges, jetties, oil and gas platforms, etc.

11


OCEAN ENERGY RESOURCES

1 | 2021

CHINA VALUES SUCTION PILE TECHNOLOGY FROM THE NETHERLANDS

12


The Chinese market looks set to build some 20GW new offshore turbines in the coming six-year. And it is even likely that China will knock off the UK from the Number 1 spot for cumulative installed capacity still this year. The pressing question is: how can European contractors benefit from this significant market potential? The opportunities are huge, but the distance and cultural differences make China seem like a tough market to enter. The culture as well as the

“Equinor is committed to being a leader in the energy transition. It is a sound

business strategy to ensure long-term competitiveness a period of so far different market infrastructures and rulesduring applied, are profound changes in the energy systems as society moves towards net zero.

Over the coming months, we will update strategymarket to continue to create from Europe that entering the our Chinese looks already value for our shareholders and to realise this ambition,” says Anders

Opedal who today took overmission the position as Chief Executive Officerlearn (CEO) to an almost hopeless in advance. You must and President of Equinor.

embrace the cultural and business differences to become

Earlier this year, Equinor announced its plans to achieve carbon neutral global

operations by You 2030must and to try reduce greenhouse (GHG) accepted. to absolute understand the gas do’s andemissions don’ts in Norway to near zero by 2050. At the same time, Equinor outlined a value-

driventhe strategy for significant withincompanies renewables, asyou well are as a new net and hierarchy of thegrowth Chinese meeting. carbon intensity ambition. Continuing to deliver on the short and mid-term

ambitions will be keyinternational to achieving net-zero emissions. Only a handful players have managed so far “Equinor has for yearsofdemonstrated an ability SPT to deliver on climate to win the trust Chinese clients. Offshore (SPT) from ambitions and has a strong track record on lowering emissions from oil

and gas. Now,the we are ready to furtherisstrengthen our climate ambitions, Woerden, Netherlands, one of them. Ocean Energy aiming to reach net zero by 2050,” Opedal says.

Resources spoke to Bao Zeng, business development manager. Equinor expects to deliver an average annual oil and gas production growth of around 3 percent from 2019 to 2026. Equinor is well positioned with world-class global assets in attractive areas with substantial value creation potential. By optimizing its portfolio through financial discipline and prioritization, Equinor will continue to develop competitive and resilient projects whilst maintaining industry-leading recovery rates, unit costs and carbon efficiency.

SPT Offshore secured contracts worth more than 10 million euros 13


OCEAN ENERGY RESOURCES

1 | 2021

'When I started working for SPT, the prospects for Chinese orders were completely zero. So, I spent a lot of time upgrading the image of the suction pile technology in general and more specifically that of SPT.' Bao Zeng Business Development Manager SPT Offshoe

As an offshore contractor SPT is specialised in suction pile foundations and ‘Self Installing Platforms’ (SIPs) for the development of marginal oil and gas fields and offshore wind farms. The SIP platform can be used for small to heavy topsides in up to 60m water depth and are therefore also attractive for offshore substations. The SIP is towed on a flat barge to an offshore field and following lowering the legs and suction piles to the seabed using strand jacks, the platform foundation is effected using suction piles. Thereafter the topsides is lifted using the same strand jacks. The great advantage of the SIP concept is that the use of nowadays scarcely available innovative heavy lift jack ups is not required for installation purposes. This leads to considerable cost reductions and an earlier return on investment. Bao Zeng: “As the SIP can be fabricated locally and installed using local flat barges and support vessels, the local content is maximised, which is often required by the selfsufficient Chinese market. All these advantages enable the use of the SIP concept off the Chinese coast very attractive, but the concept is also quite competitive in the North Sea and off U.S. shores, where a fleet of Jones Act-compliant vessels is needed,” he added. Born in China, Bao Zeng studied at the Ocean University of China in Qingdao and the Cranfield University in the UK from 1999 to 2005. After successful completing of his education, he worked as a project engineer for CNOOC, ConocoPhillips China, Bluewater and the China Petroleum Pipeline Bureau before joining SPT in Holland in 2016.

No pile driving

An important feature of SIP and suction pile jackets (SPJ) is that impact pile driving is not required, and that the handling of heavy, costly, and sensitive pile driving hammers is avoided. The SIP can be installed by using standard seagoing tugs and a 4-point moored DSV or a small work barge.

14

The concept consists of 4 legs each supported by a suction pile, supporting the topsides deck, connected to a space frame structure at the base. The platform is transported and installed from a standard flat top barge, which are relatively inexpensive to hire. After installation, the barge is removed and demobilised. Decommissioning of the SIP is basically a reversed installation.

Mooring solution

Another important part of SPT’s scope are suction anchors, which be used for taut and semi-taut moorings for FPSOs, buoys, TLPs, floating wind turbines and the like. Bao Zeng: “When I started working for SPT, the prospects for Chinese orders were completely zero. So, I spent a lot of time upgrading the image of the suction pile technology in general and more specifically that of SPT. With some pride I can indicate that, with the full support of the SPT management, I have succeeded in this mission and convinced my former colleagues at CNOOC of the many benefits of our special technology. Within two years’ time, we secured contracts worth more than 10 million euros.

Wind orders

Huadong Engineering awarded SPT the first offshore wind contract in 2019 and early March 2020 Guangzhou Salvage Bureau contracted the Dutch company to install the suction pile foundations for 3 suction pile jackets in the 300MW first phase of China Three Gorges New Energy’s Yangxi Shaba offshore wind project. Bao Zeng: “This was the first suction pile jacket foundation for a wind turbine in China. Our scope of work consisted of suction installation services, including all related engineering preparations, such as suction installation procedures, suction pile penetration analysis and grouting consultation.”


In July last year SPT signed a contract with the Chinese engineering and construction company Yongfu Power Engineering for both the suction pile jacket design and suction installation services. It concerns the Fujian Waihai Offshore Wind Farm project. The windfarm is located approximately 50 km offshore of the capital Fuzhou of the Fujian province, in the southeast of China. The water depth within the wind farm area varies from 37 to 45 meters. The suction pile jacket installation will be done by CCC – First Harbor Engineering Company using SPT Offshore’ SAPS-007S suction spread and crew. SPT Offshore cooperates closely with her Chinese partner Yongfu Power Engineering. The Fujian Changle Waihai Area C developed by the Fujian Energy Group, consists of 57 suction pile jackets supporting 10MW Wind Turbine Generators (WTGs). The Changle Waihai Area A, developed by China Three Gorges (CTG), consists of another 15 suction pile jackets supporting 8MW WTGs. The first suction pile jacket was installed on 21st February.

Communication

According to Bao Zeng the main problem for many foreign companies is that there is hardly any drive for an early involvement in Chinese projects. Zeng: “If you have not been involved in a project from the start, you hardly stand a chance. It is impossible to step in when the plan is already halfway. China is one of the largest countries in the world. Each province, which borders the sea, has its own design and installation requirements. This means that, in addition to conversations with the end client, a great deal of energy must also be invested in talking to as many local engineering firms, contractors and construction yards as possible. Communication is the key word. China has its own culture of doing business and that differs considerably from the European way. It can be quite frustrating if you do not understand their way of doing business. The word contract alone has a completely different meaning. As SPT we have proved that there are opportunities for foreign companies, but you must find the right doors to open, you must find the right partner and you must generate trust. Chinese are quite open minded and not afraid to start something new. We have entered into partnerships with engineering houses that believe in our concept and technology. Besides these engineering houses are motivated to express their confidence in suction pile technology in a convincing manner to all other local parties involved in whatever offshore project.”

Tender period

A striking difference between China and Europe is that contractors are only given a period of two weeks to tender. Furthermore, the Chinese developers impose record breaking lead times to build the jackets and structures of only 2-3 months. This applies for the entire supply chain, be it foundation builders, turbine manufacturers, cable suppliers or T&I contractors. According to European standards this requirement does not seem realistic, but Chinese contractors are used to such enormous short lead times. They don't know any better and therefore do not make a big deal out of it. European parties are doing everything they can to exclude any risk, while Chinese contractors are prepared to take risks. That’s in their DNA. Another requirement that is tough to meet by foreigners, is the restricted design period of max three months. Not many European contractors can do that or even want to do that. Bao Zeng: ”Normally SPT needs six months to design a suction pile but thanks to our early involvement in Chinese projects nowadays and hard work by my colleagues, we managed to halve the detailed design period to three months.”

Floating wind

Floating wind is another market segment in China, SPT is focussing on. Bao Zeng believes that floating offshore wind is the next wave in China in renewable energy. “We are already talking to several engineering companies and developers about the concept they prefer and the many benefits of suction pile mooring systems for floating turbines. Typical of China is that once a decision has been taken to develop a floating wind farm, it can proceed very quickly. So, at this very moment we are already working on several designs to anticipate directly if a tender for a total floating turbine including mooring solution is issued.

Global employability The focus of this particular article is largely on the Chinese market, but all advantages of the SIP concept and the suction pile jackets (SPJ) do offer great advantages for use in for example the North Sea and off U.S. shores.

15


OCEAN ENERGY RESOURCES

1 | 2021

AS SECOND COUNTRY IN EUROPE

Ireland bans new oil and gas licences

Early February this year the Irish Cabinet has approved a ban on licences for new oil and natural gas exploration which will come into effect immediately.

16


In 2017 Ireland took the first steps to legally prohibit gas extraction with a ban on fracking onshore.

The ban will be enacted through legislation to be included in the Climate Action and Low Carbon Amendment Bill. However Minister for the Environment, Climate and Communications Eamon Ryan gave effect to the commitment immediately. His department “no longer accepts new applications for exploration licences for natural gas or oil, nor will there be any future licensing rounds,” he confirmed. The “decision will send a powerful message, within Ireland and internationally, that Ireland is moving away from fossil fuels towards a renewable future,” Mr Ryan said. “By keeping fossil fuels in the ground, we will incentivise the transition to renewable energy and put ourselves on a pathway to net-zero carbon emissions by 2050,” he added.

Existing authorisations will not be affected, with applications for authorisations and activities remaining subject to technical, financial and environmental assessments as appropriate.

Chairman of the Oireachtas Climate Committee and Green Party climate action spokesman Brian Leddin said the ban indicated Ireland’s commitment to a sustainable future. “Passing this legislation means we can now move away from fossil fuels and give our complete focus to progressing our plans to transition to renewable energy, including wind and solar, as a way meet our future energy needs,” he said. Ireland has become the second country in Europe and only the fourth in the world to introduce a definitive national ban through legislation on all fossil fuel exploration, Friends of the Earth (FoE) acknowledged, but called for the setting of a specific date for terminating existing licences. In 2017, it noted, Ireland took the first steps to legally prohibit gas extraction with a ban on fracking onshore. “This next step will extend that ban to any new oil or gas exploration in our offshore waters.” “Credit is due to the many grassroots groups and activists who have contacted their TDs, signed petitions and took to the streets on this issue for many years,” said Friends of the Earth deputy director Kate Ruddock. She added: “We now need to see a legally-robust ban in legislation that prevents any loopholes or legal challenges from the offshore oil and gas industry, especially in the context of existing fossil fuel entitlements and leases.” People Before Profit TD Bríd Smith said she was delighted for the climate movement that fought for the legislative measure over the past three years, but added: “Frankly the debate has moved on and a ban on future licences alone does not reflect the scale of the crisis facing humanity.” Several licences were awaiting decisions on renewals, extensions or conversions into different forms of licences and permits, she pointed out. “Some existing licences are good till 2034 and possible beyond and some are facing renewal immediately. We need the Minister to declare he will use his existing powers to refuse to renew these and more widely we need to ensure that the fossil fuel industry get the clear message that the game is up.”

17


OCEAN ENERGY RESOURCES

1 | 2021

APPROVAL REVISED PLAN BY MINISTRY

Partial electrification of Sleipner approved

(Photo: Øyvind Gravås and Bo B. Randulff)

The Ministry of Petroleum and Energy in Norway has approved a revised plan for development and operation (PDO) for partial electrification of the Sleipner field centre. The field centre will be tied to the Utsira High area solution, and Sleipner is expected to cut emissions by more than 150,000 tonnes of CO2 per year.

“Sleipner is an important field on the NCS contributing enormous value to Norwegian society. The partners have focused on being in the forefront of technology development and innovation to carry out for example carbon capture, injection and storage at the field. The decision to partly electrify the field helps the partners in their effort of further developing the field,” says Kjetil Hove, executive vice president for Development and Production Norway in Equinor. The Utsira High area solution was originally planned for the four fields: Johan Sverdrup, Edvard Grieg, Ivar Aasen and Gina Krog. The Sleipner field centre and the Gudrun, Gina Krog, Utgard, Gungne and Sigyn tie-in fields will now receive power from shore through the area solution.

“Partial electrification of the Sleipner field centre will contribute to major cuts in emissions from our activities and provide significant assignments for the supplier industry in a demanding time. As the authorities have approved the PDO, we can keep developing the Norwegian continental shelf (NCS) towards the goal of zero greenhouse gas emissions in 2050,” says Arne Sigve Nylund, executive vice president for Technology, Projects and Drilling in Equinor.

In June, Aibel was awarded the EPCIC contract (engineering, procurement, construction, installation and commissioning) for Sleipner modifications. The contract for production and laying of cables was awarded to the NKT cable supplier.

In June, Equinor and its partners Vår Energi, LOTOS and KUFPEC submitted a revised plan for development and operation (PDO) to the authorities. The investments are in the size of NOK 850 million. Sleipner is scheduled to be tied in to the Utsira High area solution by the end of 2022.

Worth around NOK 400 million, the EPCIC contract will require approximately 170 man-years distributed on two years at Aibel’s offices in Stavanger and at their yard in Haugesund. Purchase of equipment from sub-suppliers is expected to be in the size of NOK 150 million.

18



OCEAN ENERGY RESOURCES

1 | 2021

ARTIFICIALLY CONSTRUCTED ISLAND

Dan Jørgensen, Danish Minister for Climate.

20


Denmark has reached a landmark agreement on the construction of an energy hub in the North Sea. The energy hub will be an

World’s first offshore wind energy hub for Denmark

Denmark has introduced cut-off date of 2050 for oil and gas extraction in the North Sea and cancelled all future licensing rounds. Early February, by agreeing on the construction and ownership of the world’s first energy hub in the North Sea, Denmark took another significant step in the green transition. The energy hub will produce yet unseen amounts of green electricity and is one of the government's flagship projects for the green transition in Europe. Fully implemented it will be able to cover the consumption of 10 million European households.

Great moment

”This is truly a great moment for Denmark and for the global green transition. This decision marks the start of a new era of sustainable energy production in Denmark and the world and it links very ambitious climate goals with growth and green jobs. The energy hub in the North Sea will be the largest construction project in Danish history. It will make a big contribution to the realization of the enormous potential for European offshore wind, and I am excited for our future collaboration with other European countries,” said the Danish Minister for Climate, Dan Jørgensen. The energy hub will serve as an offshore power plant gathering and distributing green electricity from hundreds of wind turbines surrounding the island directly to consumers in countries surrounding the North Sea. The island is expected to have a total area of at least 120.000 square meters and in its first phase it will be able to provide 3 million European households with green energy. The project will be a public private partnership between

artificially constructed island 80 kilometers from the shore of the peninsula Jutland. It will be owned by a public-private partnership. The hub will strengthen the integration of Europe’s power grids and increase renewable electricity production necessary for a climate neutral Europe.

the Danish state and private companies. The State will own the majority of the island, but private companies will be crucial for the project to fulfil the potential as regards to innovation, flexibility, cost-effectiveness and business potentials.

Clean energy

“We are at the dawn of a new era for energy. Last year, Denmark set a cut-off date for fossil fuel extraction. Today we are taking a decisive step toward a clean energy future. The EU has set a goal to achieve climate neutrality by 2050 and the Commission has set a target of 300 GW offshore wind energy in order to attain this goal. By constructing the world’s first energy hub with a potential capacity of 10 GW, Denmark significantly contributes to this ambitious target. Not only by dramatically expanding renewable energy production, but also by supplying our European neighbours with an abundance of renewable energy,” continued Dan Jørgensen. The artificial island will offer the best opportunities to expand the project, for example by building a harbour and facilities for storage and conversion of green electricity from the nearby wind turbines in the sea. It is the long-term ambition to be able to store green electricity on the island, convert it to liquid green fuel, and send it via subsea cables to Denmark and neighbouring countries. Details about the ownership of the island will soon be specified in order for a tender for private partnerships to be opened, making the island a reality as soon as possible.

21


OCEAN ENERGY RESOURCES

1 | 2021

OFFSHORE WIND CABLE LANDFALL

Reducing ground risk for subsea cables on offshore wind farms 22


Massive foundations and towering turbines are typically the focal point for offshore windfarm construction. Yet, cables – the integrated systems of inter-array cables that gather the generated power from individual turbines, offshore substations collecting the power, and export cables transferring the power to shore – are an often-overlooked cost and potential headache for a windfarm construction project if not properly planned.

