Carbon Market & CDM Newsletter

Page 1

‫ﺗﻬﻴﻪ ﻭ ﺗﻨﻈﻴﻢ‪:‬‬ ‫ﺷﺮﻛﺖ ﺍﻧﺮژﻳﻬﺎﻱ ﺗﺠﺪﻳﺪﭘﺬﻳﺮ ﻣﻬﺮ‬ ‫ﻫﻤﻜﺎﺭﺍﻥ ﺍﻳﻦ ﺷﻤﺎﺭﻩ‪:‬‬ ‫ﻣﺤﻤﺪﺻﺎﺩﻕ ﺍﺣﺪﻱ‬ ‫ﻋﺎﺩﻝ ﭘﺮﺗﻮﻱ‬ ‫ﻣﻬﺘﺎﺏ ﺻﺎﺩﻗﻲ ﺣﺮﻳﺮﻱ‬ ‫ﻣﻴﻨﺎ ﻛﻼﮔﺮ‬ ‫ﻧﺴﺮﻳﻦ ﺍﻟﻤﺎﺳﻲ‬ ‫ﺍﻟﻬﺎﻡ ﺷﻴﺮﺩﻝ‬

‫ﺁﺩﺭﺱ‪ :‬ﺗﻬﺮﺍﻥ‪ -‬ﺳﻌﺎﺩﺕ ﺁﺑﺎﺩ‪ -‬ﻣﻴﺪﺍﻥ ﻓﺮﻫﻨﮓ‪ -‬ﺍﺑﺘﺪﺍﻱ ﺑﻠﻮﺍﺭ ‪ 24‬ﻣﺘﺮﻱ‪ -‬ﭘﻼﻙ ‪ - 4‬ﻭﺍﺣﺪ ‪11‬‬ ‫ﺗﻠﻔﻦ‪ 88584125 :‬ﻭ ‪22136142‬‬ ‫ﺗﻠﻔﻜﺲ‪22136271 – 88584126 :‬‬ ‫ﭘﺴﺖ ﺍﻟﻜﺘﺮﻭﻧﻴﻚ‪info@mehrenergy.com :‬‬ ‫‪0TU‬‬