Cable design typically accounts for about 10% of an offshore wind development’s initial investment. And, nearly half of all insurance claims in the offshore wind industry are cable-related, comprising over three-quarters of insurance claim pay-outs. More importantly, if subsea cables are damaged, they are the single point of system failure for your wind farm, causing your entire operation to be down until the cable is fixed or replaced. There is limited cable available for repairs, and the lead time for procuring new cables can be two years or even longer. Exacerbating these long lead times is the additional risk the repair imposes on long-term cable performance since the repaired field joint then becomes one more critical area to monitor over the life of the facility.

Seabed conditions

Successfully installing subsea cables for your offshore wind projects requires a lot of information gathering and planning. The more comprehensive understanding you have of the seabed conditions – not only beneath the turbine foundation, but also where your cable is making landfall and everywhere in between – the less likely your project team will experience damaged cables. Here’s what you need to look out for when characterizing your offshore wind project’s seabed conditions and how to plan your cable design.

Key challenges

Environmental and geotechnical engineering consultant Haley Aldrich describes the challenges for offshore wind cable installation start with properly characterizing the seabed over increasingly larger wind farm developments. Site characterization for cable design requires an experienced team of geologists, geophysicists, and geotechnical engineers who will develop an understanding of near-surface seabed conditions, including the potential for hard grounds that create trenching challenges and measurement of sediment properties for proper cable insulation/cooling and armouring design. It also requires an understanding of the cable routing risks from shipping traffic, environmentally sensitive areas, fishing grounds, wrecks and unexploded ordnance, and other seabed infrastructure such as existing cables and pipelines.

23


OCEAN ENERGY RESOURCES

1 | 2021

Horizontal directional drilling

Once a site is properly characterized, you’ll be able to understand your cable burial depth limitations. If the cables are buried too shallow, the risk of damage from fishing and shipping increases, but if they’re too deep, the electrical current travelling through the cable can drop due to the insulating effect from the seabed. In areas where boulders and rock outcrops are common, you may need to bury cable on top of the seabed using a rock mound; however, this creates hazards to fishing operations.

Optimal selection of an HDD landfall location requires integration of onshore, nearshore, and offshore subsurface data to develop a ground ‘model’ of the local conditions. When you are deciding on the location of the interface between the buried portion of the subsea cable and the HDD corridor, consider the tensile strength of the subsea cable, as well as how close to shore the cable laying vessel can get.

In sandy areas, sediment mobility and scour around a cable can lead to fatigue damage due to seabed currents and increase the risk of damage from fishing and shipping activities. The risk of an anchor snagging a cable once exposed from scour is much greater than for a buried cable, so it is important to understand the potential for sediment mobility. Mobile sediments may also lose their strength, or ‘liquefy’, due to wave loading, which poses a risk to cable flotation and loss of burial depth.

The first step in cable route planning and design is performing a phased site investigation comprising a desk top study (DTS), a geophysical survey, and a geotechnical survey. The DTS provides regional geological information on the seabed conditions and areas of known man-made and natural hazards and guides the planning of potential export cable routes and landfall locations. Your site characterization team will then perform a geophysical survey.

Closer to shore, export cable landfall is necessary for grid connection. While seabed trenching and burial is a cheaper alternative to horizontal directional drilling (HDD), it can be more environmentally damaging. HDD has correspondingly lower environmental impacts in sensitive areas, shorter permitting and approval timeframes, is less intrusive to the public, and reduces the impact on tourism.

Next, you’ll need to conduct a geotechnical survey to collect seabed cores for laboratory testing and perform seabed probe tests to ground truth the geophysical data interpretation and measure soil properties required for trenching assessment and cable design. Typical soil properties include density, strength, particle size distribution, and thermal conductivity.

24

Reduce georisk


Subsea cables are an important component that carry significant risk during offshore wind farm development.

Your team should then integrate the geological, geophysical, and geotechnical information into a cable engineering ground model to refine the route and to perform a risk assessment to understand burial, navigation, and operational exposure risk. Collecting near-surface seafloor data during early environmental surveys can provide a head start in building the appropriate ground model. Applications in data science, specifically machine learning, can reduce the level of ground model uncertainty and can help predict seabed properties where data is lacking.

Subsea cables

Once the route is selected and trenching equipment is identified, your engineering team will then need to consider requirements such as cable armouring, burial depth, scour protection, and any need to install spare cable length along seabed faults. You can perform advanced geotechnical testing and analysis to assess fluid-seabed-cable interaction for critical areas where exposure is expected and burial maintenance is too costly. Your team should use an operational monitoring plan, developed through a risk assessment, to determine seabed survey frequency to assess burial status and identify problem areas. These are performed immediately after installation but can be done at 6- or 12-month intervals in the first year or two of operation, followed by occasional surveys to assess the impact from extreme events or to investigate specific incidents. These surveys are generally performed using subsea equipment; however, fiber optic instrumentation is now being used to reduce the level of manual surveying, providing ongoing data and remote access.

Optimized approach

Subsea cables are an important component that carry significant risk during offshore wind farm development. This risk is not only to due to the high expense of cable repair and offshore operations, but the impact on grid reliability and potential effects on other wind farm components such as the turbine itself. Many of the installation and operational risks cannot be entirely avoided but can be minimized through route selection optimization and appropriate characterization of the seabed stratigraphy and properties. New technologies in data science applications for ground model development and long-term monitoring through fiber optic instrumentation can reduce the level of uncertainty in subsea cable installation and operational risk, thereby saving cost on cable design and maintenance, ultimately improving grid reliability in an energy market increasingly reliant on offshore wind. www.haleyaldrich.com

25


OCEAN ENERGY RESOURCES

1 | 2021

SIEMENS ENERGY DELIVERS ENERGY STORAGE SOLUTION FOR MAERSK DRILLING

First hybrid, low-emission jack-up drilling rig

Siemens Energy signed an agreement with Maersk Drilling to upgrade two ultra-harsh environment CJ70 jack-up drilling rigs in the North Sea with hybrid power plants using lithium-ion energy storage. The rigs – the Maersk Intrepid and Maersk Integrator – were retrofitted with BlueVault batteries from Siemens Energy. They are the first jack-ups to employ a combination of hybrid, low-emission solutions on the Norwegian Continental Shelf.

26

The batteries have enabled Maersk Drilling to reduce the runtime of onboard combustion engines and maintain an operational setpoint where energy efficiency is maximized. The initial data point shows that Maersk Intrepid in the first month of operations with the full set of upgrades installed was able to reduce CO2 emissions by 25 percent and NOx emissions by 95 percent compared to the baseline average for the rig.

Reduction

“We’re thrilled to receive a promising first data set on emission reductions,” said Caroline Alting, Head of Integrity & Projects for Maersk Drilling. “It’s still too early to make any definitive conclusions on average emission reductions over time, but the preliminary results are promising with reductions around 25 percent compared to the rig’s baseline, driven by both energy-saving technology and behavioral changes supported by the low-emission package.”


Siemens Energy’s advanced BlueVault battery system is suited for both all-electric and hybrid power applications and is specifically designed to minimize emissions and ensure continuity of power on offshore vessels.

Battery system

The advanced BlueVault battery system is suited for both all-electric and hybrid power applications and is specifically designed to minimize emissions and ensure continuity of power on offshore vessels. The solution has been installed on various marine vessels worldwide, including the West Mira ultra-deep semi-submersible, the world’s first low-emissions drilling rig to use lithium-ion energy storage. Offshore rigs are ideally suited for hybrid power plants, as they have highly variable power consumption for drilling, dynamic positioning, and station keeping. The diesel-electric solution with BlueVault energy storage will reduce the transient load on generator sets, meaning that basic requirements can be met by fewer engines operating at a higher load, thus decreasing carbon emissions.

BlueDrive

The batteries' temperature is regulated with a water-cooling system, which works as a passive safety layer to prevent thermal runaway. Another differentiating feature is the system’s digitalized condition monitoring system, which provides state of health (SOH) and state of charge (SOC) transparency for individual cells to maximize the batteries’ performance and lifespan.

Siemens Energy also supplied BlueDrive power electronics and advanced monitoring software. “We are proud to contribute to Maersk Drilling’s strategy to set a new industry standard for low-emission offshore drilling and look forward to bringing this highly sustainable solution to additional rigs in the future,” said Jennifer Hooper, Senior Vice President, Industrial Applications Solutions for Siemens Energy.

Fund

Maersk Drilling applied for project funding through the NOx Fund - a Norwegian fund dedicated to reducing NOx emissions. The fund is contributing a grant of up to 80 percent of project costs (subject to verification of the emission-reducing upgrades). It has high hopes that the ultra-harsh jack-ups will be a benchmark for the offshore industry as it drives toward emissions reductions. The global fleet of Jack-ups is nearly 500 units. Siemens Energy believes that approximately 300 of these may be eligible candidates for similar upgrades with BlueVault batteries. Upgrading all of these drilling rigs with batteries would potentially reduce emissions by more than 1 million tons of CO2 per year, equivalent to annual emissions from 725,000 automobiles.

27


OCEAN ENERGY RESOURCES

1 | 2021

DUTCH ENTREPRENEURS CONVINCED VATTENFALL WITH PROTOTYPE

Sustainable composite solution for construction of wind turbines Vattenfall has commissioned a group of entrepreneurs from Wieringerwerf in the Netherlands to produce 140 so-called 'monopile covers' for the Hollandse Kust Zuid offshore wind farm. It is a new, circular product made of composite to seal the foundation piles for offshore wind turbines. The first 40 covers will be delivered in August, and another 100 the following year.

28


Over the next 2 years, Vattenfall will build 140 wind turbines just off the Dutch coast. This summer will see the installation of all foundations at sea. The foundation piles include electrical systems, work platforms and ladders for employees.

Prototype convinced Vattenfall

Vattenfall challenged its suppliers to come up with a sustainable, safe alternative.

“A year ago, Vattenfall's interest led to the foundation of CCM, Composite Cover Manufacturing, a consortium of four companies,” partner Wil Dinnessen, managing director at CCM, explains. “Theuws is responsible for the production and assembly of the monopile covers. CMM will provide all services on site and will take back all panels after construction to reuse them for other projects. Together with two other parties, we have built a prototype, partly financed from the ERDF programme ‘Kansen voor West en provincie Noord-Holland’ (Opportunities for West and the Noord-Holland region). Last summer we transferred a mock-up to the Maasvlakte. Here there is a test foundation at the terminal of Sif Netherlands, the supplier of the foundations. Using this foundation, we can simulate everything that happens at sea. Following optimisation, our prototype turned out to function excellently.”

Composite Hat

Composite Cluster

The top section features an entry where the pole of the turbine will eventually be placed. This entry must be tightly sealed during construction, and at the same time be easily and safely accessible for employees to carry out maintenance. Previously, steel or aluminium was used for sealing. However, the disadvantage of these materials is that they are not sustainable, because they require a lot of energy to produce and are scrapped after a construction project.

“Think of it as a reusable composite hat,” Leo Theuws, director of Theuws Polyester, explains. “The cover we have developed consists of a number of composite panels that fit together like pie wedges. It features an access door and technical details for, among other things, cable entry etc.” “The panels are translucent, so that employees can work in daylight. During the construction of the wind farm, there is still no electricity available, and bringing extra batteries for lighting is a costly operation at sea. By inserting or removing panels, we can make the 'hat' bigger or smaller. When the construction of the wind farm is complete, we will take back the panels. These will then be reused in subsequent projects. The product is therefore completely circular and cost-effective.”

The first to recognise the possibilities of this innovation was Piet Goverse, programme manager of the project ‘Valorisatie Hightech Sector Composieten NH’ (Valorisation High Tech Sector Composites Noord-Holland region). Development company NHN is the lead party for the EFRO project, in which twelve high-tech composite companies from the province of North Holland and six knowledge institutions work together. “Piet brought us together to investigate whether a business case could be finalised,” says Wil Dinnessen, business partner of Leo Theuws. Wil is convinced that without a composite cluster, the project would not have existed in this form. “The cluster is the backbone of the collaboration, development and financing. Piet Goverse has also been a significant factor in the success. He was more or less the driving force, connector and lubricating oil of this project.”

The cluster has already noticed significant international interest, including from the UK and Taiwan.

29


OCEAN ENERGY RESOURCES

1 | 2021

SUBJECT TO SUCCESSFUL NEGOTIATION OF PURCHASE AND SALE AGREEMENT

Equinor selected for largest-ever US offshore wind award

Mid-January Equinor was selected to provide New York State with offshore wind power in one of the largest renewable energy procurements in the U.S. to date.

Under the award, Equinor and incoming strategic partner bp will provide 1,260 megawatts (MW) of renewable offshore wind power from Empire Wind 2, and another 1,230 MW of power from Beacon Wind 1 adding to the existing commitment to provide New York with 816 MW of renewable power from Empire Wind 1 - totalling 3.3 gigawatts (GW) of power to the State. The execution of the procurement award is subject to the successful negotiation of a purchase and sale agreement, which the partnership looks forward to finalizing together with the New York State Energy Research and Development Authority. As part of the award by NYSERDA, the companies will partner with the State to transform two venerable New York ports - the South Brooklyn Marine Terminal (SBMT) and the Port of Albany - into large-scale

30


offshore wind working industrial facilities that position New York to become an offshore wind industry hub.

Strategic ambition

“These projects will deliver homegrown, renewable electricity to New York and play a major role in the State’s ambitions of becoming a global offshore wind hub. The U.S. East Coast is one of the most attractive growth markets for offshore wind in the world. The successful bids for Empire Wind 2 and Beacon Wind 1 represent a game-changer for our offshore wind business in the U.S. and underline Equinor’s commitment to be a leading company in the energy transition. These projects will also create value through economies of scale and support our strategic ambition of becoming a global offshore wind major,” says Anders Opedal, CEO of Equinor.

Robust

“Together, Equinor and the State of New York will create a robust offshore wind supply chain capable of manufacturing, assembling, and staging these projects at scale. As Equinor works to expand its renewable energy presence across the United States and the globe, New York’s leadership clearly illustrates the transformative benefits of offshore wind on climate goals and economic activity alike. We are looking forward to developing Empire Wind and Beacon Wind together with local authorities, communities and our incoming partner bp in growing this new industry,” says Siri Espedal Kindem, President of Equinor Wind U.S. Taken together, these offshore wind projects will help the State’s economic rebound and strengthen disadvantaged communities while helping the State achieve its nation-leading renewable energy goals.

31


OCEAN ENERGY RESOURCES

1 | 2021

DANISH DECOMBLADES CONSORTIUM AWARDED FUNDING

Large, cross-sector wind turbine blade recycling project Ten months after becoming carbon neutral, the Science Based Targets initiative verifies that Siemens Gamesa’s emission reduction strategy is aligned with what climate science says is required to meet the 1.5°C trajectory. Siemens Gamesa joins a group of 430 other global organizations who have had their targets approved by the SBTi, where only about 150 have targets consistent with meeting the most ambitious 1.5°C scenario.

Ten Danish project partners have been awarded funding from Innovation Fund Denmark’s Grand Solutions program to co-fund the research and development project ‘DecomBlades’: a three-year project which seeks to provide basis for commercialization of recycling of wind turbine blades using sustainable solutions. The project partners are rooted in Denmark, but many operate all over the world and have the capability to implement solutions on a global scale. The cross-sector consortium behind DecomBlades consists of Ørsted, LM Wind Power - a GE Renewable Energy business, Vestas Wind Systems A/S, Siemens Gamesa Renewable Energy, FLSmidth, MAKEEN Power, HJHansen Recycling, Energy Cluster Denmark (ECD), University of Southern Denmark (SDU) and Technical University of Denmark (DTU). Together, these partners represent the value chain required to establish a recycling industry for composite materials – from supply, to processing, to implementation. Today 85 to 95% of a wind turbine can be recycled, but cost-efficient recycling of composite materials remains a challenge. On a global scale, an estimated 2.5 million tons of composite materials are currently in use in wind turbines. The wind power industry produces far less composite waste compared to other industries - such as the construction, electronic, transport and shipping industries - nonetheless it is an important objective for the wind

32

power industry to ensure sustainable recycling solutions exist for all materials used in a wind turbine. As the wind power industry grows, that responsibility becomes even bigger.

Composite materials

John Korsgaard, LM Wind Power Senior Director of Engineering Excellence and Chair of the DecomBlades Steering Committee, stated: “The wind power industry is committed to finding a sustainable way to dispose of these decommissioned wind turbine blades with respect to the environment, health and safety of workers, energy consumption and cost, and we simply don’t yet have solutions that meet all those criteria. To create viable, sustainable, cost-efficient solutions for recycling wind turbine blades, it is essential that composite materials from blades can be incorporated into similar resource streams and processed in the same facilities.”

Investigation

In DecomBlades, the ten project partners will investigate and develop solutions to recycle the composite material in wind turbine blades. The project focuses on three specific processes: shredding of wind turbine blades such that the material can be reused in different products and processes; use of shredded blade material in cement production; and, finally, a method to separate the composite material under high temperatures, also known as pyrolysis.


John Korsgaard stated: “In pursuit of a carbon neutral society, recycling end-of-life materials and switching to alternative materials in cement production can play a significant role in reducing CO2 emissions. The DecomBlades project focuses on recycling technologies which can be upscaled to recycle the expected volumes of decommissioned wind turbine blades in the coming decades. The investment and commitment from this cross-sector consortium represents the next step to further the growth of these recycling industries.”

Frontrunner

Sustainable, widely-available and cost-effective recycling solutions for composite materials will support the wind power industry - and other composite manufacturing industries - in the transition to a circular economy. The DecomBlades consortium aims to make Denmark a frontrunner in establishing the value chains for recycling solutions within a circular economy, creating jobs both in Denmark and globally within sustainable technologies.

Project partners

Ørsted is the world’s largest owner and developer of offshore wind farms with more than 6.000 employees globally. For Ørsted it is important that there exist sustainable recycling solutions for all parts of our wind farms. Therefore, Ørsted will take the role as project lead in DecomBlades.

explore the market for use of shredded blade materials in new products. FLSmidth will investigate the possibilities of using shredded blade material and products from the pyrolysis process in the cement production process. Use of blade materials in cement production can decrease the environmental impact from cement production. As a knowledge and technology provider to the cement industry, FLSmidth’s main objective within the DecomBlades project is to evaluate possible solutions for incorporating blade materials in cement production on a global scale. Vestas Wind Systems A/S As the world’s largest wind energy OEM, Vestas brings an extensive level of expertise around the composition and manufacture of turbine blades. In early 2020, Vestas introduced ambitious targets to increase the recyclability rate of its rotors, as well as an increased focus on addressing the decommissioning of existing blades. Vestas committed to producing zero-waste turbines by 2040. In support of the DecomBlades project, Vestas offers to provide blade samples for testing purposes. Vestas contributes a broad spectrum of knowledge on the expected lifetime of a blade, its production volume, and on assessing the potential for recyclability. Siemens Gamesa Renewable Energy is a leading supplier of wind power solutions all over the world and a key player and innovative pioneer in the renewable energy sector. With installed products and technology in more than 75 countries and a total capacity base of over 105 GW, Siemens Gamesa Renewable Energy is thriving to be the global leader in the renewable energy industry while driving the transition towards a sustainable world. The company will contribute its extensive knowledge on blade structure and design, market expectations to commercialization of recycling of composites as well as promoting circularity in the wind sector to the project.

‘Two years from now, cost improvements for renewables compared to fossil fuels will be much better, and the current situation will end up benefiting the green shift.’

University of Southern Denmark, SDU, will conduct environmental and economic performance assessments of the different supply chains and apply a cutting-edge hybrid assessment frame based on value chain analysis, life cycle assessment, material flow analysis and multi-criteria decision support. This includes research into further development of the economic and environmental sustainability assessment frameworks that are relevant for the Danish wind turbine industry and other areas in terms of optimum recycling of composites materials. Technical University of Denmark, DTU, will contribute within the fields of material characterization, engineering, assessment of material properties of reused glass fibers, surface properties and investigate the possibilities of increasing the quality and value of fibers obtained from pyrolysis. MAKEEN Power will lead the work on the pyrolysis technology and will design and build a pilot pyrolysis facility dedicated to treatment of blade materials. The pilot facility will be developed and based upon existing MAKEEN Power technologies. Furthermore, MAKEEN Power will seek commercialization of pyrolysis facilities for recycling of composite materials as well as a market for recovered solids to replace new materials. HJHansen Recycling will lead the work regarding the common prerequisite for all three technologies: preprocessing, i.e., cutting of blades to ensure it is possible to transport blades to recycling facilities in an economically-viable way. Furthermore, HJHansen will work with solutions on shredding of the blade materials and

LM Wind Power, a GE Renewable Energy business, is a world leading Jarand Rystad, Rystad designer and manufacturer of wind turbine blades, withEnergy more thanCEO 228,000 blades produced since 1978 corresponding to 113 GW installed capacity. LM Wind Power will lead the work to establish product disposal specifications for wind turbine blades, utilizing its expertise on blade construction and material composition. In order to support efficient waste management of decommissioned blades and new business models for recycling methods, LM Wind Power will work with project partners Siemens Gamesa Renewable Energy and Vestas Wind Systems to contribute knowledge on expected blade lifetime and to assess the value of recycled materials. Energy Cluster Denmark, ECD, is the national Danish innovation network and cluster organization for the entire energy sector and gathers Danish companies to be part of these new supply chains. Furthermore, Energy Cluster Denmark will develop new research and development projects based on the opportunities emerging from the technical solutions being developed and matured during the DecomBlades project.

33


OCEAN ENERGY RESOURCES

1 | 2021

OVERVIEW OF PROJECTS

European power grid rapidly getting more connected There are several new undersea power cable interconnector projects about to become operational across Europe. These high-voltage direct-current (HVDC) projects will enable significant transfers of renewable energy. On December 8, 2020, the 623-kilometer (km) massive 1,400-megawatt (MW) bi-pole NordLink (Green Cable) project was energized, creating, for the first time, an interconnection between Norway and Germany.

This optimization makes the interconnect somewhat of an energy storage project that allows both short-term benefits and long-term seasonal benefits in the transfer of carbon-free renewable electricity. Once the project completes its trial phase, the ‘Green Cable’ expects to be in full power flow mode by the Spring of 2021.

Interconnector

This project, and the soon to be energized IFA-2, connecting the United Kingdom (UK) grid with France’s power grid by year’s end, mark two of several major interconnector projects set to tie the UK with Norway and the European mainland. The longest undersea cable project currently under construction, the North Sea Network Link (NSN Link), between Norway and the UK, is expected online in 2021. These long-haul power transmission projects, along with several additional undersea power cables planned between now and 2024, will enable access to renewable energy, including hydropower, wind, and solar from source to load centers.

34


NordLink undersea interconnector project path map (source: Hitachi ABB Power Grids)

NordLink

The NordLink project is owned by Statnett and DC Nordseekabel. Germany’s transmission system operator (TSO) TenneT and German development bank, KfW IPEX-Bank, own 50% of the shares in DC Nordseekabel, the company responsible for construction and permits on the German side. TenneT is a leading European electricity transmission system operator (TSO) that operates in the Netherlands and Germany. The company is responsible for the reliability and supply of electricity for about 42 million people. NordLink consists of 53 km of overhead line from Vollesfjord to Tonstad, 516 km of sub-sea cable, and 54 km of land cable from coastal town Bűsum along the North Sea to Wilster. Hitachi ABB Power Grids (HAPG) designed and engineered the onshore HVDC converter stations and the cable system in the German sector.

Additionally, the company has a five-year service agreement to maintain the electric system. NordLink is the world’s first HVDC Light bi-pole installation to perform at a record level of 525-kilovolt (kV) and 1,400 megawatts (MW), nearly two times the power transmission capacity of earlier long-haul HVDC systems. The project represents many firsts, including the highest power capacity (1,400 MW), the highest voltage level in an HVDC VSC (voltage-source converters) cable connection (525-kV), the first HVDC connection between Norway and Germany, the world’s longest international HVDC VSC interconnector (623 km), with 516 km of undersea cable, and Europe’s longest HVDC power grid interconnection. The VSC system consists of a state-of-the-art insulated-gate bipolar transistor (IGBT) technology capable of turning on or off on demand. The bipolar configuration has two DC conductors in a state of opposite polarity.

35


OCEAN ENERGY RESOURCES

1 | 2021

IFA-2 undersea cable project path map (source: National Grid).

IFA-2 Interconnector

The IFA-2 sub-sea cable project can transfer 1,000 MW of electricity between the UK and France. The project entered its testing phase on October 19, 2020, and is expected to be fully energized later this month. All work on the HVDC cables linking Great Britain and France were laid in 2019 and early 2020, while six high-voltage alternating-current (HVAC) cables between Monks Hill Beach (location of converter station) and Chilling on the UK side are also complete. The project is a joint venture between the UK’s National Grid and the Réseau de Transport d’Electricité (RTE), France’s electricity transmission system operator. The HVDC cable, 205 km long, will operate at +/-320 kV, with a capacity of 1,000 MW. The project was energized for the first time on October 19, 2020, and is currently testing with full operation expected soon. The cable connects to the French grid at the Tourbe 400 kV substation. From there, a 300-meter (HVAC) underground cable runs to the converter station. A 24 km underground HVDC cable runs to the landfall point east

36

of Merville-Franceville-Plage, near Caen in Normandy, from the converter station. On the UK side, the landfall point is located at Monks Hill Beach, at the southern end of Solent Airfield, near Portsmouth. The converter station is located northeast of the airfield. From there, a 2 km long HVDC cable runs underwater to the point of connection to the grid at the Chilling (400 kV) substation, near Warsash, Hampshire.

Longest under-sea power interconnector

When complete next year, the North Sea Network Link (NSN Link) will be the longest (730 km) subsea interconnector in the world. The 1,400 MW HVDC cable, currently under construction, with two parallel cables between Norway and the United Kingdom, is being constructed in partnership between Norway’s Statnett and the UK’s National Grid. Hitachi ABB Power Grid’s designed, engineered, and is constructing the sophisticated converter stations near Kvilldal, Norway, and Blyth, England. The undersea cable supplier is an Italian manufacturer, Prysmian Group, with the onshore connections in Norway supplied by Nexans.


North Sea Network Link undersea cable project path map (source: National Grid).

National Grid is involved in three of the large interconnector projects currently operating or under-construction including, the North Sea Network Link (2021), the IFA-2 (2020), and the Viking Link (2023) between the UK and Denmark. According to company reports, these projects’ total capacity will add 3.8 GW of capacity to the UK grid. There are several other HVDC undersea projects currently in construction, including: ElecLink, 2022, 70 km, 320 +/- kV, 900 MW, connects the UK with France Dolwin 6, 2023, 90 km, 320 +/- kV, 900 MW, connecting Dolwin Zeta Platform wind farm to mainland Germany

Like other major interconnector projects in and near the North Sea, the NSN Link could be used to interconnect clusters of wind farms, ultimately becoming a backbone for the North Sea offshore grid. The bipolar design allows for power to flow in two directions depending on available power and will be driven by the prevailing market prices to optimize power costs for customers. The European interconnector projects support offshore wind’s full value and the optimization of balancing grids with an ever-increasing portfolio of renewable power projects. According to two recent announcements by the UK and the European Commission, projected growth in offshore wind across Europe could reach 100 GW by as early as 2030.

Power transmission

The optimal approach, outlined by National Grid in their Offshore Coordination Phase 1 Final Report published earlier this month, is the development of multi-purpose Interconnectors (MPIs) that can transmit, through economies of scale, large amounts of power from the source wind farm clusters to market via power super-highways.

Dolwin 5, 2024, 130 km, 320 +/- kV, 900 MW, connecting Dolwin Epsilon Platform wind farm to mainland Germany Dogger Bank A, 2024, 207 km, 320 +/- kV, 1,200 MW, connecting Dogger Bank A wind farm to UK mainland Dogger Bank B, 2024, 207 km, 320 +/- kV, 1,200 MW, connecting Dogger Bank B wind farm to UK mainland Johan Sverdrup Phase, 2022, 200 km, 80 +/- kV, 200 MW, connecting Johan Sverdrup platform with Norway Shetland HVDC Link, 2024, 600 MW, connecting the Shetland Islands with Great Britain The sophisticated undersea interconnector projects vastly improve the capability to transfer renewable energy, and in some cases, for the first time, create highvoltage connections between major European markets and countries.

Author: Kent Knutson, Energy Market Specialist at Hitachi ABB Power Grids.

37


OCEAN ENERGY RESOURCES

1 | 2021

RENEWABLE ENERGY

Seeking to make future turbine blades 100% recyclable

38


In an industry that seeks to be truly sustainable throughout the product life cycle, establishing these end-of-life blade recycling solutions will be essential.

It should come as no surprise that wind has one of the energy industry’s lowest carbon footprints. But that doesn’t mean it can’t be even smaller - and one promising avenue involves recycling wind turbine blades. “There are huge sustainability advances in terms of energy, materials and consumption at every stage,” says Hanif Mashal, vice president of engineering and technology at LM Wind Power. In fact, the Danish company, a subsidiary of GE Renewable Energy, is seeking to find ways to make blades that could be 100% recyclable one day.

39


OCEAN ENERGY RESOURCES

1 | 2021

LM Wind Power is one of the largest makers of wind turbine blades. Its factories around the world produce annually some 14,000 blades for turbines that are capable of generating power in excess of 9 gigawatts, enough to supply more than 11 million European households. The smallest blades weigh around 12 tons; the largest for GE’s Haliade-X offshore wind turbine platform - stretches 107 meters from end to end and weighs 50 tons each. “These rotors are the wind turbine motors,” Mashal says. “They involve plenty of labor, polymer-rich composite materials and heat to build, as well as a lot of effort and energy to transport and install.”

Carbon neutral

The company has been shrinking its carbon footprint for a while, becoming carbon neutral in 2018, achieving a zero-emissions carbon footprint for its operations by balancing its emissions with reductions through improved energy efficiency, the use of renewable energy and the purchase of carbon offsets. Mashal believes that finding ways to recycle wind blades - which are designed to be used for more than 20 years - is the logical next step. “We now want the whole value chain to be sustainable, well beyond the area of our operational control,” he says.

But that’s not simple. Unlike steel turbine towers and generators, the long blades are made of fiberglass, polymers and core material, all bonded together with a thermoset adhesive. “They’re not easy objects to recycle in a sustainable and cost-efficient way,” Mashal says. In the past, most decommissioned blades typically ended up lined up like dinosaur bones in landfills. “I don’t like that at all,” Mashal says. Some projects also tried to repurpose blades as bridges, sculptures and playgrounds.

Technology

But LM Wind Power is thinking bigger. Last fall its parent company, GE Renewable Energy, partnered with Veolia North America to co-process blades in the manufacturing of Portland cement, the most common ingredient in concrete around the world. And in January, a group of Danish companies that includes LM Wind Power won funding from the country’s authorities for a three-year project, DecomBlades. The project will look at the establishment of viable recycling value chains by different recycling technologies. “The wind power industry is committed to finding a sustainable way to dispose of these

The future the wind blade life cycle could look like this. Image credit: LM Wind Power.

40


'The fibers might even end up in a surfboard'

Hanif Mashal, vice president of engineering and technology at LM Wind Power.

decommissioned wind turbine blades with respect to the environment, health and safety of workers, energy consumption and cost, and we simply don’t yet have solutions that meet all those criteria,” says John Korsgaard, senior director of engineering excellence at LM Wind Power who chairs DecomBlades’ steering committee.

Essential

In an industry that seeks to be truly sustainable throughout the product life cycle, establishing these end-of-life blade recycling solutions will be essential. But when it comes to eliminating the waste of valuable natural resources, recycling is still only one piece of the puzzle. In the life cycle of a wind turbine blade, the blade’s end-of-life represents only about 1% of its total lifetime CO2 emissions. In contrast, about 70% of the emissions from the life cycle of a blade occur in its supply chain, during resource extraction. The most direct ways LM Wind Power could impact the emissions from the total life cycle of the blades it produces will involve working with suppliers to source materials to the exact sizes needed, switching to recycled materials instead of virgin materials, and reducing production waste through lean operations. “Preventing waste before it occurs is the best way to reduce our impact on the planet, and it’s simply good business,” Mashal says. The company’s waste reduction in blade manufacturing has yielded more than $33 million in savings since 2016.

Long way

Finding efficiencies in the way it sources materials and operates factories can go a long way to reduce waste, but these efforts alone won’t bring the waste to the target, zero. New, innovative materials, designs and processes are needed to close the gap. That’s why, in part, LM Wind Power joined another consortium last year that will manufacture two prototype blades using a special resin, produced by French chemicals giant Arkema. The project, ZEBRA (Zero wastE Blade ReseArch), will test and validate the behavior of the blade made with the resin and its feasibility for industrial production.

'To make a business case for recycling, you need more volume and more predictability, so the big players getting together is good news.' Collaboration

During the next two years, GE Renewable Energy will also collaborate with Carbon Rivers, a start up at the University of Tennessee in Knoxville, and other partners to develop a system for recycling glass fiber from blade parts. The focus will be on pyrolysis - a way to break down materials by exposing them to very high heat. If successful, the collaboration could result in a wind blade waste processing plant that would supply the recovered glass fibers to other industries. “The fibers might even end up in a surfboard,” Mashal says.

Introducing materials designed to be recycled, as well as already recycled materials into the manufacturing process, is part of the strategy for fully sustainable blades. While LM Wind Power is trying to close the circle on the blade life cycle, it is also already focusing on the next lap. As of last year, about 50% of the materials used to make the cores in its blades consist of recycled plastic. “We have the vision to create a less wasteful world, and our products support that,” Korsgaard says. “But we must also look inwards and embrace this fully.”

41


OCEAN ENERGY RESOURCES

1 | 2021

ROBIN KNOOK VOLGT LEO LAGARDE OP ALS NADO-VOORZITTER

‘Trots op Nederlandse duikindustrie’

Nieuwe NADO voorzitter Robin Knook.

De Vereniging Nederlandse Associatie van Duikondernemingen, kortweg NADO, is een organisatie van werkgevers in de duikindustrie die in 1984 werd opgericht door Koos Huijskens. Toen nog voorzitter van IRO dat dit jaar haar 50-jarig jubileum viert. Per 1 januari 2021 heeft NADO een nieuwe voorzitter – de zevende in haar bestaan. Een interview met de komende en gaande man.