‫ﻭﺏ ﺳﺎﻳﺖ‪www.mehrenergy.com :‬‬

‫‪U0T‬‬

‫‪0TU‬‬

‫‪U0T‬‬


‫ﺁﻏﺎﺯ ﺳﺨﻦ‪:‬‬ ‫>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>‬

‫ﻋﺎﺩﻝ ﭘﺮﺗﻮﻱ‬ ‫" ﮔﺎﻣﻲ ﺑﺴﻮﻱ ﻓﺮﺩﺍ"‬

‫ﻧﮕﺎﻫﻲ ﺑﻪ ﺳﺎﺑﻘﻪ ﻭ ﺗﺤﻮﻻﺕ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ ﺩﺭ ﻛﺸﻮﺭﻫﺎﻱ ﺗﻮﺳﻌﻪ ﻳﺎﻓﺘﻪ ﻭ ﺩﺭ ﺣﺎﻝ ﺗﻮﺳﻌﻪ ﭘﻴﺸﺮﻭ ﻭ ﻧﻴﺰ ﺟﺪﻳﺖ ﺭﻭﺯﺍﻓﺰﻭﻥ ﻣﺒﺎﺣﺚ ﺗﻐﻴﻴﺮﺍﺕ ﺁﺏ ﻭ‬ ‫ﻫﻮﺍﻳﻲ ﺩﺭ ﻣﺠﺎﻣﻊ ﺑﻴﻦ ﺍﻟﻤﻠﻠﻲ‪ ،‬ﺑﻴﺶ ﺍﺯ ﭘﻴﺶ ﻟﺰﻭﻡ ﺗﻮﺟﻪ ﺟﺪﻱﺗﺮ ﺑﻪ ﺍﻳﻦ ﻣﺒﺎﺣﺚ ﺩﺭ ﺭﺍﺳﺘﺎﻱ ﻛﻨﺘﺮﻝ ﺍﻓﺰﺍﻳﺶ ﻣﻬﺎﺭ ﮔﺴﻴﺨﺘﻪ ﺍﻧﺘﺸﺎﺭ ﮔﺎﺯﻫﺎﻱ‬ ‫ﮔﻠﺨﺎﻧﻪﺍﻱ ﺩﺭ ﺍﻳﺮﺍﻥ ﺭﺍ ﻧﻤﺎﻳﺎﻥ ﻣﻲﺳﺎﺯﺩ‪ .‬ﺍﮔﺮﭼﻪ ﺑﺮﻧﺎﻣﻪ ﭘﻨﺠﻢ ﺗﻮﺳﻌﻪ ﻛﺸﻮﺭ ﺳﺎﺯﻣﺎﻥ ﺣﻔﺎﻇﺖ ﻣﺤﻴﻂ ﺯﻳﺴﺖ ﺭﺍ ﻣﺘﻮﻟﻲ ﻛﻨﺘﺮﻝ ﺍﻧﺘﺸﺎﺭ ﮔﺎﺯﻫﺎﻱ‬ ‫ﮔﻠﺨﺎﻧﻪﺍﻱ ﻧﻤﻮﺩﻩ ﻭ ﻣﻄﺎﺑﻖ ﺁﻳﻴﻦﻧﺎﻣﻪ ﺍﺟﺮﺍﻳﻲ ﻛﻨﻮﺍﻧﺴﻴﻮﻥ ﺗﻐﻴﻴﺮ ﺁﺏ ﻭ ﻫﻮﺍ ﻭ ﭘﺮﻭﺗﻜﻞ ﻛﻴﻮﺗﻮ ﺍﻳﻦ ﺳﺎﺯﻣﺎﻥ ﺍﺯ ﺩﺳﺘﮕﺎﻫﻬﺎﻱ ﺩﻭﻟﺘﻲ ﻣﻲﺧﻮﺍﻫﺪ ﺗﺎ‬ ‫ﻣﻴﺰﺍﻥ ﻣﻮﺟﻮﺩﻱ ﺍﻧﺘﺸﺎﺭ ﮔﺎﺯﻫﺎﻱ ﮔﻠﺨﺎﻧﻪ ﺍﻱ ﺭﺍ ﺳﺎﻟﻴﺎﻧﻪ ﺑﻪ ﻫﻤﺮﺍﻩ ﺭﻭﻧﺪ ﺁﺗﻲ ﺍﻧﺘﺸﺎﺭ ﻭ ﺑﺮﻧﺎﻣﻪ ﻫﺎ ﻭ ﺍﻗﺪﺍﻣﺎﺕ ﺻﻮﺭﺕ ﮔﺮﻓﺘﻪ ﺩﺭ ﻛﺎﻫﺶ ﻣﻴﺰﺍﻥ‬ ‫ﺍﻧﺘﺸﺎﺭ ﺑﻪ ﻫﻤﺮﺍﻩ ﺍﺛﺮﺑﺨﺸﻲ ﺁﻧﻬﺎ ﺭﺍ ﮔﺰﺍﺭﺵ ﺩﻫﻨﺪ ﻟﻴﻜﻦ ﺗﺠﺮﺑﻪ ﺩﻳﮕﺮ ﻛﺸﻮﺭﻫﺎ ﻧﺸﺎﻥ ﻣﻲﺩﻫﺪ ﻣﺎﺩﺍﻣﻴﻜﻪ ﺳﻴﺴﺘﻢ ﻛﻨﺘﺮﻝ )ﻗﻮﺍﻧﻴﻦ( ﺩﺭ ﻳﻚ ﻛﺸﻮﺭ‬ ‫)ﺍﻳﺎﻟﺖ ﻳﺎ ﺑﺨﺶ ﺻﻨﻌﺘﻲ( ﺩﺍﻳﺮ ﻧﺸﺪﻩ ﺍﺳﺖ‪ ،‬ﻣﺪﻳﺮﻳﺖ ﻛﻨﺘﺮﻝ ﺍﻧﺘﺸﺎﺭ ﮔﺎﺯﻫﺎﻱ ﮔﻠﺨﺎﻧﻪﺍﻱ ﺍﺯ ﺍﻗﺒﺎﻝ ﻣﻨﺎﺳﺒﻲ ﺑﺮﺧﻮﺭﺩﺍﺭ ﻧﺒﻮﺩﻩ ﻭ ﺩﺭ ﺳﻄﺢ ﺍﻗﺪﺍﻣﺎﺕ‬ ‫ﺩﺍﻭﻃﻠﺒﺎﻧﻪ ﺑﺮﺧﻲ ﺳﺎﺯﻣﺎﻧﻬﺎ ﻭ ﻣﻮﺳﺴﺎﺕ ﺍﻗﺘﺼﺎﺩﻱ ﺩﻭﺳﺘﺪﺍﺭ ﻣﺤﻴﻂ ﺯﻳﺴﺖ ﺑﺎﻗﻴﻤﺎﻧﺪﻩ ﺍﺳﺖ‪.‬‬ ‫ﺳﻴﺴﺘﻢ ﻛﻨﺘﺮﻝ ﭘﻴﺎﺩﻩ ﺷﺪﻩ ﺩﺭ ﻛﺸﻮﺭﻫﺎﻱ ﻣﺨﺘﻠﻒ ﻣﺘﻔﺎﻭﺕ ﺑﻮﺩﻩ ﻭ ﺩﺍﻳﺮﻩ ﺷﻤﻮﻝ ﺁﻧﻬﺎ ﻧﻴﺰ ﻣﺘﻔﺎﻭﺕ ﺍﺳﺖ ﻣﺜﻼ ﺩﺭ ﺍﻧﮕﻠﻴﺲ ﻫﻤﻪﻱ ﺑﻨﮕﺎﻫﻬﺎﻳﻲ ﻛﻪ‬ ‫ﺍﻧﺘﺸﺎﺭ ﺳﺎﻟﻴﺎﻧﻪ ﺑﻴﺶ ﺍﺯ ‪ 25‬ﻫﺰﺍﺭ ﺗﻦ ﻣﻌﺎﺩﻝ ﺩﻱﺍﻛﺴﻴﺪ ﻛﺮﺑﻦ ﺭﺍ ﺩﺍﺭﻧﺪ ﺍﺟﺒﺎﺭ ًﺍ ﺑﺎﻳﺪ ﺳﺎﻻﻧﻪ ﮔﺰﺍﺭﺵ ﺍﻧﺘﺸﺎﺭ ﻛﺮﺑﻦ ﺍﺭﺍﺋﻪ ﻛﻨﻨﺪ‪ ،‬ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ ﻏﺮﺏ‬ ‫ﺁﻣﺮﻳﻜﺎ ﺍﺑﺘﺪﺍ ﺷﺎﻣﻞ ﻓﻘﻂ ﻧﻴﺮﻭﮔﺎﻫﻬﺎﻱ ﺗﻮﻟﻴﺪ ﺑﺮﻕ ﺑﻮﺩ‪ .‬ﺩﺭ ﻣﻜﺰﻳﻚ ﻣﺎﻟﻴﺎﺕ ﻛﺮﺑﻦ ﺑﺮﺭﻭﻱ ﺳﻮﺧﺖ ﺑﺴﺘﻪ ﺷﺪﻩ ﺍﺳﺖ ﻭ ﻫﺮ ﺑﻨﮕﺎﻫﻲ ﻛﻪ ﺑﻴﺸﺘﺮ‬ ‫ﺳﻮﺧﺖ ﻣﺼﺮﻑ ﻛﻨﺪ ﻣﺎﻟﻴﺎﺕ ﻛﺮﺑﻦ ﺑﻴﺸﺘﺮﻱ ﭘﺮﺩﺍﺧﺖ ﻣﻲﻛﻨﺪ ﺩﺭ ﺣﺎﻟﻴﻜﻪ ﺩﺭ ﺳﻴﺴﺘﻢ ‪ Cap & Trade‬ﺳﻘﻒ ﺍﻧﺘﺸﺎﺭ ﺑﻪ ﺍﺯﺍﻱ ﻭﺍﺣﺪ ﺗﻮﻟﻴﺪ‬ ‫ﻣﺤﺼﻮﻝ ﺑﺴﺘﻪ ﻣﻲﺷﻮﺩ ﻭ ﻟﺬﺍ ﻟﺰﻭﻣ ًﺎ ﺑﻨﮕﺎﻫﻬﺎﻱ ﺑﺰﺭگ ﻣﺎﻟﻴﺎﺕ ﻛﺮﺑﻦ ﺑﻴﺸﺘﺮﻱ ﭘﺮﺩﺍﺧﺖ ﻧﻤﻲﻛﻨﻨﺪ‪ .‬ﺳﻴﺴﺘﻢ ﻛﻨﺘﺮﻝ ﻛﺮﺑﻦ ﺍﺳﺘﺮﺍﻟﻴﺎ ﺑﺎ ﺳﻴﺎﺳﺘﻬﺎﻱ‬ ‫ﺣﻤﺎﻳﺘﻲ ﺧﻮﺩ‪ ،‬ﻫﺰﻳﻨﻪ ﻛﺎﻫﺶ ﺍﻧﺘﺸﺎﺭ ﺻﻨﺎﻳﻊ ﺑﺎ ﺷﺪﺕ ﺍﻧﺘﺸﺎﺭ ﻛﺮﺑﻦ ﺑﺎﻻ ﺭﺍ ﺗﻌﺪﻳﻞ ﻣﻲﻛﻨﺪ‪.‬‬ ‫ﻛﺸﻮﺭﻫﺎﻱ ﺩﺭﺣﺎﻝ ﺗﻮﺳﻌﻪﺍﻱ ﻛﻪ ﺩﺭ ﺣﺎﻝﺣﺎﺿﺮ ﺍﻗﺪﺍﻣﺎﺕ ﻣﺮﺑﻮﻁ ﺑﻪ ﻣﺪﻳﺮﻳﺖ ﻛﺮﺑﻦ ﺭﺍ ﺑﻄﻮﺭ ﺟﺪﻱ ﺷﺮﻭﻉ ﻛﺮﺩﻩﺍﻧﺪ ﻋﻤﺪﺗ ًﺎ ﺑﻪ ﻓﻜﺮ ﺭﺍﻩﺍﻧﺪﺍﺯﻱ‬ ‫ﺳﻴﺴﺘﻢ ‪ Cap & Trade‬ﻫﺴﺘﻨﺪ ﻛﻪ ﺍﺯ ﺁﻥ ﻣﻴﺘﻮﺍﻥ ﺑﻪ ﻛﺮﻩﺟﻨﻮﺑﻲ‪ ،‬ﺳﻨﮕﺎﭘﻮﺭ‪ ،‬ﭼﻴﻦ‪ ،‬ﻭﻳﺘﻨﺎﻡ ﻭ ﺍﺧﻴﺮﺍً ﻣﺎﻟﺰﻱ ﺍﺷﺎﺭﻩ ﻧﻤﻮﺩ‪ .‬ﻣﻜﺰﻳﻚ ﺑﻪ ﻓﻜﺮ‬ ‫ﭘﻴﻮﺳﺘﻦ ﺑﻪ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ ﺁﻣﺮﻳﻜﺎﺳﺖ ﻭ ﺑﺮﺯﻳﻞ ﻭ ﺁﻓﺮﻳﻘﺎﻱ ﺟﻨﻮﺑﻲ ﻧﻴﺰ ﺑﺮﻧﺎﻣﻪﻫﺎﻱ ﻣﺸﺎﺑﻬﻲ ﺭﺍ ﺩﻧﺒﺎﻝ ﻣﻲﻛﻨﻨﺪ‪.‬‬ ‫ﺩﺭ ﺍﻳﺮﺍﻥ ﻧﻴﺰ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻓﺮﺻﺖ ﺑﺎﻗﻴﻤﺎﻧﺪﻩ ﺗﺎ ﺳﺎﻝ ‪ ،2020‬ﻋﻼﻭﻩ ﺑﺮ ﺟﺪﻳﺖ ﻭ ﻫﻤﻴﺖ ﺩﺭ ﺍﺟﺮﺍﻱ ﺑﺮﻧﺎﻣﻪ ﭘﻨﺠﻢ ﺗﻮﺳﻌﻪ ﻭ ﺁﻳﻴﻦﻧﺎﻣﻪ ﺍﺟﺮﺍﻳﻲ‬ ‫ﻛﻨﻮﺍﻧﺴﻴﻮﻥ ﺗﻐﻴﻴﺮ ﺁﺏ ﻭﻫﻮﺍ ﺗﻮﺳﻂ ﺳﺎﺯﻣﺎﻥ ﺣﻔﺎﻇﺖ ﻣﺤﻴﻂ ﺯﻳﺴﺖ‪ ،‬ﻻﺯﻡ ﺍﺳﺖ ﻏﻴﺮ ﺍﺯ ﻓﺮﺍﻳﻨﺪ ﻣﺼﻮﺏ ﮔﺰﺍﺭﺵﺩﻫﻲ ﻓﻮﻕ‪ ،‬ﺳﻴﺴﺘﻤﻲ ﺑﺮﺍﻱ‬ ‫ﻛﻨﺘﺮﻝ ﻣﻴﺰﺍﻥ ﺍﻧﺘﺸﺎﺭ ﺑﻨﮕﺎﻫﻬﺎ ﺗﺪﻭﻳﻦ ﺷﻮﺩ ﻛﻪ ﻣﺴﻠﻤ ًﺎ ﮔﺎﻣﻲ ﺁﻳﻨﺪﻩ ﻧﮕﺮﺍﻧﻪ ﺑﻪ ﺳﻤﺖ ﺍﻫﺪﺍﻑ ﺑﻠﻨﺪﻣﺪﺕ ﺯﻳﺴﺖ ﻣﺤﻴﻄﻲ ﻛﺸﻮﺭﻣﺎﻥ ﻣﺤﺴﻮﺏ‬ ‫ﻣﻲﺷﻮﺩ ﻭ ﺑﻲ ﺷﻚ ﻫﻤﺴﻮ ﺑﺎ ﺍﻫﺪﺍﻑ ﭼﺸﻢﺍﻧﺪﺍﺯ ‪ 20‬ﺳﺎﻟﻪ ﻛﺸﻮﺭ ﺍﺯ ﻧﻘﻄﻪ ﻧﻈﺮ ﭘﻴﺸﺮﻭ ﺑﻮﺩﻥ ﺩﺭ ﻓﻌﺎﻟﻴﺘﻬﺎﻱ ﺯﻳﺴﺖ ﻣﺤﻴﻄﻲ ﻭ ﺩﺭ ﻣﻨﻄﻘﻪ‬ ‫ﻣﻲﺑﺎﺷﺪ‪.‬‬ ‫ﻼ ﺣﺴﺎﺏ ﺷﺪﻩ ﻭ ﺑﺎ ﻧﮕﺎﻩ ﺑﻠﻨﺪ ﻣﺪﺕ ﻃﺮﺍﺣﻲ ﺷﻮﺩ‪ .‬ﺩﺭ ﻓﺮﺻﺖ ﺑﺎﻗﻴﻤﺎﻧﺪﻩ ﺗﺎ ﺳﺎﻝ ‪ 2020‬ﻣﻲﺗﻮﺍﻥ ﺑﺎ ﺣﻤﺎﻳﺖ ﺍﺯ ﺻﻨﺎﻳﻊ‬ ‫ﻟﻴﻜﻦ ﺍﻳﻦ ﻣﻬﻢ ﺑﺎﻳﺪ ﻛﺎﻣ ً‬ ‫ﭘﺮ ﻛﺮﺑﻦ ﺯﻣﻴﻨﻪﻫﺎﻱ ﻻﺯﻡ ﺑﺮﺍﻱ ﻛﺎﻫﺶ ﺍﻧﺘﺸﺎﺭ ﻛﺮﺑﻦ ﺁﻧﻬﺎ ﺭﺍ ﻓﺮﺍﻫﻢ ﺁﻭﺭﺩ ﻭ ﺩﺭ ﻋﻴﻦ ﺣﺎﻝ ﻋﻼﻭﻩ ﺑﺮ ﺟﻠﻮﮔﻴﺮﻱ ﺍﺯ ﺗﻮﺳﻌﻪ ﺻﻨﺎﻳﻊ ﻭ ﺗﻜﻨﻮﻟﻮژﻳﻬﺎﻱ‬ ‫ﭘﺮ ﻛﺮﺑﻦ‪ ،‬ﺩﺭ ﺭﺍﺳﺘﺎﻱ ﺑﻬﻴﻨﻪ ﺳﺎﺯﻱ ﺻﻨﺎﻳﻊ ﻣﻮﺟﻮﺩ ﺑﺮﺍﻱ ﻛﺎﻫﺶ ﺍﻧﺘﺸﺎﺭ ﻛﺮﺑﻦ ﮔﺎﻡ ﺑﺮﺩﺍﺷﺖ‪.‬‬ ‫ﭘﻴﺸﻨﻬﺎﺩ ﺍﻳﻦ ﻣﺠﻤﻮﻋﻪ ﻃﺮﺍﺣﻲ ﻭ ﺍﺟﺮﺍﻱ ﺁﺯﻣﺎﻳﺸﻲ ﺳﻴﺴﺘﻢ ‪ Cap &Trade‬ﺩﺭ ﻳﻜﻲ ﺍﺯ ﺑﺨﺸﻬﺎﻱ ﺍﻗﺘﺼﺎﺩﻱ )ﻧﻈﻴﺮ ﻧﻴﺮﻭﮔﺎﻫﻬﺎ( ﺑﺎ ﺍﻫﺪﺍﻑ‬ ‫ﻛﺎﻫﺶ ﺍﻧﺘﺸﺎﺭ ﻛﻮﺗﺎﻩﻣﺪﺕ ﻭ ﺑﻠﻨﺪﻣﺪﺕ ﺍﺳﺖ‪ ،‬ﻛﻪ ﺩﺭ ﺁﻳﻨﺪﻩ ﺑﻪ ﺳﺎﻳﺮ ﺑﺨﺸﻬﺎﻱ ﺍﻗﺘﺼﺎﺩﻱ ﻧﻴﺰ ﺗﻌﻤﻴﻢ ﺩﺍﺩﻩ ﺷﻮﺩ‪ .‬ﻃﻲ ﺍﻳﻦ ﺳﻴﺴﺘﻢ ﺩﺭ ﻛﻮﺗﺎﻩﻣﺪﺕ‬ ‫)ﻣﺜﻼً ﺳﻪ ﻳﺎ ﭼﻬﺎﺭ ﺳﺎﻝ ﻧﺨﺴﺖ ﺍﻳﺠﺎﺩ ﺳﻴﺴﺘﻢ( ﻋﻼﻭﻩ ﺑﺮ ﺗﺠﺮﺑﻪ ﺳﺎﺯﻱ ﺳﻴﺴﺘﻢ ﻣﺪﻳﺮﻳﺖ ﺍﻧﺘﺸﺎﺭ ﻭ ﭘﻴﺎﺩﻩﺳﺎﺯﻱ ﺑﺎﻭﺭ ﻣﺪﻳﺮﻳﺖ ﻛﺮﺑﻦ ﺩﺭ‬ ‫ﺑﻨﮕﺎﻫﻬﺎﻱ ﺍﻗﺘﺼﺎﺩﻱ‪ ،‬ﺑﺎ ﻭﺿﻊ ﺳﻄﺢ ﺍﻧﺘﺸﺎﺭ )‪ (Cap‬ﺁﺳﺎﻥ ﮔﻴﺮﺍﻧﻪ ﻓﺮﺻﺖ ﻣﻨﺎﺳﺒﻲ ﺑﻪ ﺑﻨﮕﺎﻫﻬﺎﻱ ﭘﺮ ﻛﺮﺑﻦ ﺩﺍﺩﻩ ﺷﻮﺩ ﺗﺎ ﺳﻄﺢ ﺍﻧﺘﺸﺎﺭ ﻛﺮﺑﻦ ﺧﻮﺩ‬ ‫ﺭﺍ ﭘﺎﻳﻴﻦ ﺁﻭﺭﻧﺪ ﻭ ﺑﻄﻮﺭ ﻣﻮﺍﺯﻱ ﻧﻴﺰ ﻣﻲ ﺑﺎﻳﺴﺖ ﺳﻴﺎﺳﺘﻬﺎﻱ ﺗﺸﻮﻳﻘﻲ ﺳﺮﻣﺎﻳﻪﮔﺬﺍﺭﻱ ﺩﺭ ﺑﺨﺸﻬﺎﻱ ﺗﻮﻟﻴﺪ ﺑﺮﻕ ﭘﺮﺑﺎﺯﺩﻩ ﻭ ﻧﻴﺰ ﻣﻨﺎﺑﻊ ﺍﻧﺮژﻳﻬﺎﻱ‬ ‫ﺗﺠﺪﻳﺪﭘﺬﻳﺮ ﺭﺍ ﺗﻌﻤﻴﻖ ﺑﺨﺸﻴﺪ‪.‬‬