42


Begonnen als stichting opgericht door een stel enthousiastelingen, opereert de NADO sinds medio 1990 als vereniging. Directe aanleiding tot haar oprichting was het

Passie

NADO is één van de kleinste brancheorganisaties in Nederland en telt momenteel 23 leden. In totaal zijn er in ons land ongeveer 35 duikbedrijven. Binnen de civiele sector zijn zo’n 400 echte industriële duikers actief.

duiken. Dit leidde tot kwaliteitsverschillen,

Aanleiding tot dit interview is het vertrek van NADO-voorzitter ‘good old’ Leo Lagarde. Vanuit zijn betrokkenheid bij het Duikinstructie team van de Genie heeft hij nagenoeg zijn hele leven toegewijd aan de opleidingen voor de duiksector. De nu 73-jarige gepassioneerde duiklegende trad in 2009 aan als onafhankelijk voorzitter van NADO.

bood ruim spel aan malafide bedrijven met

Veiligheid en kwaliteit

ontbreken van wet- en regelgeving voor het

ondeugdelijke en onveilige werkmethoden, en zorgde voor een achterstand op de internationale markt. Van dit alles is na 36 jaar NADO absoluut geen sprake meer. De Nederlandse duikindustrie wordt wereldwijd hoog aangeslagen en wordt geroemd om haar professionaliteit.

Ruim 11 jaar heeft Leo zijn ziel en zaligheid ingezet voor de vaderlandse duikindustrie. Op geheel eigen wijze heeft hij ertoe bijgedragen dat duikbedrijven zich in Nederland georganiseerd hebben en heeft hij mede zijn stempel gedrukt op het verbeteren van de duikveiligheid en kwaliteit. In het kader van verjonging binnen NADO is Leo per 1 januari 2021 opgevolgd door Robin Knook (46). Als voormalig genieduiker en global equipment manager werkt Robin momenteel als Technical Authority (Diving Equipment) bij Boskalis Subsea Services. Hij neemt reeds actief deel aan verschillende NADO commissies sinds 2006, en zit in verschillende IMCA werkgroepen sinds 2016. Overigens blijft Leo Lagarde wel aan als voorzitter van IDSA, de brancheorganisatie van internationale scholen voor het opleiden van professionele duikers. Het hoofdkantoor van IDSA is gevestigd in het NADO-kantoor te Pijnacker-Nootdorp. Binnen IDSA dragen de leden actief bij aan verbetering en aansluiting op nieuwe innovaties van de IDSA Training Standards. Internationale duikscholen die bij IDSA zijn aangesloten, werken actief met elkaar samen en het doet Leo altijd weer goed te ervaren dat men in het buitenland de Nederlandse duiker roemt om zijn kennis op het gebied van veiligheid en zijn harde werken.

Arbocatalogus

Bij zijn aantreden in 2009 viel Leo Lagarde gelijk met zijn neus in de boter, want de duiksector was juist volop in gesprek met het ministerie van Sociale Zaken en Werkgelegenheid (SZW) over een toekomstig vakbekwaamheidsstelsel dat in 2012 is ingevoerd. In die periode dreigde voor duikbedrijven ook een certificatieplicht voor het onderhoudssysteem. Daarnaast werd met man en macht gewerkt aan de Arbocatalogus Werken onder Overdruk. Tevens besloot de Sector de Beoordelingsrichtlijn voor het onderhoudssysteem van Duik- en Caissonmaterieel om te turnen in het Document Werken onder Overdruk – Systeem- en Onderhoudseisen aan materieel – WOD-SOE –

43


OCEAN ENERGY RESOURCES

1 | 2021

Afscheid Leo Lagarde Vanwege de COVID 19 pandemie was het onmogelijk om eind 2020/ begin 2021 een bijeenkomst te organiseren om officieel afscheid van Leo te nemen als voorzitter van NADO. Zodra hiertoe weer de mogelijkheid is, zal het NADO bestuur alsnog een samenkomst opzetten om Leo te bedanken voor al zijn inspanningen en om alle NADO leden in de gelegenheid te stellen om Leo persoonlijk de hand te kunnen schudden en om ‘oude’ duikherinneringen op te halen. Uittredend voorzitter Leo Lagarde.

dat onderdeel werd van de Arbocatalogus Werken onder Overdruk. “Het is eigenlijk voortdurend keihard werken geweest,” herinnert Leo zich nog maar al te goed. “Ik was ervoor gewaarschuwd, dus de vele uren die ik in mijn voorzitterschap heb gestoken, kwamen voor mij niet als een volkomen verrassing. Als ik nu terugblik, dan ben ik er best trots op wat wij met een beperkt aantal mensen allemaal hebben bereikt. Zeker als ik kijk naar het eindresultaat van het product Arbocatalogus, dat wij in samenwerking met Defensie, Brandweer en de civiele sector hebben gerealiseerd. Dankzij de overheveling van de Beoordelingsrichtlijn naar de Arbocatalogus hebben wij als sector op een slimme wijze kunnen voorkomen dat duikbedrijven extra kosten zouden krijgen voor audits en certificering door derden. Veel NADO-leden hebben onbezoldigd kennis maar zeker ook een bijdrage in uren geleverd aan de Arbocatalogus Werken onder Overdruk. Ik ben in deze veel dank verschuldigd aan Kees Segaar, Jan Koelewijn en Antoin Morriën. Stuk voor stuk mannen met een inspirerend ‘duikhart’.”

44

Tevens heeft de NADO al een aantal malen een ad-hoc technische commissie in het leven geroepen om diverse uitdagende onderwerpen uit te werken die vanuit de overheid als aandachtspunt aangemerkt waren. Zo’n commissie is een afspiegeling van de diverse duikbedrijven uit het werkveld als ook leveranciers, indien het duikmateriaal betreft. Leo: “De NADO is lid van de NEN SC 79 commissie. Deze commissie bepaalt de normen van bijv. Ademgastoestellen. Hoewel de NADO niet actief deelneemt aan de vergaderingen ontvangt de NADO wel alle voorstellen voor toekomstige NEN Normen. De NADO heeft een commissie die meeleest.” “Tegenwoordig wordt in diverse wetgevingen verwezen naar NEN Normen. Een verwijzing van de wet geeft zo’n Norm direct een wettelijke status. Het is dus van belang om op de hoogte te zijn van ontwikkelingen op dat gebied.”


'Er zijn nu zelfs duikers van midden 50 of zelfs van boven de 60.' Robin Knook, voorzitter NADO.

Overleg MKB

SZW besloot per 1 juli 2014 het artikel 6.15A van het Arbeidsomstandighedenbesluit vervallen te verklaren. Hiermee was de sector gevrijwaard van een extra certificatieplicht. Uiteraard betekende het wel dat ieder bedrijf conform de richtlijn WOD-SOE moest gaan werken en dus ook haar onderhoudssysteem moest gaan documenteren. Leo Lagarde heeft in die periode regelmatig aangeklopt bij MKB Nederland (VNO-NCW) om zich gesteund te zien bij uitvoering van weten regelgeving. “Het MKB heeft ons destijds flink geholpen. Zaken doen met het MKB was echt een verademing. Alle relevante ondernemersinformatie werd door haar aangeleverd. Dankzij haar netwerk kregen we ook invloed op beslissers in de politiek. Lobby op niveau.”

Wederzijdse erkenning

Onder aanvoering van de oud voorzitter is het afgelopen decennium voor de offshore duikbedrijven ook veel bereikt op het vlak van de wederzijdse erkenning in Europa en daarbuiten voor wat betreft duikmedische keuringen. Nederland volgt nog immer de internationale standards. Destijds was er de wens om met meer landen rond de Noordzee afspraken te maken maar de Nederlandse wetgeving bood geen geschikt handvat. SZW wilde niet meewerken. Lagarde: “Ook over dit onderwerp heb ik regelmatig met MKB NL overleg gehad. Uiteindelijk heeft Staatstoezicht op de Mijnen ons hierin ondersteund. Inmiddels is dit onderwerp reeds ingehaald door EUregelgeving. Engeland heeft sinds 1998 geen echte standards meer. Nu Brexit een feit is, moet sowieso worden afgewacht welke gevolgen dit kan hebben voor de ‘wederzijdse erkenning van certificaten en duikmedische keuringen’.” In het kader van internationalisering heeft Leo Lagarde ook met enige regelmaat vertegenwoordigers van de Australische en Canadese certificerende instellingen mogen ontvangen. “Tijdens die bezoeken heb ik hen onze leerdoelen overgebracht. Dit vergemakkelijkt het proces om in deze landen te mogen werken, want Nederlandse duikers werken tenslotte internationaal. Het is goed contact te hebben met de collega’s van ADAS en DCBC. We sturen de certificaten naar elkaar toe en zo is er een gedegen onderling vertrouwen ontstaan.”

ZZP’er

De laatste grote klus die Leo, samen met Cees Barten, heeft volbracht was het opzetten van een modelovereenkomst zzp-ers. “Drie jaar geleden zijn we begonnen met het voeren van gesprekken hieromtrent met de Belastingdienst. Eenvoudig was het beslist niet, maar na vijf lange vergaderingen en acht concepten bereikten we uiteindelijk een positief resultaat in de vorm van een door de belastingdienst goedgekeurde modelovereenkomst voor ZZP-duikers. Deze overeenkomst onderstreept overduidelijk het belang van een brancheorganisatie. Voor mij is het een stuk erkenning van het zzp-schap in onze sector. En daar ben ik best behoorlijk trots op.”

Trots

Twee jaar geleden is Leo Lagarde ernstig ziek geweest, maar inmiddels is hij weer ‘fit en gezond’ verklaard. “Ik zal me blijven inspannen voor de sector, maar gelet op mijn leeftijd besef ik dat het nu wel mooi is geweest. Het is tijd voor een nieuwe generatie en daarom ben ik verheugd dat Robin mijn taak als voorzitter van NADO heeft willen overnemen. Een nieuw gezicht, vol élan. We hebben dezelfde achtergrond en ook voor hem is duiken een soort van virus waartegen geen vaccin is bestand. Uiteraard heb ik Robin een aantal tips uit de keiharde praktijk meegegeven. En heb ik hem op zijn hart gedrukt dat we met z’n allen vooral trots moeten zijn op de Nederlandse duikindustrie.”

Verenigen

“Ik ga eerst kijken hoe wij als team NADO voor de komende tien jaar nog steviger op de kaart kunnen gaan zetten,” begint Robin zijn relaas. Hij zou van NADO graag een soort van keurmerk willen maken. Daarvoor moet eerst nog meer naamsbekendheid worden gegenereerd. “Er zijn al opdrachtgevers die het lidmaatschap van NADO als eis stellen bij toekenning van een opdracht. In dit kader zou het daarom mooi zijn als alle opdrachtgevers zich bewust zijn van de geldende wet- en regelgeving. Uiteindelijk zal dit leiden tot een betere duikveiligheid. Tot slot is het ons daar allemaal om te doen.”

Toekomst

Robin ziet ook dat de 20’ers en 30’ers van deze tijd heel anders tegen de wereld aankijken dan hun oudere generatie. De plotselinge en ongekende verslechtering van de marktomstandigheden als gevolg van de COVID 19 pandemie heeft een nieuwe realiteit gecreëerd. Nu hun toekomst op het spel staat, roepen jongeren op tot snellere actie. “Mede door de omstandigheden vergaderen we al digitaal en benaderen we jongeren al op een andere wijze. Maar waar wij wel voortdurend op moeten blijven hameren, is het gegeven dat verenigen een ‘must’ is als je als industrie iets wilt bereiken en een spreekbuis wilt zijn richting politiek Den Haag. Zaken moeten collectief worden aangepakt. Individueel red je het gewoon niet!”

Achterban

Robin Knook is duidelijk een groot voorstander van het zogeheten ‘achterbanberaad’. “Om zaken collectief aan te pakken is het noodzakelijk dat er onderling veelvuldig met elkaar wordt gesproken. En ik heb het dan niet over het selecte groepje mensen, dat met grote regelmatig toch al haar stem laat horen, maar over een veel groter aantal mensen dat actief is in de duikbranche. Als voorzitter ben ik voor iedereen toegankelijk. En als iemand informeel met mij wil praten, dan sta ik daarvoor open. Als er maar de wederzijdse doelstelling is dat we samen blijven werken aan kwaliteit en veiligheid.”

Arbeidsmarkt

Rond de eeuwwisseling is bij een arbeidsmarktonderzoek vastgesteld dat in 2012 een vergrijzing onder duikers zou optreden. De gemiddelde leeftijd lag in 2000 op 39. “Gelukkig bleef die voorspelde vergrijzing destijds uit,” licht Carin Bot van het NADO secretariaat toe.

45


OCEAN ENERGY RESOURCES

1 | 2021

“Mede door de introductie van de arbeidsomstandighedenwetgeving in de jaren 80. Er zijn nu zelfs duikers van midden 50 of zelfs van boven de 60. Gemiddeld komen er momenteel 27 nieuwe duikers per jaar bij. Een acceptabel aantal. Zij worden op een Noorse duikschool opgeleid via een zogeheten Dutch Package. Naast het reguliere programma krijgen de duikers van een Nederlandse instructeur twee weken lang les in typisch Nederlandse duikzaken. Aansluitend wordt de Nederlandse certificerende instelling - NDC-CI - uitgenodigd om de Nederlandse examens theorie en praktijk op de Noorse duikschool af te nemen.” Wat beide Nederlandse duikexperts wel pijn doet is het gegeven dat er bij de vaderlandse duikbedrijven meer Engelse duikers werken dan duikers met een Nederlands paspoort. Begrijpen doen ze het wel, maar verwijzen eensgezind toch naar de slogan: ‘Koop Nederlandse waar, dan help je elkaar!’

Nieuwe markt

De nieuwe NADO voorzitter beseft dat de offshore markt aan het veranderen is. Voor operators in de olie- en gassector wordt op het Nederlands Continentaal Plat de laatste paar jaar minder gedoken dan voorheen. “Niet alleen hebben we te maken met de gevolgen van de veelbesproken energie transitie, ook is er sprake van een opkomst van het aantal ROV’s. Gelukkig zijn niet alle platforms op de Noordzee ROV-friendly gebouwd. Operators hebben daarom altijd duikers nodig. Als je de Noordzee in stukken verdeeld dan zie je dat in het midden en in het noorden saturatie gedoken wordt, en in het zuiden

46

hoofdzakelijk airdiving plaatsvindt. Maar vanwege de geringe O&G activiteiten zetten saturatieschepen koers richting de zuidelijke Noordzee om daar een graantje mee te pikken van het duikwerk. Aan de andere kant mogen we ons verheugen in een enorme opkomst van de offshore wind industrie. Deze sector biedt geweldige kansen en levert veel directe werkgelegenheid op. Niet alleen hier op de Noordzee en in de Duitse Bocht, maar zeker ook in de Asia Pacific region en straks offshore oostkust Amerika.”

Kracht

Of Robin Knook net zo lang de voorzittershamer zal hanteren als Leo Lagarde, weet hij nog niet. “In principe ben ik benoemd voor een termijn van drie jaar. Na afloop van dit ambtstermijn kan ik mij weer opnieuw kandidaat stellen. Vooralsnog ga ik mij de komende drie jaar met hart en ziel inzetten voor de Nederlandse duikindustrie. In 2024 zien we wel weer verder. Pas dan zal ik bepalen of ik herkiesbaar ben of niet. Met heel veel plezier werk ik al meer dan 20 jaar in de internationale duiksector. Ik heb over de hele wereld gewerkt en gedoken. En ik ben zeker niet van plan deze dynamische en boeiende wereld zomaar vaarwel te zeggen. Wat ik zo uitdagend vind aan NADO is dat we, ondanks het feit dat we eigenlijk elkaars concurrenten zijn, toch dagelijks vergaderen en samenwerken om de Nederlandse duikindustrie nog sterker te maken. Nog veiliger. Mensen samenbrengen en tot een homogene ploeg zien te smeden teneinde een resultaat te bereiken dat voor de gehele achterban werkt. Dat is waar mijn potentieel ligt, waar ik goed in ben en vooral ook leuk vind.”


Frames congratulates IRO with its 50 year anniversary!

www.frames-group.com

Mokveld congratulates IRO with its 50 year anniversary!

www.mokveld.com

congratulates IRO with its 50 year anniversary!

www.honeywell.com

SPT Offshore congratulates IRO with its 50 year anniversary!

www.sptoffshore.com

47


OCEAN ENERGY RESOURCES

1 | 2021

Funding to investigate offshore hydrogen production EUR 5 MILLION FOR CONSORTIUM

ITM Power, Ørsted, Siemens Gamesa Renewable Energy, and Element Energy have been awarded EUR 5 million in funding from The Fuel Cells and Hydrogen Joint Undertaking (FCH2-JU) under the European Commission to demonstrate and investigate a combined wind turbine and electrolyser system designed for operation in marine environments.

48


The consortium will develop and test a megawatt-scale fully marinised electrolyser in a shoreside pilot trial. The project will be coordinated by Element Energy.