‫ﺩﺭ ﺑﻠﻨﺪﻣﺪﺕ )ﺗﺎ ﺳﺎﻝ ‪ (2020‬ﺑﻪ ﻣﻨﻈﻮﺭ ﺁﻣﺎﺩﻩﺳﺎﺯﻱ ﻛﺎﻣﻞ ﻛﺸﻮﺭ ﺟﻬﺖ ﺗﺎﻣﻴﻦ ﺗﻌﻬﺪﺍﺕ ﻛﺎﻫﺶ ﺍﻧﺘﺸﺎﺭ ﺑﻴﻦ ﺍﻟﻤﻠﻠﻲ‪ ،‬ﻣﻲﺗﻮﺍﻥ ﺳﻄﺢ ﺍﻧﺘﺸﺎﺭ‬ ‫ﻭﺿﻊ ﺷﺪﻩ )‪ (Cap‬ﺭﺍ ﺳﺨﺖﮔﻴﺮﺍﻧﻪﺗﺮ ﻧﻤﻮﺩﻩ‪ ،‬ﻋﻼﻭﻩ ﺑﺮ ﻛﺎﻫﺶ ﻭﺍﻗﻌﻲ ﺭﻭﻧﺪ ﺍﻧﺘﺸﺎﺭ ﮔﺎﺯﻫﺎﻱ ﮔﻠﺨﺎﻧﻪﺍﻱ ﻛﺸﻮﺭ‪ ،‬ﺳﻴﺴﺘﻢ ﺍﻧﺘﻘﺎﻝ ﺗﻌﻬﺪﺍﺕ‬ ‫ﺑﻴﻦﺍﻟﻤﻠﻠﻲ ﻛﺸﻮﺭ ﺑﻪ ﺗﻚ ﺗﻚ ﺑﻨﮕﺎﻫﻬﺎﻱ ﺍﻗﺘﺼﺎﺩﻱ ﺭﺍ ﻃﺮﺡﺭﻳﺰﻱ ﻛﺮﺩ‪.‬‬ ‫ﺩﺭ ﺍﻳﻦ ﺩﻭﺭﻩ ﻻﺯﻡ ﺍﺳﺖ ﭼﻨﺪ ﺑﺨﺶ ﺩﻳﮕﺮ ﺍﻗﺘﺼﺎﺩﻱ ﭘﺮﻛﺮﺑﻦ ﻫﻤﺎﻧﻨﺪ ﻧﻔﺖ ﻭ ﮔﺎﺯ ﻭ ﻓﻮﻻﺩ ﻭ ﺳﻴﻤﺎﻥ ﻧﻴﺰ ﺗﺤﺖ ﻛﻨﺘﺮﻝ ﺳﻴﺴﺘﻢ ﺩﺭﺁﻳﺪ‪ .‬ﺍﺯ ﻃﺮﻑ‬ ‫ﺩﻳﮕﺮ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺍﻳﺠﺎﺩ ﻣﻜﺎﻧﻴﺴﻢ ﻫﺎﻱ ﺍﻧﻌﻄﺎﻑ ﭘﺬﻳﺮ ﺟﺪﻳﺪ ﻧﻈﻴﺮ ﺍﻗﺪﺍﻣﺎﺕ ﻛﺎﻫﺶ ﺍﻧﺘﺸﺎﺭ ﻣﻠﻲ )‪ (NAMAs‬ﺗﺤﺖ ﻛﻨﻮﺍﻧﺴﻴﻮﻥ‪ ،‬ﺑﺎ ﺑﺮﺭﺳﻲ ﻭ‬ ‫ﭘﺘﺎﻧﺴﻴﻞ ﺳﻨﺠﻲ ﻭ ﺍﻭﻟﻮﻳﺖ ﺑﻨﺪﻱ ﺑﺮﻧﺎﻣﻪ ﻫﺎﻱ ﻛﺎﻫﺶ ﺍﻧﺘﺸﺎﺭ ﺩﺭ ﻛﺸﻮﺭ ﺍﺯ ﻳﻜﺴﻮ ﻭ ﺣﻤﺎﻳﺖ ﺍﺯ ﺑﺨﺶ ﺧﺼﻮﺻﻲ ﻭ ﻇﺮﻓﻴﺖ ﺳﺎﺯﻱ ﺑﺮﺍﻱ ﻣﺸﺎﺭﻛﺖ‬ ‫ﺑﻴﺶ ﺍﺯ ﭘﻴﺶ ﺁﻧﻬﺎ ﺑﻌﻨﻮﺍﻥ ﺑﺎﺯﻳﮕﺮﺍﻥ ﺗﺒﺪﻳﻞ ﺍﻳﺪﻩ ﺑﻌﻤﻞ ﺍﺯ ﺳﻮﻱ ﺩﻳﮕﺮ ﺩﺭ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻓﺮﺻﺘﻬﺎﻱ ﻣﻮﺟﻮﺩ ﺗﺎ ‪ 2020‬ﻛﻮﺷﺎ ﺑﺎﺷﻴﻢ‪ .‬ﻧﮕﺎﻫﻲ ﺑﻪ‬ ‫ﺗﺠﺮﺑﻪ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﻧﻘﺶ ﻣﻬﻢ ﺑﺨﺶ ﺧﺼﻮﺻﻲ ﻭ ﺷﺮﻛﺘﻬﺎﻱ ﻣﺸﺎﻭﺭ ﺩﺭ ﺗﻮﺳﻌﻪ ﭘﺮﻭژﻩ ﻫﺎﻱ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ‪ ،‬ﻣﻲ ﺗﻮﺍﻧﺪ ﺑﻴﺎﻧﮕﺮ‬ ‫ﺍﻳﻦ ﻣﻮﺿﻮﻉ ﺑﺎﺷﺪ‪.‬‬ ‫ﺍﻣﻴﺪ ﺍﺳﺖ ﺑﺎ ﺍﺗﺨﺎﺫ ﺗﺪﺍﺑﻴﺮ ﺁﻳﻨﺪﻩ ﻧﮕﺮ ﺩﺭ ﺭﺍﺳﺘﺎﻱ ﺣﻔﻆ ﻣﻨﺎﻓﻊ ﻧﺴﻠﻬﺎﻱ ﺁﺗﻲ ﻛﺸﻮﺭ ﺍﻗﺪﺍﻣﺎﺕ ﻣﺪﺑﺮﺍﻧﻪﺍﻱ ﺻﻮﺭﺕ ﺩﻫﻴﻢ‪.‬‬


‫ﻧﺘﺎﻳﺞ ﺍﺟﻼﺱ ﻭ ﻧﺸﺴﺖ ﻫﺎ‪:‬‬ ‫>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>‬

‫ﻣﻬﺘﺎﺏ ﺻﺎﺩﻗﻲ ﺣﺮﻳﺮﻱ‬

‫‪ -‬ﻫﻔﺘﺎﺩ ﻭ ﻳﻜﻤﻴﻦ ﻧﺸﺴﺖ ﻫﻴﺄﺕ ﺍﺟﺮﺍﻳﻲ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ )‪(EB 71‬‬

‫ﺑﻦ ﺁﻟﻤﺎﻥ – ‪ 30‬ژﺍﻧﻮﻳﻪ ﺍﻟﻲ ‪ 1‬ﻓﻮﺭﻳﻪ ‪2013‬‬ ‫ﺩﺭ ﺍﻳﻦ ﺟﻠﺴﻪ ﺑﺎ ﺩﺳﺘﻮﺭ ﻛﺎﺭ ﻣﻮﻗﺖ ﻫﻔﺘﺎﺩ ﻭ ﺩﻭﻣﻴﻦ ﻫﻴﺄﺕ ﺍﺟﺮﺍﻳﻲ )ﺟﻠﺴﻪ ﺑﻌﺪﻱ( ﻛﻪ ﺩﺭ ﺑﻦ ﺁﻟﻤﺎﻥ ﺍﺯ ‪ 4‬ﺗﺎ ‪ 8‬ﻣﺎﺭﺱ ‪ 2013‬ﺑﺮﮔﺰﺍﺭ ﺧﻮﺍﻫﺪ‬ ‫ﺷﺪ‪ ،‬ﻣﻮﺍﻓﻘﺖ ﮔﺮﺩﻳﺪ ﻛﻪ ﮔﺰﺍﺭﺵ ﺁﻥ ﺩﺭ ﺿﻤﻴﻤﻪ ‪ 4‬ﺻﻮﺭﺗﺠﻠﺴﻪ ﺁﻣﺪﻩ ﺍﺳﺖ‪ .‬ﻫﻴﺄﺕ ﺍﺟﺮﺍﻳﻲ ﺧﻼﺻﻪ ﻧﺘﺎﻳﺞ ﺍﺻﻠﻲ ﺍﻳﻦ ﺟﻠﺴﻪ ﺭﺍ ﺟﻤﻊ ﺑﻨﺪﻱ‬ ‫ﻛﺮﺩﻩ ﻭ ﺗﻤﺎﻣﻲ ﺗﺼﻤﻴﻤﺎﺗﻲ ﻛﻪ ﺗﻮﺳﻂ ﻫﻴﺄﺕ ﺍﺗﺨﺎﺫ ﺷﺪﻩ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﭘﺎﺭﺍﮔﺮﺍﻑ ‪ 17‬ﺭﻭﻳﻪ ﻫﺎ ﻭ ﺭﻭﺷﻬﺎﻱ ﺍﺟﺮﺍﻳﻲ ﭘﺮﻭژﻩ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ‬ ‫ﻫﻤﻴﻨﻄﻮﺭ ﺩﺳﺘﻮﺭ ‪ 31‬ﻗﻮﺍﻧﻴﻦ ﺭﻭﻳﻪ ﻫﺎ ﻭ ﺭﻭﺷﻬﺎﻱ ﺍﺟﺮﺍﻳﻲ ﻗﺎﺑﻞ ﺩﺳﺘﺮﺳﻲ ﻋﻤﻮﻡ ﻣﻲ ﺑﺎﺷﺪ‪ .‬ﻫﻤﻴﻨﻄﻮﺭ ﺷﺮﺡ ﻣﺬﺍﻛﺮﺍﺕ ﺟﻠﺴﻪ ﻓﻮﻕ ﺑﻄﻮﺭ ﺯﻧﺪﻩ ﺩﺭ‬ ‫ﺁﺩﺭﺱ ﺯﻳﺮ ﻗﺎﺑﻞ ﻣﺸﺎﻫﺪﻩ ﺍﺳﺖ‪:‬‬ ‫‪http://cdm.unfccc.int/EB/Meetings‬‬