To realise the potential of offshore hydrogen production, there is a need for compact electrolysis systems that can withstand harsh offshore environments and have minimal maintenance requirements while still meeting cost and performance targets that will allow production of low-cost hydrogen. The project will provide a major advance towards this aim. The electrolyser system will be designed to be compact, to allow it to be integrated with a single offshore wind turbine, and to follow the turbine's production profile. Furthermore, the electrolyser system will integrate desalination and water treatment processes, making it possible to use seawater as a feedstock for the electrolysis process. The OYSTER project partners share a vision of hydrogen being produced from offshore wind at a cost that is competitive with natural gas (with a realistic carbon tax), thus unlocking bulk markets for green hydrogen making a meaningful impact on CO2 emissions, and facilitating the transition to a fully renewable energy system in Europe. This project is a key first step on the path to developing a commercial offshore hydrogen production industry and will demonstrate innovative solutions with significant potential in Europe and beyond. And is planned to start in 2021 and run to the end of 2024. ITM Power is responsible for the development of the electrolyser system and the electrolyser trials, while Ørsted will lead the offshore deployment analysis, the feasibility study of future physical offshore electrolyser deployments, and support ITM Power in the design of the electrolyser system for marinisation and testing. Siemens Gamesa Renewable Energy and Element Energy are providing technical and project expertise. Dr Graham Cooley, CEO of ITM Power, said: "ITM Power are delighted to be part of this exciting project, working alongside industry leaders to explore

the potential to harness wind for offshore green hydrogen production." Anders Christian Nordstrøm, Vice President and Head of Ørsted's hydrogen activities, said: "To create a world that runs entirely on green energy, we need to electrify as much as we can. However, some sectors cannot decarbonise through electrification and that's where renewable hydrogen could play a significant role. Offshore hydrogen production could be a future, supplemental way of getting large amounts of energy generated from offshore wind power to shore. As the largest offshore wind company in the world, we're of course keen to better understand what it will take to produce renewable hydrogen offshore as a potential future supplement to production of renewable electricity. Having pioneered the offshore wind industry, we know that thorough analysis and testing are required before deploying new technologies at sea." Bart Biebuyck, Executive Director, Fuel Cells and Hydrogen Joint Undertaking (FCH JU), said: "The OYSTER project is a very exciting addition to the FCH JU pallet of electrolysis projects that will allow the development of an offshore-spec electrolyser for green hydrogen to be generated in the harsh offshore environment. The aim is the optimal integration of electrolysers with offshore wind turbines to store the energy generated in the form of hydrogen. We are absolutely delighted to support this innovative project which reduces the environmental impact in further industrial applications." Michael Dolman, Associate Director at Element Energy, added: "Offshore wind is now one of the lowest cost forms of electricity generation in Europe and will have an important role in Europe's decarbonisation plans. There is growing interest in transporting renewable energy in the form of hydrogen, particularly for sites far from shore. Realising such a vision will require further development and innovations of the type to be demonstrated in the OYSTER project, which Element Energy is pleased to coordinate."

49


OCEAN ENERGY RESOURCES

1 | 2021

STUDY CONFIRMS POTENTIAL OF HYDROGEN IMPORT

50


In order to meet the challenge of the transition to a carbon-neutral society by 2050, we need to look beyond our own production of renewable energy generated domestically or offshore. The import of renewable energy plays an essential role in this respect. The study published on January 27 by the hydrogen import coalition – a collaboration between DEME, ENGIE, Exmar, Fluxys, Port of Antwerp, Port of Zeebrugge and WaterstofNet – concludes that this is both technically and economically feasible.

The thorough feasibility study is the first tangible result of the collaboration between the companies involved, each with its own specific and complementary expertise and experience. This laid the basis for concrete next steps, including pilot projects for the supply of sustainable energy by means of green molecules from countries where wind and solar are available in abundance to Belgian end users, among others.

Essential role in energy transition

The climate objective to reduce CO2 emissions in Belgium by 80% by 2050 compared to 2005 levels is a major challenge and requires a large-scale switch from fossil fuels to renewable energy. Where do we get our renewable energy from? How do we get green energy in the most affordable and reliable way, when and where we need it? It is clear that solar and wind will be the renewable energy sources of the future. However, in Belgium and Western Europe, there is not enough wind or solar energy, while other regions in the world in fact have solar and wind energy in abundance. In order to achieve a reliable, affordable and sustainable energy system, local production of solar and wind energy will therefore have to be supplemented by the supply of

Ready for the next step towards the Belgian hydrogen economy 51


OCEAN ENERGY RESOURCES

1 | 2021

Bac Liêu wind power farm in the Mekong Delta region in southern Vietnam (image: Shansov.net).

some of the necessary renewable energy from abroad. Molecules can act as energy carriers to efficiently transport green energy through pipelines and ships. Hydrogen, as a carrier of renewable energy, plays an important role in the blend of end-user solutions.

Feasible and cost-effective

Over a year ago, seven major industrial players and public stakeholders joined forces and expertise to jointly analyse the opportunities for importing green hydrogen into Belgium. The coalition, consisting of DEME, ENGIE, Exmar, Fluxys, Port of Antwerp, Port of Zeebrugge and WaterstofNet, has now completed a large-scale industrial study mapping out the financial, technical and regulatory aspects of the entire hydrogen import chain – from production abroad to delivery via ships and pipelines to Belgium and internal distribution – and providing a basis for the further roll-out to industrial applications. After thorough analysis of all the elements, the study concludes that importing this form of renewable energy is a necessary and feasible solution to the growing shortage in Western Europe. Various types of hydrogen-derived carriers from a range of supply regions will be able to provide cost-competitive renewable energy and raw materials by 20302035. The most promising green energy carriers are ammonia, methanol and synthetic methane. These can be deployed through existing modes

52

of transport – such as pipelines and maritime transport in particular – and growing markets, encouraging a rapid start. According to the study, this import of renewable energy through green hydrogen carriers will therefore become an essential part of our energy supply, complementing the sustainable transition based on domestically generated energy. Belgium has maritime ports and extensive pipeline infrastructure, is linked to the major industrial clusters and has the capacity to meet its own energy needs and those of surrounding countries.

Concrete next steps

Now that the feasibility study has been completed, the coalition partners want to take some concrete next steps. We will analyse how to prepare our seaports to receive the hydrogen carriers of the future, seeking maximum synergy to serve our national interests. Specific pilot projects are being set up whereby we can make maximum use of the Flemish expertise and strength in the area of logistics, industry and technology for the development of a sustainable economy and the climate transition in our own region and a broader hinterland. Alexander De Croo, Prime Minister of Belgium: “Hydrogen will play a decisive role in the energy transition and in making our industry


'Hydrogen will play a decisive role in the energy transition and in making our industry sustainable. ' Alexander De Croo, Prime Minister of Belgium

sustainable. This study provides essential new insights for the further roll-out of a hydrogen economy and the further reduction of CO2 emissions. The next step is to develop a long-term strategy for importing hydrogen.” Jan Jambon, Prime Minister of the Flemish Government: “Flanders is ideally positioned to play a pioneering role in the hydrogen economy at a European level. It has the energy hubs of Antwerp and Zeebrugge, it has transportation infrastructure, an extensive network of pipelines to those ports and to Germany, and technology companies operating in it.” Luc Vandenbulcke, CEO DEME: “Belgium can play a leading role in the green hydrogen economy and doing so, further reduce CO2 emissions. The results of the study are an important step forward in realising these ambitions. The combination of renewable energy with green hydrogen in the energy supply is fully in line with DEME’s decarbonisation strategy. DEME is now looking forward to the realisation of green hydrogen projects, both in Belgium and abroad.” Jacques Vandermeiren, CEO at Port of Antwerp: “We want to give hydrogen every chance as an energy carrier, a basic element for chemistry and a fuel, and are therefore committing ourselves as an active pioneer in the hydrogen economy. As a world port and Europe's largest integrated chemical cluster, we are an important link in this chain. The outcome of this study and its next steps offer promising perspectives for a further large-scale roll-out of hydrogen applications.” Annick De Ridder, Port Alderman: “This study confirms that hydrogen can play a key role not only in making the port of Antwerp sustainable, but also in the rest of Europe. It is therefore crucial that, as a port of the future, we live up to our ambition and play a pioneering role in terms of sustainable solutions. Thanks to the collaboration between this coalition of partners with the right expertise and the government bodies involved, we have all the assets we need to take further concrete steps in this regard and to set an example for other ports and regions.”

53


OCEAN ENERGY RESOURCES

1 | 2021

How artificial reefs established by OWFs affect ecosystem structure and functioning OFFSHORE WIND FARMS ARE PROLIFERATING GLOBALLY

With a global cumulative capacity of 651 GW installed, wind is one of the most exploited sources (GWEC, 2019) in the world’s transition toward renewable energy. Given the need for space, wind energy developments are typically constructed in vast open landscapes, which are scarce in most European countries and in highly populated coastal areas elsewhere but remain largely available at sea. Offshore wind farms (OWFs) currently represent only 4.5% of installed wind capacity. In 2019, there was a global addition of 6.1 GW, and the yearly addition is projected to double by 2024 (GWEC, 2019). OWFs are proliferating in Europe, mainly in the North Sea, but have also gained momentum in China Biofouling community on a Belgian offshore gravity-based wind turbine, including blue mussels, plumose anemones, sea urchins, common starfish, barnacles, and tubeworms. Photo credit: Royal Belgian Institute of Natural Sciences, Alain Norro.

54

and are advancing along the US East Coast with more than 15 OWF projects projected to be built by 2026 (https://www.4coffshore.com/offshorewind/).


While OWFs are typically less frequently confronted with a NIMBY (not in my back yard) attitude than those on land, they are, however, approached with reluctance by many ocean users. Since the construction of the first OWFs, concerns have been raised about economic costs and benefits, as well as their effects on natural environments (Devine-Wright and Wiersma, 2020). Such concerns continue to be strongly raised by the commercial fishing community, spawning such newspaper headlines as: ‘Wind farms taking grounds and damaging marine life’ (Fishing News, 2019) and ‘Fish are kept away by wind turbines’ (translated from ‘Vissen blijven weg door windmolens’; De Krant van West-Vlaanderen, 2018). On the other hand, recreational fisheries tend to see OWFs as a blessing because they provide excellent angling opportunities, with increased abundances of their favorite fish, for example, at Block Island Wind Farm (Rhode Island, USA; ten Brink and Dalton, 2018).

Wildlife

place following their installations (see below). Additionally, OWFs are known to affect the benthos and demersal and bentho-pelagic fish (Dannheim et al., 2020). These changes, mainly below the sea surface, are commonly referred to as the 'artificial reef effect'.

Artificial reef

Artificial reefs are man-made structures (i.e., hard substrates) deliberately placed in the sea to mimic characteristics of natural reefs. The term ‘artificial reef’ has been in the literature since the 1930s (Bohnsack and Sutherland, 1985), but structures aimed at promoting fisheries and aquaculture have been around for at least 5,000 years (Tickell et al., 2019). The most common purpose for deploying artificial reefs has been to improve biodiversity, particularly with respect to fishery species (Bohnsack and Sutherland, 1985). However, structures that function as artificial reefs are not always purpose built. Today, such structures have become a side effect of ‘ocean sprawl’, a term that reflects the proliferation of man-made structures in the sea such as oil and gas platforms, aquaculture cages, coastal defense constructions, and OWFs (Firth et al., 2016). This article provides an overview of the artificial reef effects of OWFs on ecosystem structure and functioning. We focus on how OWFs provide new habitat, setting the stage for colonization by epifaunal communities consisting of species that are both indigenous and nonindigenous, of conservation interest, and that have habitat-forming properties. We also consider local organic enrichment, subsequent influences on the benthos of the surrounding sediments, and the attraction of predators and scavengers. Finally, we provide some insights into the spatial extent of OWF artificial reef effects and how best to deal with them. We particularly aim to provide lessons learned from European and American studies in the North Atlantic. This article does not examine how the presence of OWFs may exclude fisheries, which is considered to be only a secondary component of the artificial reef effect, and which is covered by Gill et al. (2020) in the special December 2020 issue of Oceanography, the official magazine of the Oceanography Society.

OWFs do change the local environment above and below the sea surface (Lindeboom et al., 2015). The most obvious and well-studied negative impacts above the sea surface have been detected for species of conservation value. Several seabird species such as guillemots (Uria aalge) and northern gannets (Morus bassanus) show a distinct avoidance of operational OWFs (Skov et al., 2018). Other seabirds such as larger gulls seem attracted to the OWFs and run the risk of colliding with the turbine blades (Vanermen et al., 2020). Below the sea surface, marine mammals such as the harbor porpoise (Phocoena phocoena) flee the area during pile-driving activities (Brandt et al., 2018), and highly migratory fish such as tuna (Thunnus spp.) may be disturbed by the operational sounds of OWFs (Espinosa et al., 2014). OWFs may also have more obscure effects on marine wildlife that could be perceived positively. Many top predators seem to target the OWFs for food and/or refuge and profit from the ecological changes that take

55


OCEAN ENERGY RESOURCES

1 | 2021

New habitat

It is now widely accepted that one of the most important effects of OWFs is the provision of new habitat that can be colonized by hard substrate species (Petersen and Malm, 2006). Setting aside the loss of soft sediment habitat due to the OWF footprint, OWF structures generally provide two distinct artificial habitats: hard vertical substrates and a complex range of horizontal habitats, depending on the type of foundation and the degree of scour protection used (Langhamer, 2012). In addition, the novel surfaces occur throughout the full water column, from the splash zone to the seafloor, often in areas where comparable natural hard surfaces are absent. These attributes are largely unique to offshore energy infrastructure. The introduction of coarse rock affects seabed habitat complexity, particularly in mobile sediments, expanding the habitats available to serve as refuges and to support food sources for biota. In Europe, most OWFs are constructed in mobile sedimentary environments, but in the northeastern United States, several OWFs are proposed for installation on glacial moraines that have high densities of boulders mixed with mobile sediments (Guarinello and Carey, 2020).

Biofouling

Installation of any new OWF has invariably been followed by rapid colonization of all submerged parts by a variety of fouling organisms that are familiar from studies of other anthropogenic structures placed in the marine environment (e.g., Kingsbury, 1981; Offshore wind farm structures provide habitat for invertebrate organisms that Schröder et al., 2006). Vertical zonation is foul the foundation along the depth gradient and attract predator fish, seabirds, observed on the turbine foundations, with and marine mammals. Illustration by Hendrik Gheerardyn. different species colonizing the splash, intertidal, shallow, and deeper subtidal zones (De Mesel et al., 2015). In general, biofouling communities on offshore installations are dominated by mussels, macroalgae, and barnacles near the water surface; filtera novel mussel offshore habitat, with high abundances exhibited on feeding arthropods at intermediate depths; and anemones in deeper turbine foundations (Krone et al., 2013a). Larger species such as crabs locations (De Mesel et al., 2015). In the southern North Sea, adult and lobsters appear to profit from the presence of the structures and mussels are rare at deep offshore locations that do not have hard the biofouling community, appearing in increasing abundance on and substrate near the water surface. However, OWF structures provide

56


around the structures (Krone et al., 2017). At the scale of a turbine footprint, biomass can increase 4,000-fold compared to the biomass originally present in the sediments (Rumes et al., 2013). OWF structures may also affect communities living on surrounding natural hard substrates such as boulder fields. The biota attracted by their dominant vertical surfaces, high depth ranges, and different surface textures and compositions might affect the assemblages of invertebrates and algae resident on nearby boulders (Wilhelmsson and Malm, 2008).

Turbine structures

There are currently five types of offshore wind turbine structures in use: monopiles, gravity-based foundations, jacket and tripod structures, and, more recently, floating wind structures. Each structure has obvious differences in submerged surface area and structural complexity (Rumes et al., 2013). The exact influence of the structure type on the degree of the artificial reef effect has not yet been quantified. Over time, the initial set of species can evolve into a highly biodiverse community composed of many species from a large number of phyla (Coolen et al., 2020a). Much of the information documenting the colonization and succession process on OWF artificial hard substrates is derived from short-term time series or one-off sampling events. These studies focused on the high species richness on the structure compared to surrounding soft sediments. The only long-term (10-year) study identified three distinct succession stages: a relatively short pioneer stage (0–2 years) was followed by a more diverse, intermediate stage (3–5 years) characterized by large numbers of several suspension feeding invertebrates, and a third ‘climax’ stage (6+ years) co-dominated by plumose anemones (Metridium senile) and blue mussels (Mytilus edulis) (Kerckhof et al., 2019). This climax stage is in line with observations at offshore oil and gas platforms where mussels mixed with hydrozoans and anemones dominated the older and deeper sections (~15–50 m) (Coolen et al., 2020a).

In general, the vertical section of offshore foundations forms a uniform habitat that, in the long term, allows a few competitive species to dominate the fouling communities. OWF scour protection, which typically consists of rocks of varying sizes and shapes intermittently covered by sand, provides additional microhabitats for a multitude of species. While physically it more closely resembles natural rocky reef habitats, its fauna remains distinctly different from those found among natural hard substrates (Coolen et al., 2020a). Research in Belgian and Dutch waters is targeting the feasibility of fine tuning the design of scour protection to contribute to the restoration of the natural gravel bed ecosystems lost about a century ago.