‫‪1‬‬ ‫ﺧﺒﺮﻧﺎﻣﻪ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ‪ ،‬ﺳﺎﻝ ﭼﻬﺎﺭﻡ‪ ،‬ﺷﻤﺎﺭﻩ ‪ -22‬ﺩﻱ ﻭ ﺑﻬﻤﻦ ‪91‬‬


‫ﮔﻮﻧﺎﮔﻮﻥ‪:‬‬ ‫>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>‬

‫ﻣﻬﺘﺎﺏ ﺻﺎﺩﻗﻲ ﺣﺮﻳﺮﻱ‬ ‫ﻓﺮﺍﺧﻮﺍﻥ ﺍﻋﻀﺎء ﺟﺪﻳﺪ ﻣﻮﺭﺩ ﻧﻴﺎﺯ ﺑﺮﺍﻱ ﮔﺮﻭﻫﻬﺎﻱ ﻛﺎﺭﻱ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ‬

‫ﺑﻦ ‪ 8‬ﻓﻮﺭﻳﻪ ‪ – 2013‬ﻫﻴﺄﺕ ﺍﺟﺮﺍﻳﻲ ‪ CDM‬ﻓﺮﺍﺧﻮﺍﻧﻲ ﺭﺍ ﺑﺮﺍﻱ ﺍﺳﺘﺨﺪﺍﻡ ﺍﻋﻀﺎء ﺟﺪﻳﺪ ﻫﻴﺄﺕ ﺍﻋﺘﺒﺎﺭﺩﻫﻲ )‪ ،(Accredation‬ﻫﻴﺄﺕ ﺩﺍﻭﺭﻱ‬ ‫ﻣﺘﺪﻭﻟﻮژﻱ ﻫﺎ‪ ،‬ﮔﺮﻭﻩ ﻛﺎﺭﻱ ﭘﺮﻭژﻩ ﻫﺎﻱ ﻛﻮﭼﻚ ﻣﻘﻴﺎﺱ ﻭ ﮔﺮﻭﻩ ﻫﺎﻱ ﻛﺎﺭﻱ ﺟﻨﮕﻞ ﻛﺎﺭﻱ ﻭ ﺍﺣﻴﺎء ﺟﻨﮕﻞ ﺍﻋﻼﻡ ﻧﻤﻮﺩﻩ ﺍﺳﺖ‪ .‬ﻛﺎﺭﺷﻨﺎﺳﺎﻥ‬ ‫ﻋﻼﻗﻤﻨﺪ ﻣﻲ ﺗﻮﺍﻧﻨﺪ ﺑﻄﻮﺭ ﺁﻥ ﻻﻳﻦ ﺩﺭ ﺍﻳﻦ ﻓﺮﺍﺧﻮﺍﻥ ﺍﺯ ﻃﺮﻳﻖ ﭘﻮﺭﺗﺎﻝ ﺩﺑﻴﺮﺧﺎﻧﻪ ﺷﺮﻛﺖ ﻛﻨﻨﺪ ﻭ ﺁﺧﺮﻳﻦ ﻣﻬﻠﺖ ﺛﺒﺖ ﻧﺎﻡ ﺗﺎ ‪ 3‬ﻣﺎﺭﺱ ‪2013‬‬ ‫ﺍﺳﺖ‪ .‬ﺑﺮﺍﻱ ﺍﻃﻼﻉ ﺑﻴﺸﺘﺮ ﺑﻪ ﺁﺩﺭﺱ ﺯﻳﺮ ﻣﺮﺍﺟﻌﻪ ﻛﻨﻴﺪ‪.‬‬ ‫‪http://cdm.unfccc.int/Panels/index.html‬‬ ‫ﻣﻮﺍﻓﻘﺖ ﻫﻴﺄﺕ ﺍﺟﺮﺍﻳﻲ ﺑﺎ ﻃﺮﺡ ﺑﻬﺒﻮﺩ ﻣﻮﻗﻌﻴﺖ ﭘﺮﻭژﻩ ﻫﺎﻱ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ )‪(CDM‬‬

‫ﺑﻦ ‪ 1‬ﻓﻮﺭﻳﻪ ‪ – 2013‬ﺩﺭ ﻫﻔﺘﻪ ﺍﻱ ﻛﻪ ‪ 6000‬ﺍﻣﻴﻦ ﭘﺮﻭژﻩ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﺛﺒﺖ ﺷﺪ ﻛﻤﻴﺘﻪ ﺍﺟﺮﺍﻳﻲ ﺩﺭ ﻫﻔﺘﺎﺩﻭ ﻳﻜﻤﻴﻦ ﺟﻠﺴﻪ ﺧﻮﺩ‬ ‫ﻳﻚ ﺑﺮﻧﺎﻣﻪ ﻛﺎﺭﻱ ﺩﻭ ﺳﺎﻟﻪ ﺭﺍ ﻛﻪ ﺑﺮ ﭘﺎﻳﻪ ﻣﻮﻓﻘﻴﺖ ﻫﺎﻱ ﺣﺎﺻﻞ ﺍﺯ ﭘﺮﻭژﻩ ﻫﺎﻱ ‪ CDM‬ﺑﺮﻧﺎﻣﻪ ﺭﻳﺰﻱ ﺷﺪﻩ ﺑﺎﺷﺪ‪ ،‬ﺭﺍ ﻣﻮﺍﻓﻘﺖ ﻧﻤﻮﺩﻧﺪ‪ .‬ﺩﺭ ﺍﻳﻦ‬ ‫ﺟﻠﺴﻪ ﻛﻪ ﺑﻪ ﻣﺴﺎﺋﻞ ﺭﺍﻫﺒﺮﺩﻱ ﺍﺧﺘﺼﺎﺹ ﺩﺍﺩﻩ ﺷﺪﻩ ﺑﻮﺩ‪ ،‬ﻫﻤﭽﻨﻴﻦ ﻫﻴﺄﺕ ﺍﺟﺮﺍﻳﻲ ﻛﺎﺭﺷﺎﻥ ﺭﺍ ﺑﺮ ﺭﻭﻱ ﺑﺎﺯﻧﮕﺮﻱ ﺭﻭﻳﻪ ﻫﺎ ﻭ ﺭﻭﺷﻬﺎﻱ ﺍﺟﺮﺍﻳﻲ ﻛﻪ‬ ‫ﺗﻮﺳﻂ ﺍﻋﻀﺎء ﺩﺭ ﺁﺧﺮﻳﻦ ﺟﻠﺴﻪ ﺷﺎﻥ ﺩﺭ ﺩﺳﺎﻣﺒﺮ ﮔﺬﺷﺘﻪ ﺩﺭ ﻛﻨﻔﺮﺍﻧﺲ ﺩﻭﺣﻪ )ﻗﻄﺮ( ﺩﺭﺧﻮﺍﺳﺖ ﺷﺪﻩ ﺑﻮﺩ‪ ،‬ﺁﻏﺎﺯ ﻧﻤﻮﺩﻧﺪ‪.‬‬ ‫‪http://cdm.unfccc.int/press/index_html‬‬

‫‪2‬‬ ‫ﺧﺒﺮﻧﺎﻣﻪ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ‪ ،‬ﺳﺎﻝ ﭼﻬﺎﺭﻡ‪ ،‬ﺷﻤﺎﺭﻩ ‪ -22‬ﺩﻱ ﻭ ﺑﻬﻤﻦ ‪91‬‬


‫ﺍﻧﺘﺼﺎﺏ ﺭﺋﻴﺲ ﻭ ﻧﺎﻳﺐ ﺭﺋﻴﺲ ﻫﻴﺄﺕ ﺍﺟﺮﺍﻳﻲ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﺑﺮﺍﻱ ﺳﺎﻝ ‪2013‬‬

‫ﺑﻦ ‪ 30‬ژﺍﻧﻮﻳﻪ ‪ – 2013‬ﺑﺎ ﺷﺮﻭﻉ ﻫﻔﺘﺎﺩﻭ ﻳﻜﻤﻴﻦ ﺟﻠﺴﻪ ﻛﻤﻴﺘﻪ ﺍﺟﺮﺍﻳﻲ ﭘﺮﻭژﻩ ﻫﺎﻱ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ‪ ،‬ﺁﻗﺎﻳﺎﻥ ‪ Peer Stiansen‬ﺍﺯ ﻧﺮﻭژ‬ ‫ﻭ ‪ Hugh Sealy‬ﺍﺯ ﺑﺎﺭﺑﺎﺩﻭﺱ ﺑﻪ ﺗﺮﺗﻴﺐ ﺑﻪ ﻋﻨﻮﺍﻥ ﺭﺋﻴﺲ ﻭ ﻧﺎﻳﺐ ﺭﺋﻴﺲ ﻛﻤﻴﺘﻪ ﺍﺟﺮﺍﻳﻲ ‪ CDM‬ﺍﻧﺘﺨﺎﺏ ﺷﺪﻧﺪ‪ .‬ﻣﻘﺮﺭ ﺷﺪ ﺗﺎ ﺍﻳﻦ ﺍﻓﺮﺍﺩ ﺗﺎ‬ ‫ﺍﻭﻟﻴﻦ ﺟﻠﺴﻪ ﺳﺎﻝ ‪ 2014‬ﺍﻳﻦ ﻣﺴﺌﻮﻟﻴﺖ ﻫﺎﻱ ﺭﺍ ﻋﻬﺪﻩ ﺩﺍﺭ ﺑﺎﺷﻨﺪ‪.‬‬

‫ﻣﻘﺎﻟﻪ ﺟﺪﻳﺪ ﺩﺭ ﺧﺼﻮﺹ ﮔﺰﺍﺭﺵ ﻣﺰﺍﻳﺎﻱ ‪ CDM‬ﺩﺭ ﺳﺎﻝ ‪2012‬‬

‫ﺑﻦ ‪ 16‬ژﺍﻧﻮﻳﻪ ‪ -2013‬ﺩﺭ ﻧﻮﺍﻣﺒﺮ ‪ 2012‬ﺩﺑﻴﺮﺧﺎﻧﻪ ﻛﻨﻮﺍﻧﺴﻴﻮﻥ ﺗﻐﻴﻴﺮﺍﺕ ﺁﺏ ﻭﻫﻮﺍ ‪ UNFCCC‬ﮔﺰﺍﺭﺷﻲ ﺭﺍ ﺩﺭ ﺯﻣﻴﻨﻪ ﺳﺮﻣﺎﻳﻪ ﮔﺬﺍﺭﻱ ﺩﺭ‬ ‫ﭘﺮﻭژﻩ ﻫﺎﻱ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻣﻨﺘﺸﺮ ﻛﺮﺩ‪ .‬ﺍﻳﻦ ﮔﺰﺍﺭﺵ ﻧﺸﺎﻥ ﻣﻴﺪﻫﺪ ﻛﻪ ﻣﻴﻠﻴﺎﺭﺩﻫﺎ ﺩﻻﺭ ﺳﺮﻣﺎﻳﻪ ﮔﺬﺍﺭﻱ ﺩﺭ ﻣﻮﺭﺩ ﭘﺮﻭژﻩ ﻫﺎﻱ ﻣﻜﺎﻧﻴﺴﻢ‬ ‫ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﺍﻧﺠﺎﻡ ﺷﺪﻩ ﺍﺳﺖ ﻛﻪ ﻣﻮﺟﺐ ﻣﺤﺪﻭﺩ ﻛﺮﺩﻥ ﺍﻧﺘﺸﺎﺭ ﮔﺎﺯﻫﺎﻱ ﮔﻠﺨﺎﻧﻪ ﺍﻱ ﻭ ﻛﻤﻚ ﺑﻪ ﺗﻮﺳﻌﻪ ﭘﺎﻳﺪﺍﺭ ﺷﺪﻩ ﺍﺳﺖ‪ .‬ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﺗﻮﺳﻂ‬ ‫ﺩﻛﺘﺮ ‪ Adam Bum Pus‬ﻛﻪ ﻣﺘﺨﺼﺺ ﺗﻮﺳﻌﻪ ﺑﻴﻦ ﺍﻟﻤﻠﻠﻲ ﻭ ﺑﺎﺯﺍﺭﻛﺮﺑﻦ ﻫﺴﺘﻨﺪ‪ ،‬ﻧﻮﺷﺘﻪ ﺷﺪﻩ ﺍﺳﺖ‪ .‬ﺑﺮﺍﻱ ﺧﻮﺍﻧﺪﻥ ﻛﻞ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﺑﻪ ﺍﻳﻦ‬ ‫ﺁﺩﺭﺱ ﻣﺮﺍﺟﻌﻪ ﻧﻤﺎﺋﻴﺪ‪.‬‬ ‫‪http://cdm.unfccc.int/about/dev_ben/CDM-Benefits-2012.pdf‬‬