Nonindigenous species

Ocean sprawl in shallow and coastal waters provides opportunities for nonindigenous species. In the shallow southern North Sea where OWFs were first installed, nonindigenous species were indeed found among the colonizing species, for example, the Pacific oyster (Crassostrea gigas) and the marine splash midge (Telmatogeton japonicus) (De Mesel et al., 2015). The highest number of nonindigenous species were found in the intertidal and splash zones. These habitats are largely new to the open sea and offer an empty niche for nonindigenous species to extend their distributions and/or strengthen their populations. Subtidally, records of nonindigenous species are more scarce. For Belgian OWFs, only one nonindigenous species (the slipper limpet Crepidula fornicata) was recorded in subtidal samples. In the Netherlands, however, six out of eleven nonindigenous species were found subtidally (Coolen et al., 2020a). At Block Island Wind Farm, the widespread nonindigenous and proliferating ascidian Didemnum vexillum was observed on both the foundation structure and as an epibiont to the mussels (HDR, 2020). As yet, there are no published records of range expansion of subtidal nonindigenous species relating to the introduction of OWFs.

The colonization of offshore wind turbines passes through clear successional stages: a pioneer stage with a few early colonizers, a species-rich intermediate stage, and a climax stage dominated by mussels and anemones. Illustration by Hendrik Gheerardyn.

57


OCEAN ENERGY RESOURCES

1 | 2021

While there is concern that OWFs may pose a threat to indigenous communities (Glasby et al., 2007; Adams et al., 2014), this threat has yet to be demonstrated. The drastic increase of hard substrates in an environment consisting largely of soft mobile substrates can favor the spread of hard substrate species by creating new dispersal pathways and facilitating species migrations, the so-called ‘stepping stone effect’ (Adams et al., 2014). In the North Sea, southern hard substrate species such as the barnacle Balanus perforatus have now expanded further north, making use of the (intertidal) habitat provided by the OWFs (Glasby et al., 2007; De Mesel et al., 2015).

Rare species

Several locally rare species, some of which are of conservation interest either because of their threatened status or because of the habitat they create, have taken advantage of the new habitat provided by OWFs. It is important to understand the role of this artificial habitat in maintaining local populations of these species, as it is likely to have implications for future decommissioning of OWFs (Fowler et al., 2020). At several OWFs, for example, fish species that prefer hard substrate, and therefore are either unknown or extremely rare on the surrounding sandy seabed, have been recorded in association with the structures’ artificial hard substrates (Van Hal et al., 2017).

Offshore wind farm artificial reefs act as ‘biofilters’, hosting suspension feeders that filter organic matter from the water column and organically enrich the surrounding seabed. Illustration by Hendrik Gheerardyn.

58

As the size, number, and geographic distribution of artificial reef habitat increases with the expansion of OWFs, additional fish species with affinities to hard substrates are likely to occupy this habitat. OWFs may therefore contribute to these fish species’ population sizes, extents, and connectivity. Furthermore, by providing small patches of appropriate habitat in otherwise unsuitable surroundings, artificial reefs can sustain local populations and even affect the spatial distribution of sessile hard substrate species formerly unknown to the area (Henry et al., 2018). An example is the appearance of the northern cup coral (Astrangia poculata) at the Block Island Wind Farm (HDR, 2020), and in the North Sea, such species include the stony coral (Desmophyllum pertusum) and the European flat oyster (Ostrea edulis) (Henry et al., 2018; Kerckhof et al., 2018). Given enough time, these reef-forming species associated with hard substrate may develop secondary biogenic reefs that could provide a home to many often rare - species and offer great value with regard to ecosystem functioning (Fowler et al., 2020).

Colonizing species

The most predominant colonizing species on OWFs, the blue mussel (Mytilus edulis) may have profound bioengineering and reef-building effects on the surrounding sediments. For example, mussel shell litter and layers of mussels falling from turbines may provide habitat for other species (Krone et al., 2013b), and ‘drop-offs’ may be


While the offshore wind farm artificial reef effect is particularly detectable at the scale of the wind turbine and the wind farm (small-scale effects), some effects extend well beyond the scale of a single such operation (large-scale effects) as exemplified by the increased connectivity of hard substrate species (the stepping stone effect). Illustration by Hendrik Gheerardyn.

transported, introducing them to areas further from the turbines (Lefaible et al., 2019). Furthermore, evidence of adult blue mussel aggregations with distinct macrofaunal communities has been found on soft sediment near turbines (<50 m) in Belgian (Lefaible et al., 2019) and US (HDR, 2020) waters. Continued monitoring is required to determine the spatial extent and longevity of these aggregations to determine their potential designation as reefs and whether these aggregations could contribute to restoring functions of bivalve reefs that historically consisted of Ostrea edulis beds in the North Sea (Bennema et al., 2020).

Suspension Feeders

Wind turbines are generally colonized by high densities of suspension feeders (Krone et al., 2013a; HDR, 2020). A large portion of the biofouling community feeds on food particles suspended in the water column that include phytoplankton, zooplankton, and detritus. The predominant blue mussel Mytilus edulis, for example, actively filters water and ingests particles from it. Other suspension feeders, such as amphipods like Jassa herdmani, grab particles from the passing water to eat and to build their tubes (https://www.marlin.ac.uk/). The highly abundant plumose anemone (Metridium senile) is a passive suspension feeder that extends its tentacles in the water, waits for particles to stick to them, and then takes the particles in. Over 95% of the biomass on artificial structures can be composed of various species of suspension feeders (Coolen et al., 2020b), several of which are highly resource flexible, switching between suspended food sources, possibly due to interspecific competition or benefiting from food sources available in abundance (Mavraki et al., 2020a). By filtering the water, the organisms remove particles that would have otherwise passed by, resulting in lower turbidity and increased light penetration. This ‘biofilter’ effect has been demonstrated at the local scale (Reichart et al., 2017) and in the laboratory (Mavraki, 2020b) but may result in larger-scale effects when considering multiple offshore installations. However, in-depth understanding of this effect is currently lacking (Dannheim et al., 2020).

Model results suggest that the soft sediment around turbines can be enriched through the deposition of fecal pellets egested by these filter feeders (Maar et al., 2009). By consuming primary producers, the suspension feeders that constitute the biofilter make pelagic food sources available to the benthic community (Slavik et al., 2019), likely increasing secondary production in OWF artificial reefs (Krone et al., 2017; Roa-Ureta et al., 2019). This hypothesis was first tested around a single gravity-based foundation in the Belgian part of the North Sea (Coates et al., 2014). Later research targeted multiple jacket and monopile foundations in several Belgian wind farms (Lefaible et al., 2019) and the jacket foundations of the Block Island Wind Farm (HDR, 2020). Samples obtained from the seafloor close to the foundations (<50 m) three to six years after installation showed evidence of finer sediments and increased organic matter, but this was less evident for monopile foundations. At all turbine types, macrofaunal communities closer to the turbine showed increased densities and species richness and/or diversity when compared to communities sampled further away (Coates et al., 2014; Lefaible et al., 2019; HDR, 2020). At Belgian wind farms located in high-energy sandbank environments, soft sediment communities sampled closer to the jacket and monopile foundations displayed similarities with communities associated with lower-energy environments (Lefaible et al., 2019). As these findings are now reported for different turbine types and from different areas around the world, it is reasonable to consider changes in the sedimentary environment and associated macrofauna to be a typical feature associated with the installation of offshore wind farms. Whether these changes are solely linked to the localized deposition of organic matter by fouling fauna, and how these changes cascade into benthic ecosystem functioning, is still not clear and merits further investigation.

Higher trophic levels

Higher-trophic-level species with mobility appear to be attracted to the OWF structures for shelter and food availability.

59


OCEAN ENERGY RESOURCES

1 | 2021

Studies of finfish distributions before and after installation of OWFs demonstrate that some finfish species, for example, Atlantic cod (Gadus morhua), pouting (Trisopterus luscus), black sea bass (Centropristis striata), and goldsinny wrasse (Ctenolabrus rupestris), spend at least part of their life cycles closely associated with the structures (Bergström et al., 2013; Reubens et al., 2014; Wilber et al., 2020). Increases in fish abundance around wind turbines, including flatfish such as plaice (Pleuronectes platessa) (unpublished data, Research Institute for Agriculture, Fisheries and Food, Belgium) may be caused by an attraction of individuals that aggregate near the new hard structures, with no net increase in the local population. Alternatively, production may be increased by the addition of new habitat that may enhance settlement, survival, and/or growth, or may save energy (Schwartzbach et al., 2020). The attraction/production mechanisms are not mutually exclusive (Brickhill et al., 2005). The original attraction/production hypothesis is complemented by a third option‚ the ecological trap, which refers to fish being attracted to suboptimal habitat, possibly leading to deterioration of the fish stock’s condition (Reubens et al., 2014). Three types of species attracted to OWFs can be discerned: (1) species that predate the biofouling community for a prolonged period such as the Atlantic cod (Gadus morhua), the pouting Trisopterus luscus), and the Arctic sculpin (Myoxocephalus scorpioides) (Type A); (2) species that occasionally predate the biofouling community such as the Atlantic horse mackerel (Trachurus trachurus) (Type B); and (3) species such as the Atlantic mackerel (Scomber scombrus) that are attracted for nontrophic reasons, for example, to find shelter or to encounter other individuals of their species, which may lead to their creating larger schools and thus increasing their safety and chances of finding food and mates (Type C) (Mavraki, 2020). While a distinction may be made between benthic/bentho-pelagic (Type A) and pelagic (Type B or C) species, this distinction is not always clear. Aside from fish, other species attracted to OWFs by increased subtidal food availability include herring gulls (Larus argentatus) that forage in the intertidal zone of jacket-founded windmills (Vanermen et al., 2017) and common seals (Phoca vituline), with some individuals shown to make targeted foraging trips to Scottish OWFs (Russell et al., 2014).

Sphere of influence

Numerous biotic and abiotic components within ecosystems exhibit

60

multiple cause-effect pathways that operate over different spatial and temporal scales (Dannheim et al., 2020). With respect to the artificial reef effect, changes are most obvious at the scale of the turbine and its surrounding area. These first-order effects could be considered trivial in the context of the ecosystem, but small-scale changes are the basis of large-scale changes and can be used to inform potential regional impacts on components important to ecosystem services, such as commercial fish stocks (Wilding et al., 2017). The artificial reef effect, as detailed in this paper, is clearly not restricted to the structures themselves but rather extends in four dimensions (Degraer et al., 2018; Figure 4). This is evident not only in the changes in connectivity of benthic species facilitated by larval transport but also in the mobile fauna that make use of the whole wind farm, including those that do so seasonally and/or opportunistically (Reubens et al., 2014; Russell et al., 2014). It is therefore important to account for the functional spatial and temporal scales of ecosystems or their parts in order to assess the artificial reef effect. Many adult fish, for example, show migratory behavior between spawning and feeding grounds that may extend several hundreds to thousands of kilometers. As planktonic organisms, many fish and invertebrate larvae move from spawning to nursery grounds over distances up to tens of kilometers (Lacroix et al., 2018). Hence, species may encounter OWFs for only limited parts of their lives and/or during very specific periods of their life cycles. In Belgium, for example, pouting (Trisopterus luscus) is known to feed on the invertebrate fouling organisms that colonize OWF structures and to do slightly better inside OWFs compared to outside (Reubens et al., 2014). This species is known to be attracted to OWFs only during the feeding and growing season in summer and autumn, after which they migrate to their spawning grounds outside Belgian waters (Reubens et al., 2014). Barbut et al. (2020) further showed a differential overlap between the spatial distribution of the spawning grounds of six southern North Sea flat fish species and the distribution of OWFs, assuming a species-specific effect of OWFs on the larval influx to the nursery grounds along the southern North Sea coasts. How these differential spatial and temporal effects translate to the population dynamics of those species affected by OWFs is key to our understanding of how the OWF artificial reefs impact marine ecosystems, but this is yet to be fully understood.


The present proliferation of nature-inclusive designs will undoubtedly add new challenges to the decommissioning debate.

Where to go from here?

The presence of the OWF structures and their concentrations of marine organisms have consequences for ecosystem functioning, at least at the local scale (Dannheim et al., 2020). Modeling efforts and experiments suggest local depletion of organic matter from the water column due to the activity of suspension feeders (Slavik et al., 2019). Suspension feeders transform the living pelagic organic matter pool into partially dissolved and bioavailable nutrients (Slavik et al., 2019) and produce (pseudo)feces that are partly deposited on the seafloor, as indicated by the increase in organic matter content around different types of turbines (Coates et al., 2014; Lefaible et al., 2019). While studies of the effects of aquaculture of the blue mussel (Mytilus edulis) yielded data on particle removal (Cranford, 2019) and its effect on pelagic and benthic nutrient cycles (Petersen et al., 2019), similar data for the other dominant fouling species in OWF environments are lacking. Availability of such data would allow estimation of the biogeochemical footprint of an OWF at the local scale. Further integration of such data in oceanographic models could allow assessment of the changes associated with multiple OWFs at a wider geographical scale. Another ‘known unknown’ is how artificial reefs affect carbon flow through locally altered food webs. Observations and modeling reveal increased abundance of fish (Reubens et al., 2014) and large crustaceans (Krone et al., 2017) as well as increased importance of a detritus-based food web. However, quantification of the carbon flow through the OWF food web is lacking. Such a study would require embracing well-established techniques such as stable isotope and fatty acid analyses, pulse-chase experiments, and food-web modeling approaches. Finally, artificial reefs, like natural reefs, are being subjected to a warmer and acidified marine environment. The combination of acidification and warming leads to substantial, non-additive and complex changes in community dynamics (Queirós et al., 2015), affects pelagic and benthic nutrient cycling (Braeckman et al., 2014), and alters the mechanism behind predator-prey interactions (Draper and Weissburg, 2019). Thus, current understanding of the artificial reef effect in OWFs must be considered within a modern changing environment.

Undesired and desired effects

Although artificial reefs are often deliberately deployed to promote biodiversity, their net environmental benefits are often debated. For example, how should the eventual increase in fish productivity be balanced against the loss of fishing grounds? Although not designed as artificial reefs, OWFs have similar desired and undesired impacts: they may offer possibilities for nature enhancement, but at the same time be a nuisance to nature (Lindeboom et al., 2015). For the sake of environmentally friendly marine management, it is of utmost importance to distinguish desirable from undesirable impacts and to take action to promote the former while at the same time mitigating the latter. To that end, a proper understanding of mechanisms behind the impacts is needed (Dannheim et al., 2020) in order to develop effective nature-inclusive designs that are, for example, mandatory for the development of new OWFs in the Netherlands (Ministerie van Economische Zaken, 2019). Requirements may include eco-designing scour protection layers to enhance fish habitat or restore oyster beds (Glarou et al., 2020) and deploying add-on structures such as fish hotels (Hermans et al., 2020). To avoid contributing to ocean sprawl, the use of add-on structures (i.e., artificial structures away from the turbines) may be questionable and deemed undesirable (Firth et al., 2020). The present proliferation of nature-inclusive designs will undoubtedly add new challenges to the decommissioning debate. For example, when commercial fish stocks are proven to benefit from OWFs, will these positive effects then be nullified when OWFs are decommissioned?

ACKNOWLEDGMENTS The authors (Steven Degraer, Drew A. Carey, Joop W.P. Coolen, Zoë L. Hutchison, Francis Kerckhof, Bob Rumes, Jan Vanaverbeke) want to thank Y. Laurent (RBINS) for manuscript preparation. This paper contributes to the FaCE-It and PERSUADE projects financed by the Belgian Science Policy Office, and the Belgian WinMon. BE offshore wind farm environmental monitoring program. Joop Coolen was funded by NWO Domain Applied and Engineering Sciences under grant 14494.

61


Even voorstellen ……. Om YOUNG IRO leden de kans te geven zich te presenteren aan de vaderlandse ‘offshore’ industrie, heeft Ocean Energy Resources hen aangeboden als een soort van ‘even voorstellen’ platform te dienen. Voor de offshore 35-minners is het immers belangrijk om aansluiting te vinden bij de gevestide orde. Aan het woord is ditmaal Paul Schoenmakers.

Kun je jezelf kort introduceren?

“Ik ben Paul, 30 jaar, Rotterdammer maar geboren in Zuid-Amerika. Ik ben iemand die de dingen net even van een andere kant probeer te bekijken omdat creatieve oplossingen ook op onverwachte plekken te vinden zijn.” Wat is je achtergrond en waar heeft het je gebracht?

“Mijn vader heeft altijd bij ontwikkelingshulporganisaties gewerkt en daardoor heb ik in verschillende landen gewoond. Het heeft me een andere kijk gegeven op Nederland en op de wereld.” Hoe ziet je loopbaan er tot nu toe uit en bij welk bedrijf ben je werkzaam? Welke functie?

“Ik heb in Delft de bachelor in Industrieel Ontwerpen en master Integrated Product Design gevolgd; nogal een sprong van de offshore energiesector vandaan. Ik maakte tijdens mijn studie altijd animaties en video’s om het eindresultaat van projecten te presenteren. Na mijn afstuderen bij DOT op het ontwerp van een onderhoudsvriendelijke windturbine-nacelle, werd ik gegrepen door de offshore. Ik ben bij de studio van DOBAcademy gaan werken als animator en maakte ik animaties en video’s voor de offshore energiesector. Van hieruit ben ik bij TWD gaan werken als project designer

62

OCEAN ENERGY RESOURCES - 5/6

en business developer. De atypische aanvliegroute naar deze functie zorgt voor een net wat andere invalshoek in de projecten waar ik aan werk.” Wat zijn je ambities?

“De jonge professionals, die werken bij bedrijven die lid zijn van IRO, kunnen via Young IRO buiten de bubbel van hun eigen bedrijf kijken. Ik hoop de dingen die wij aanbieden bij een zo breed mogelijk publiek te verspreiden. Op persoonlijk vlak hoop ik met technische inventiviteit een positieve impact op de wereld te hebben.” Waarom heb je ervoor gekozen om in de Nederlandse olie, gas en wind industrie te gaan werken?

“In deze sector kun je door uitdagingen op te lossen, een steentje bijdragen aan de energietransitie. De projecten in de offshore wind hebben gave technische uitdagingen en helpen ook nog eens de klimaatcrisis te verhelpen. Wat wil je nog meer?” Wie is je grote voorbeeld?

“Ik denk dat verschillende mensen, ook mensen die dicht bij me staan, mij inspireren op een andere manier. Als iemand goede intenties heeft, of op een bepaalde manier naar de wereld kijkt, of een inspirerende manier van werken heeft,

2019

dan probeer ik daar dingen van te leren. Als ik iemand zou moeten noemen, Beau Miles, een roodharige, Australische, boom van een vent die positief in het leven staat. Hoe hij tegenslagen weet te verwerken en om te zetten in positieve energie is inspirerend.” Waarom ben je lid geworden van Young IRO?

“Young IRO is een goede manier om zakelijke vriendschappen te sluiten en verder kijken dan het bedrijf waar je werkt. Naast het opbouwen van een netwerk, kun je viar Young IRO van elkaar leren. Met het Young IRO bestuur proberen we ook inspirerende verhalen te delen en de nieuwe generatie met elkaar te verbinden. Ik hou me in het Young IRO bestuur bezig met communicatie. Dat werkt natuurlijk twee richtingen op; zowel het verspreiden van informatie onder onze leden als het verzamelen van de stem van onze leden om te presenteren aan IRO.” Hoe belangrijk acht jij de samenwerking tussen verschillende generaties binnen IRO?

“Zowel de zittende als nieuwe generatie kan wederzijds van elkaar leren. Nieuwe kennis en gedrevenheid kan worden begeleid door ervaring. Dat kan alleen als er goed wordt samengewerkt. Overigens hebben die eigenschappen soms niks te doen met leeftijd.


Geeft het bedrijf waarvoor je werkt gelegenheid om Young IRO events bij te wonen?

“TWD heeft me zeker aangespoord om deel te nemen aan het Young IRO bestuur. En ook mijn collega’s worden gestimuleerd om events te bezoeken. De meeste van mijn collega’s vallen ook precies in de leeftijdscategorie van Young IRO. Daarnaast is het kantoor van TWD altijd open voor Young IRO events.” Wat is jouw visie op duurzame energie en hoe kijk je tegen de energie transitie aan die nu plaatsvindt?

“De energietransitie naar duurzame energie is één van de belangrijkste opgaven van deze tijd. De urgentie ervan is niet meer te ontkennen is. Het zal niet gemakkelijk zijn, en zal ook zeker tijd kosten, maar dat is natuurlijk ook inherent aan het woord transitie.”

'In deze sector kun je door uitdagingen op te lossen, een steentje bijdragen aan de energietransitie' Paul Schoenmakers


DEZE PAGINA’S BEVATTEN NIEUWS VAN VAN IRO BRANCHEVERENIGING VOOR DE NEDERLANDSE TOELEVERANCIERS IN DE OFFSHORE ENERGIE INDUSTRIE EN HAAR LEDEN. GENOEMDE ACTIVITEITEN ZULLEN ALLEEN DOORGANG VINDEN BIJ VOLDOENDE BELANGSTELLING VANUIT DE LEDEN. HEEFT U INTERESSE IN DEELNAME OF VRAGEN OVER:

> BEURZEN NEEM CONTACT OP MET IRO, INFO@IRO.NL

> HANDELSMISSIES NEEM CONTACT OP MET TJERK SUURENBROEK, T.SUURENBROEK@IRO.NL

GESCHIEDENIS IRO IRO viert op 26 november 2021 haar 50e jubileum! In aanloop naar het feest geven we hier in de komende edities speciale aandacht aan. Te beginnen met een stukje IRO geschiedenis… IRO is opgericht in 1971 tijdens de beginjaren van de olie & gas ontwikkelingen in Europa. De originele naam stond voor Industriële Raad voor de Oceanologie. De leden van deze raad vertegenwoordigden verschillende sectoren in de oceanologie zoals mijnbouw, kustwatertechnologie, visserij en oceanologische instrumentatie. Als gevolg van de oliecrisis in 1973 moesten extra marginale velden in de Noordzee in gebruik worden genomen. In de jaren zeventig waren de vooruitzichten voor Nederlandse offshore bedrijven gunstig om een toenemend marktaandeel te hebben in de installatiewerkzaamheden voor platforms en benodigdheden. Met name door de toenemende bezorgdheid over de energievoorziening deed IRO zich richten op de olie- en aardgaswinning.

Niet alleen de sector is veranderd in de loop der jaren, IRO veranderde mee. In november 1991 werd IRO een branchevereniging, namelijk de Vereniging Industriële Raad voor de Olie- en Gasindustrie. Vanwege de ontwikkelingen gerelateerd aan de transitie van traditionele energiebronnen naar hernieuwbare energie, heeft de vereniging in november 2016 haar naam en doelstelling veranderd met als doel de activiteiten van haar leden beter te weerspiegelen. Met de nieuwe naam ‘Branchevereniging voor de Nederlandse Toeleveranciers in de Offshore Energie Industrie’, richt IRO zich naast olie en gas ook op offshore wind en andere vormen van hernieuwbare energiebronnen.

> CURSUSSEN NEEM CONTACT OP MET BARBARA VAN BUCHEM, B.VANBUCHEM@IRO.NL

50 JAAR IRO: KENZFIGEE, EEN LID VAN HET EERSTE UUR

> OVERIGE ZAKEN NEEM CONTACT OP MET IRO, VIA INFO@IRO.NL OF TELEFOONNUMMER 079-3411981.

IRO bestaat op 26 november 2021 precies 50 jaar. KenzFigee is één van de eerste echte leden. Wij hebben gevraagd hoe zij 50 jaar offshore zien en waar de sector over 5 jaar staat.

Waar denken jullie aan bij 50 jaar offshore? Wat een enorme ontwikkeling we hebben meegemaakt in die 50 jaar offshore op het gebied van techniek, innovaties, kwaliteitseisen en veiligheid- en milieuregelgeving. Dit heeft vele mooie Nederlandse bedrijven opgeleverd die groot zijn geworden in de olie- en gaswinning en nu doorpakken in het ontwikkelen van duurzame offshore windenergie. Trots dat we als KenzFigee (toen KENZ) hiervan

IRO BOOMPJES 40 (WILLEMSWERF) 13TH FLOOR 3011 XB ROTTERDAM

een onderdeel zijn en hebben bijgedragen met de levering in 1981 van de eerste speciaal voor de offshore ontwikkelde kranen, en nu innovatieve offshore equipment concepten leveren voor de offshore windenergie.

Wat is jullie leukste herinnering aan IRO? Sinds het inmiddels 37-jarig durende lidmaatschap van KenzFigee zijn er vele mooie herinneringen aan de vele bijeenkomsten, beurzen, e.d. waar we informatie en kennis met branchegenoten konden delen. De meest recente en laatste mooiste herinnering is toch wel de Leden-Ontmoeten-Leden bijeenkomst vorig jaar 2 juli bij ons op de werf in Zaandam. Deze bijeenkomst maakte duidelijk dat we een enorme behoefte hebben om elkaar fysiek te ontmoeten

P.O. BOX 390

om informatie en kennis met elkaar te kunnen delen.

3000 AJ ROTTERDAM

Waar denken jullie dat we als sector over 5 jaar staan? Wij denken dat de Nederlandse offshore industrie een grote speler zal blijven in de wereldwijde offshore markt,

T: +31 793411981 E: INFO@IRO.NL I: WWW.IRO.NL

met name door de inzet van slimme technieken en oplossingen voor de vele vraagstukken in de winning van fossiele brandstoffen en windenergie.


50 JAAR IRO: WIST JE DAT…PIET DE JONG Tussen 1975 en 1980 werd IRO met vaste hand geleid door onderzeebootkapitein en oud minister-president Piet de Jong (1915-2016).

Gekscherend werd hij wel ‘Hare Majesteits eigen tuinkabouter’ genoemd, vanwege zijn korte postuur en omdat hij woonde in het tuinhuis van Huis ten Bosch. Hij werd IRO-voorzitter in het jaar dat de eerste olie werd gewonnen op zowel het Noorse, Britse als Nederlandse deel van het continentaal plat. Onder De Jongs leiding onderhield IRO goede contacten met de politiek en zelfs met het Koninklijk Huis.

In 1976 was prins Bernhard aanwezig op de IRO-jaarvergadering. Foto: Wikipedia

50 JAAR IRO: MEDEWERKERS AAN HET WOORD

Zonder leden zou IRO niet bestaan,

maar evenmin zonder een enthousiast

team op het IRO kantoor! We vroegen onze collega’s hoe ze in de offshore branche

terecht zijn gekomen en wat hun leukste herinnering is aan het werken bij IRO. Met dit keer aan het woord Tjerk Suurenbroek,

Business Development Manager.

Hoe ben je in de offshore branche terecht gekomen? Vanuit mijn marine achtergrond heb ik altijd een voorliefde gehad voor water, schepen en zee. Na een zeer leerzame periode in de nieuwe economie wilde ik graag terug naar de “oude” en dat startte bij Seafox in 2008. Direct bij aanvang wist ik dat deze sector mij boeide en intrigeerde; alles groot, veel innovatie en dat rondom een boeiend thema, namelijk energie.

Wat is je leukste herinnering aan IRO en waarom? Missieleider zijn voor de offshore wind delegatie tijdens een grote economische handelsmissie naar Vietnam in 2019. Een enorm leuke en leerzame ervaring om de Nederlandse Offshore wind sector te vertegenwoordigen in een land waar Offshore wind in de kinderschoenen staat. Het omgaan met een zeer divers gezelschap (Government, Knowledge Institutions en Business) in een internationale omgeving heeft zo z’n uitdagingen.

Maak de volgende zin af: ik zou weleens mee willen kijken met….omdat… Met Edward Heerema. Ben erg benieuwd naar het denken en doen van dit icoon uit de offshore industrie. Hoe ziet z’n dag er uit? Hoe gaat hij om met dagelijkse leiding? Hoe krijgt innovatie in zijn bedrijf gestalte?

OCEAN ENERGY RESOURCES

1 | 2021

65


DEZE PAGINA’S BEVATTEN NIEUWS VAN VAN IRO BRANCHEVERENIGING VOOR DE NEDERLANDSE TOELEVERANCIERS IN DE OFFSHORE ENERGIE INDUSTRIE EN HAAR LEDEN.

TUNE IN BIJ ONZE 8-DELIGE PODCAST SERIE ‘GET ON BOARD’! In deze serie gaan IRO bestuursleden in gesprek met Young IRO bestuursleden

o.l.v. moderator en tevens IRO bestuurslid

13TH FLOOR 3011 XB ROTTERDAM

Swildens (EY) en Ivo Muller (Van Oord) met elkaar in gesprek. Stellingen als 'Over 50 jaar

krijgen we een inkijkje in de visie van de

en 'Data transport is minder veilig dan

kritische vragen en prikkelende stellingen

doen we business zonder menselijk contact'

bestuursleden op de offshore energie

fysiek transport' komen aan bod.

In de eerste podcast aflevering ‘Transitie’ gaan

BOOMPJES 40 (WILLEMSWERF)

de rol van data hierin’ gaan Bruno Jelgerhuis

Charlotte Roodenburg. Aan de hand van

industrie van nu en in de toekomst.

IRO

In de derde podcast aflevering 'Toekomst en

In de vierde podcast aflevering ‘Bouwen, opereren en dan?’ gaan Koos-Jan van

Pieter van Oord (Van Oord) en Sophie van Zanten

Brouwershaven (Heerema Marine Contractors)

(Fugro) met elkaar in gesprek. Stellingen als

en Thijs Kamphuis (DOT BV & DOB-Academy)

'De energietransitie bedreigt het voortbestaan

hierover met elkaar in gesprek. Stellingen als

van IRO' en 'De BV Nederland heeft de boot

‘De Nederlanders zijn het beste in windparken

gemist op het gebied van wind' komen aan bod.

bouwen’ en ‘Het weghalen van windturbines is een eitje’ komen aan bod.

In de tweede podcast aflevering ‘De rol van P.O. BOX 390 3000 AJ ROTTERDAM

waterstof in de maritieme industrie’ gaan René

Peters (TNO) en Paul Schoenmakers (TWD) met elkaar in gesprek. Stellingen als 'Nederland is in 2050 niet van het gas af' en 'Waterstof wordt het

T: +31 793411981 E: INFO@IRO.NL I: WWW.IRO.NL

exportproduct van Nederland' komen aan bod.

Luister de podcast ook via Spotify!

Heb je vragen of opmerkingen over de

podcast, laat het ons weten via info@iro.nl


NIEUW LID IN DE SCHIJNWERPERS: INMARSAT IRO heeft recentelijk Inmarsat als nieuw lid mogen

daarmee zijn we actiever geworden met het ontwikkelen van een

Schalkwijk, Deputy President & COO Inmarsat Maritime,

hebben. Daarom zijn we meer gaan investeren in het uitbreiden

verwelkomen. In een persoonlijk interview met Gerbrand

specifiek portfolio voor deze klanten omdat zij andere wensen

maken wij kennis met Inmarsat.

van ons netwerk en daar is IRO een verbindende factor in, maar

Waar blinken jullie in uit?

bijvoorbeeld in het geval van digitalisering. Dat zijn activiteiten

“Wij zijn leverancier in satellietcommunicatie met een focus op

ook de mogelijkheden tot partnering met andere leden. Zoals die we met het lidmaatschap willen bevorderen.”

mobiliteit, gebruikers die wereldwijd opereren en bewegen. Waarvan onze grootste markt de maritieme markt is, maar wij zijn ook actief in de corporate business, organisaties zoals Artsen

Wat hebben jullie de andere leden te bieden?

“We bekijken per klant wat zij specifiek nodig hebben. Dan moet

zonder Grenzen, de VN en de luchtvaart. Kortom iedereen die op

je denken aan de installatie van satellietcommunicatie equipment

plekken opereert waar normale telecommunicatie niet werkt,

aan boord, maar ook de integratie van hun IT- en onboard systemen.

daar leveren wij satellietcommunicatie. Dat doen we al 40 jaar

Het gaat voornamelijk over het leveren van bandbreedtes en de

en wat ons zo groot maakt in die markt, is de focus die wij hebben

flexibiliteit hiervan. Daarnaast bieden we ook een dienst die

op dat type gebruiker en de betrouwbare diensten die wij leveren.

steeds belangrijker wordt en dat is waarbij de crew gebruik kan

Dat is in de maritieme sector goed zichtbaar, wij zijn bijvoorbeeld

maken van satellietcommunicatie om met het thuisfront in

de leverancier van safety diensten aan boord van schepen.

contact te blijven. Dat kunnen wij dan ook apart leveren zodat

De betrouwbaarheid die wij bieden maakt ons onderscheidend.

zij niet op het bedrijfsnetwerk actief zijn. Specifiek voor de

Wij investeren continue in nieuwe technologieën en in nieuwe

Noordzee is dat we het mobiele netwerk, ook wel LTE genoemd,

satellieten. Door de toename van het gebruik aan data en de

combineren met satellietcommunicatie. Dat wil zeggen dat wanneer

noodzaak van meer communicatie is het van belang om hierin

schepen in de buurt komen van een boorplatform waar onze LTE

mee te gaan. Recentelijk hebben wij een nieuwe generatie

partner antennes heeft, het systeem automatisch overschakelt

satellieten gelanceerd, onze Global Xpress (GX) satellieten,

naar dit netwerk zodat dit uiteindelijk goedkoper is.”

daarvan hebben wij er nu vijf operationeel en de komende vier a vijf jaar gaan we er nog zeven lanceren om die capaciteit te

Hoe blijven jullie zichtbaar in deze coronatijd?

vergroten. Sinds de lancering van GX hebben we al 10.000

“We hebben een switch gemaakt richting webinars en het spreken op

schepen uitgerust met Fleet Xpress, de maritieme internet

seminars. Zelf hebben we meer webinars georganiseerd met onder-

dienst over GX. Offshore Support giganten als Bourbon,

werpen zoals digitalisatie, safety en cybersecurity. Daarnaast nog meer

Tidewater en Maersk Supply Service behoren tot de klanten

social media gebruik, om onze werkzaamheden aan een breed publiek

die hun vloten hebben uitgerust met Fleet Xpress.”

te kunnen laten zien en meer bekendheid op te bouwen. Wij werken ook heel nauw samen met crew welzijnsinstanties, dat doen we wereld-

Wat trok jullie over de streep om lid te worden?

wijd. Wat we bijvoorbeeld in het begin van de coronacrisis hebben

“Een aantal jaar geleden hebben wij besloten om een toegewijd

gedaan, is het wereldwijd aanpassen van de tarieven voor crew

team op te richten voor de offshore markt vanuit de VS en

communicatie, zodat zij met flinke korting met het thuisfront contact

Noorwegen. Dit is inmiddels uitgebreid naar Nederland en

konden hebben en tijdens Kerst waren twee dagen volledig gratis.”

OCEAN ENERGY RESOURCES

1 | 2021

67


DEZE PAGINA’S BEVATTEN NIEUWS VAN VAN IRO BRANCHEVERENIGING VOOR DE NEDERLANDSE TOELEVERANCIERS IN DE OFFSHORE ENERGIE INDUSTRIE EN HAAR LEDEN.

WERK MEE AAN DE MARITIEME TOEKOMST: ‘MASTERPLAN VOOR EEN EMISSIELOZE MARITIEME SECTOR’ Vrijdag 5 maart keken ruim 300 mensen naar

‘Zero emission shipping’ en ‘Smart & Digital shipping’

werd gepresenteerd vanuit de studio van MARIN.

programmalijnen waar samenwerkingsverbanden en

verschillende deelsectoren van de maritieme

hoofdlijn en de taskforce ‘Zero emision shipping’ zijn

in het webinar besproken R&D-regeling.

Land, benadrukte dat: “om het masterplan

het webinar over het maritieme masterplan, dat

Vanuit de twee hoofdlijnen zijn er in totaal acht

De reacties waren ronduit positief er is vanuit alle

concrete projectvoorstellen voor nodig zijn. Vanuit de

sector veel interesse om deel te nemen aan de

er vijf aparte programmalijnen: 1.

Systeem transitie naar zero emissions

Rob Verkerk, voorzitter van Nederland Maritiem

2.

Methanol energie en voorstuwingssystemen

3.

Waterstof energie en voorstuwingssystemen

succesvol te kunnen uitvoeren het essentieel is

4.

Aanvullende en toekomstige energie en

We gaan nu de volgende fase in waarbij de

5.

mei concrete projectvoorstellen kunnen indienen.

Vanuit de hoofdlijn en de taskforce ‘Smart & Digital

‘Masterplan voor een emissieloze maritieme sector’

6.

Cybersecure infrastructuur voor digitale operaties

Het programma van het webinar ging van start met

7.

Smart monitoring & ship maintenance

een introductie over het doel van het ‘Masterplan voor

8.

Autonoom varen

een emissieloze maritieme sector’. Met het maritieme

Deze programmalijnen staan niet op zichzelf, samenwer-

masterplan heeft de Nederlandse maritieme sector in

kingsverbanden en consortia die projecten willen uitvoeren

het najaar van 2020 een duidelijke ambitie neergelegd.

op basis van meerdere programmalijnen zijn zeker van

In 2030 varen er 30 nieuwe emissieloze en digitale

harte welkom. Daarnaast zijn deelnemers vanuit alle

schepen en zijn er 5 retrofits uitgevoerd. Om dit te

verschillende maritieme deelsectoren welkom, vanuit de

realiseren werkt de maritieme sector samen onder

scheepsbouw, reders, maar ook de offshore, visserij,

de vlag van Nederland Maritiem Land.

waterbouw, havens én alle andere deelsectoren.

Digitale- & energietransitie

Zo deelden de maritieme organisaties, Wagenborg en

De basis van het plan is een breed R&D-programma,

Wärtsilä, tijdens het webinar hoe de R&D-regeling hun

het launching customership van de Koninklijke Marine

innovatieve projecten voor verduurzaming kan onder-

en de Rijksrederij en de implementatie van nieuwe

steunen en dat zij graag de samenwerking met andere

technologie in bestaande en nog te bouwen schepen.

partners o.a. het MKB aangaan om consortia te vormen.

om samen te werken en consortia te vormen”.

gevormde samenwerkingsverbanden vanaf half

voorstuwingssystemen (zoals wind, zon, etc.) Modulair scheepsontwerp & productie

shipping’ zijn er drie aparte programmalijnen:

U kunt dan denken aan offshore en werkschepen, passagiersschepen, droge ladingschepen, tankers en uiteraard schepen voor de overheidsvloot.

Meer informatie

In 2019 sloot de minister van Infrastructuur en

Dit masterplan jaagt de energietransitie en de

Waterstaat een nationale Green Deal Zeevaart,

digitale transitie in de gehele maritieme keten aan.

Binnenvaart en Havens. In de Green Deal zijn ambities en doelen opgenomen om aan de klimaatdoelstellin-

Start uitvoering van het Masterplan met de R&D-regeling

De maritieme sector is samen met de andere mobiliteits-

IRO BOOMPJES 40 (WILLEMSWERF) 13TH FLOOR 3011 XB ROTTERDAM

P.O. BOX 390 3000 AJ ROTTERDAM

T: +31 793411981 E: INFO@IRO.NL I: WWW.IRO.NL 68

gen te voldoen. Het maritiem masterplan is een uitrol hiervan met een concrete roadmap naar 2030.

sectoren automotive en luchtvaart in gesprek met het Ministerie van Economische Zaken Klimaat over een

De sheets van het webinar, het masterplan zelf en de

R&D-regeling. Tijdens het webinar werd toegelicht

actuele informatie over de R&D regeling is te vinden op:

hoe verwacht wordt dat de regeling eruit komt te zien.

https://www.maritiemland.nl/maritieme-sector/projec-

Zo wordt deelname van het MKB en onderlinge

ten/masterplan-voor-een-emissieloze-maritieme-sector/

samenwerking toegejuicht en is het van belang dat de projecten aansluiten bij het R&D-programma. Zodra de

Vragen over programmalijnen, initiatieven en moge-

definitieve informatie over deze regeling bekend is

lijkheden om deel te nemen aan projecten en consortia

wordt deze gedeeld via de website en social media

kunt u stellen via: info@maritiemmasterplan.nl

kanalen van Nederland Maritiem Land. De project-

Uw vragen worden doorgezet naar de task force

voorstellen kunnen door consortia en samenwerkings-

leiders en/of coördinatoren. Een reactie volgt

verbanden vanaf half mei worden ingediend.

per mail of telefoon.


DE PRESIDENT VAN ALLSEAS, EDWARD HEEREMA, ONTVANGT DE OTC HERITAGE-PRIJS IRO feliciteert IRO bestuurslid Edward Heerema voor het winnen van de OTC Heritage Award. Wat een geweldige prestatie!

De president van Allseas, Edward Heerema, die het bedrijf in 1985 oprichtte, zal de OTC Heritage-prijs ontvangen voor zijn ‘langdurige, voortreffelijke service in het beheer en leiderschap van offshore-installaties voor de diepwaterindustrie’. Introductie van dynamisch gepositioneerde pijpenleggers

Edwards bijdragen aan de offshore-scheepsbouw waren van het grootste belang. Hij ontwikkelde het concept van dynamisch gepositioneerde onderzeese pijpenleggers met de introductie van Allseas’ eerste schip Lorelay. In 2007 vestigde Solitaire het wereldrecord voor het installeren van geavanceerde ultradiepwaterpijpleidingen in 2774m waterdiepte. En in 2016 realiseerde Edward een levenslange visie met de lancering van 's werelds grootste constructieschip Pioneering Spirit, dat sindsdien een revolutie teweeg heeft gebracht in de offshore heavy lift-industrie door middel van single-lift-technologie.

TERUGBLIK WEBINAR: THE POTENTIAL OF MARINE ENERGY, DONDERDAG 11 MAART De jaarlijkse CEDA-IRO bijeenkomst stond dit jaar in het teken van ‘The potential of Marine Energy’. IRO partner Dutch Marine Energy Centre (DMEC) nam de deelnemers mee in de wereld van marine energy en de mogelijkheden voor samenwerking met de offshore energy sector. Terugblik presentaties:

• Intro DMEC & Marine Energy: Benjamin Lehner, Business & Innovation Advisor DMEC: presentatie • Maarten Berkhout, Director Project Development SeaQurrent: presentatie • Ramsey Nehme, Senior Project Manager SBM Offshore: presentatie

• Richard Parkinson, CEO Inyanga Marine Projects & HydroWing: presentatie Wil je het hele webinar terugzien? Klink dan op deze opnamelink

OCEAN ENERGY RESOURCES

1 | 2021

69


DEZE PAGINA’S BEVATTEN NIEUWS VAN VAN IRO BRANCHEVERENIGING VOOR DE NEDERLANDSE TOELEVERANCIERS IN DE OFFSHORE ENERGIE INDUSTRIE EN HAAR LEDEN.

1-DAAGSE CURSUS ‘OFFSHORE ENERGIE: VAN FOSSIEL TOT RENEWABLE’, INCLUSIEF BEZOEK AAN UNIEKE OFFSHORE EXPERIENCE Inhoud cursus

• Cursus voor niet-technische medewerkers of nieuwkomers in de olie- en gasindustrie • Goed en globaal inzicht in de hele upstream keten van het opsporen tot het verwerken van olie en gas • Overzicht van het wereldwijde energievraagstuk, waaronder hernieuwbare energie • De processen en methodes die gebruikt worden voor exploratie, productie, transport en opslag • Actieve deelname aan de Offshore Experience in het Maritiem Museum Rotterdam Locatie: Maritiem Museum Rotterdam Kosten: € 495,- excl. BTW Het cursusgeld is inclusief lesmateriaal en lunch. Voertaal: Nederlands (Engels indien Engelstaligen in de cursus) Tijd: 08.30 - 17.00 uur Beschikbare data 2021: • 14 april • 9 juni • 22 september • 8 december Check de online IRO kalender voor meer informatie en aanmelden.

(foto: Marco de Swart)

BEURSGENOTEERD WINDEUROPE ELECTRIC CITY 2021, 27 - 29 APRIL, KOPENHAGEN, DENEMARKEN Info via dutchvillage@nwea.nl

SPE OFFSHORE EUROPE 2021, 7 - 10 SEPTEMBER, ABERDEEN, SCHOTLAND Boek via onze website je plekje in ons Holland Paviljoen.

ADIPEC 2021, 8 - 11 NOVEMBER 2021, ABU DHABI Boek nu je stand in ons Holland Paviljoen via onze website.

OIL & GAS ASIA (OGA) 2021, 7 - 9 DECEMBER 2021, KUALA LUMPUR, MALEISIË

IRO BOOMPJES 40 (WILLEMSWERF) 13TH FLOOR 3011 XB ROTTERDAM

Verplaatst van juni naar december. Neem deel in ons Holland Paviljoen. Registratie voor standruimte kan via onze website.

OTC ASIA 2022, 22-25 MAART 2022, KUALA LUMPUR, MALEISIË Voor meer informatie over deelname, neemt contact op met Marjan Lacet van NMT, Lacet@maritimetechnology.nl cet@maritimetechnology.nl

P.O. BOX 390

Naast de beurzen waar IRO een Nederlands paviljoen organiseert, hebben wij ook contacten met externe

3000 AJ ROTTERDAM

partijen omtrent de organisatie van diverse wereldwijde evenementen. Neemt u gerust contact op met IRO als u vragen heeft over internationale evenementen die niet in de beurskalender vermeld staan.

T: +31 793411981 E: INFO@IRO.NL I: WWW.IRO.NL

Voor meer informatie, raadpleeg www.iro.nl/calendar


IRO KALENDER BEURZEN, MISSIES, CURSUSSEN EN BIJEENKOMSTEN 2021 / 2022

NIEUWE IRO LEDEN STELLEN ZICH VOOR

LET OP ! IN VERBAND MET HET CORONA VIRUS KUNNEN EVENEMENTEN UITGESTELD ZIJN OF AFGEZEGD WORDEN.

26 MAART ONLINE SPEEDDATEN IRO LEDEN MET LEDEN OFFSHORE COMMUNITY ROTTERDAM ONLINE

SEAL FOR LIFE

SEALFORLIFE.COM

\

SEAL FOR LIFE INDUSTRIES is een toonaangevende wereldwijde leverancier van beschermende coating- en afdichtingsoplossingen voor infrastructuurmarkten. Samen beschermen we de toekomst.

8 APRIL IRO WEBINAR: GEOTHERMAL OPPORTUNITIES ONLINE 14 APRIL INTRODUCTIECURSUS ‘OFFSHORE ENERGIE: VAN FOSSIEL TOT RENEWABLE’ ROTTERDAM 22 APRIL IRO WEBINAR: SCHOON TRANSPORT VOOR OFFSHORE WIND ONLINE 27 - 29 APRIL

WINDEUROPE COPENHAGEN 2021 KOPENHAGEN, DENEMARKEN

18 MEI BESTUURSVERGADERING N.T.B. 27 MEI IRO WEBINAR: CARBON CAPTURE AND STORAGE - CARBON CAPTURE, UTILIZATION AND STORAGE (CCS-CCUS) ONLINE 1 - 3 JUNI SURINAME INTERNATIONAL PETROLEUM & GAS SUMMIT AND EXHIBITION 2021 ONLINE 2 JUNI CURSUS OFFSHORE WIND BASICS DOB ACADEMY, DELFT 8 - 10 JUNI OIL & GAS ASIA KUALA LUMPUR, MALEISIË 8 - 11 JUNI SEANERGY NANTES, ST. NAZAIRE, FRANKRIJK 9 JUNI INTRODUCTIECURSUS ‘OFFSHORE ENERGIE: VAN FOSSIEL TOT RENEWABLE’ ROTTERDAM

VOS PRODECT INNOVATIONS VOS-PRODECT.COM

VOS PRODECT INNOVATIONS (VPI) is marktleider in het ontwerpen en leveren van hang-off en kabelbescherming systemen voor de offshore industrie.

17 JUNI INTERNATIONAL RELATIONS & COMMUNICATIONS COMMITTEE N.T.B. 23 - 26 JUNI 1 JULI 7 - 10 SEPTEMBER 8 - 9 SEPTEMBER 14 SEPTEMBER 16 - 18 SEPTEMBER

CONGRESO MEXICANO DEL PETRÓLEO MONTERREY, MEXICO IRO WEBINAR: REMOTE/ONBEMANDE OPERATIES ONLINE OFFSHORE EUROPE ABERDEEN, SCOTLAND RECHARGE EARTH CONGRES ROTTERDAM BESTUURSVERGADERING N.T.B. OFFSHORE DECOMMISSIONING CONGRESS (ODC) 2021 ROTTERDAM

21 SEPTEMBER CURSUS OFFSHORE WIND BASICS DOB ACADEMY, DELFT 22 SEPTEMBER INTRODUCTIECURSUS ‘OFFSHORE ENERGIE: VAN FOSSIEL TOT RENEWABLE’ ROTTERDAM 1 OKTOBER T/M 31 MAART

VTN VEILIGHEIDSTECHNIEK

VTN.NL

Al 40 jaar levert en onderhoudt VTN VEILIGHEIDSTECHNIEK NEDERLAND een uitgebreid pakket hoogwaardige persoonlijke beschermingsmiddelen, die de veiligheid vergroten van mensen in gevaarlijke werksituaties en omgevingen.

DUBAI EXPO DUBAI, V.A.E.

7 OKTOBER INTERNATIONAL RELATIONS & COMMUNICATIONS COMMITTEE N.T.B. 12 - 14 OKTOBER SHALLOW & DEEPWATER EXPO CIUDAD DEL CARMEN, MEXICO 26 - 27 OKTOBER OFFSHORE ENERGY AMSTERDAM 2 - 5 NOVEMBER EUROPORT ROTTERDAM 15 - 18 NOVEMBER ADIPEC ABU DHABI, V.A.E. 22 - 24 NOVEMBER WINDEUROPE COPENHAGEN, DENEMARKEN 26 NOVEMBER ALGEMENE LEDENVERGADERING + JUBILEUMVIERING N.T.B. 1 DECEMBER CURSUS OFFSHORE WIND BASICS DOB ACADEMY, DELFT 7 - 9 DECEMBER OIL & GAS ASIA KUALA LUMPUR, MALEISIË 8 DECEMBER INTRODUCTIECURSUS ‘OFFSHORE ENERGIE: VAN FOSSIEL TOT RENEWABLE’ ROTTERDAM 9 DECEMBER

BESTUURSVERGADERING N.T.B.

VYDRAULICS GROUP VYDRAULICS.COM

VYDRAULICS is dé totaalaanbieder van turn-key oplossingen voor systemen, componenten en service op het gebied van bewegings- en regeltechniek en processystemen.

2022 22 - 25 MAART

OTC ASIA KUALA LUMPUR, MALEISIË

VOOR DE MEEST ACTUELE INFORMATIE, CHECK DE ONLINE IRO CALENDAR OCEAN ENERGY RESOURCES

1 | 2021

71


YOUR PLATFORM FOR PROGRESS

OIL AND GAS: WORKING TOGETHER FOR A NET ZERO FUTURE WHY EXHIBIT AT OE21? NEW & EXPANDED ZONES FOR 2021

• Gain Industry Exposure Showcase your new technologies and services to the entire offshore energy value chain to meet evolving energy needs • Meet the key E&P decision makers Face to Face and make connections that matter • Keep your business competitive and progressive Share ideas, expand your influence and gain the knowledge and skills through our live and online content

Email: OETeam@reedexpo.co.uk

@SPE_OE

Call: +44(0)208 910 7098

facebook.com/OffshoreEurope

Visit: offshore-europe.co.uk

linkedin.com/company/SPEOffshoreEurope

Organised by


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.