‫‪3‬‬ ‫ﺧﺒﺮﻧﺎﻣﻪ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ‪ ،‬ﺳﺎﻝ ﭼﻬﺎﺭﻡ‪ ،‬ﺷﻤﺎﺭﻩ ‪ -22‬ﺩﻱ ﻭ ﺑﻬﻤﻦ ‪91‬‬


‫ﭘﺮﻭژﻩ ﻫﺎﻱ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﺗﺤﺖ ﭘﺮﻭﺗﻜﻞ ﻛﻴﻮﺗﻮ ﺍﺯ ﻣﺮﺯ ‪ 6000‬ﮔﺬﺷﺖ‬

‫ﺑﻦ ‪ 30‬ژﺍﻧﻮﻳﻪ ‪ – 2013‬ﭘﺮﻭژﻩ ﻫﺎﻱ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﺩﺭ ﺍﻳﻦ ﻫﻔﺘﻪ ﻣﺮﺣﻠﻪ ﻣﻬﻤﻲ ﺭﺍ ﺑﺎ ﺛﺒﺖ ‪ 6000‬ﺍﻣﻴﻦ ﭘﺮﻭژﻩ ﮔﺬﺭﺍﻧﺪ‪ 6000 .‬ﺍﻣﻴﻦ‬ ‫ﭘﺮﻭژﻩ ﻋﺒﺎﺭﺗﺴﺖ ﺍﺯ ﻧﺼﺐ ‪ 21‬ﻣﮕﺎﻭﺍﺗﻲ ﻧﻴﺮﻭﮔﺎﻩ ﺑﺎﺩﻱ ﺑﺮﺍﻱ ﺗﻐﺬﻳﻪ ﺷﺒﻜﻪ ﺑﺮﻕ ﺟﻨﻮﺏ ﻣﺮﻛﺰﻱ ﻭﻳﺘﻨﺎﻡ ﻣﻲ ﺑﺎﺷﺪ‪ ،‬ﺍﻳﻦ ﻧﻴﺮﻭﮔﺎﻩ ﺟﺎﻳﮕﺰﻳﻦ ﻧﻴﺮﻭﮔﺎﻩ‬ ‫ﺳﻮﺧﺖ ﻓﺴﻴﻠﻲ ﺍﺳﺖ ﻛﻪ ﺑﺮﻕ ﻣﻮﺭﺩ ﻧﻴﺎﺯ ﻣﻨﻄﻘﻪ ﺭﺍ ﺗﺄﻣﻴﻦ ﻣﻲ ﻛﻨﺪ ﻭ ﻣﻮﺟﺐ ﻛﺎﻫﺶ ﺍﻧﺘﺸﺎﺭ ‪ 32000‬ﺗﻦ ﺩﻱ ﺍﻛﺴﻴﺪ ﻛﺮﺑﻦ ﺩﺭ ﻫﺮ ﺳﺎﻝ ﻣﻲ‬ ‫ﮔﺮﺩﺩ ﻛﻪ ﺍﻳﻦ ﻣﻘﺪﺍﺭ ﻣﻌﺎﺩﻝ ﺍﻧﺘﺸﺎﺭ ‪ 6058‬ﺧﻮﺩﺭﻭ ﺩﺭ ﺳﺎﻝ ﺍﺳﺖ‪.‬‬ ‫‪http://cdm.unfccc.int/press/index_html‬‬ ‫ﺭﺍﻩ ﺍﻧﺪﺍﺯﻱ ﭘﻮﺭﺗﺎﻝ ﺍﻃﻼﻋﺎﺗﻲ ‪CDM‬‬

‫ﻛﺎﺭﺑﺮﻫﺎﻱ ﻭﺏ ﺳﺎﻳﺖ ‪ CDM‬ﻣﻲ ﺗﻮﺍﻧﻨﺪ ﺍﺯ ﺍﻳﻦ ﭘﺲ ﺍﻃﻼﻋﺎﺕ ﻭ ﺗﺠﺰﻳﻪ ﻭ ﺗﺤﻠﻴﻞ ﻫﺎﻱ ﺟﺪﻳﺪ ﻭ ﺩﻗﻴﻘﻲ ﺍﺯ ﭘﺮﻭژﻩ ﻫﺎﻱ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ‬ ‫ﺭﺍ ﺍﺯ ﻃﺮﻳﻖ ﺻﻔﺤﻪ ﻭﺏ ﺟﺪﻳﺪﻱ ﻛﻪ ﺗﺤﺖ "‪ "CDM insights‬ﻧﺎﻣﻴﺪﻩ ﻣﻲ ﺷﻮﺩ ﻣﺸﺎﻫﺪﻩ ﻛﻨﻨﺪ‪ .‬ﺍﻳﻦ ﺻﻔﺤﻪ ﻭﺏ ﺑﺎ ﻗﺎﺑﻠﻴﺖ ﻧﻤﺎﻳﺶ ﮔﺮﺍﻓﻴﻜﻲ‬ ‫ﻣﻨﺤﺼﺮ ﺑﻔﺮﺩ ﺧﻮﺩ‪ ،‬ﺍﻣﻜﺎﻥ ﺍﺭﺍﻳﻪ ﺁﻣﺎﺭ‪ ،‬ﺗﺸﺮﻳﺢ ﻣﻔﺎﻫﻴﻢ ﻭ ﺩﺍﻧﻠﻮﺩ ﺍﻃﻼﻋﺎﺕ ﻣﺮﺗﺒﻂ ﺑﺎ ﭘﺮﻭژﻩ ﻫﺎﻱ ﺩﺭ ﻣﺮﺣﻠﻪ ﺍﻋﺘﺒﺎﺭﺩﻫﻲ‪ ،‬ﮔﻮﺍﻫﻲ ﻫﺎﻱ ﻛﺎﻫﺶ ﻧﺸﺮ‬ ‫ﻭ ﻣﺘﺪﻭﻟﻮژﻳﻬﺎﻱ ﺗﺄﻳﻴﺪ ﺷﺪﻩ ﺩﺭ ﻫﺮ ﻣﺎﻩ ﻭ ﻫﻤﭽﻨﻴﻦ ﺁﺭﺷﻴﻮ ﻣﺎﻫﻬﺎﻱ ﻗﺒﻠﻲ ﻭ ﺳﺎﻳﺮ ﺍﻃﻼﻋﺎﺕ ﺑﺎﺍﺭﺯﺵ ﺍﺭﺍﻳﻪ ﻧﻤﺎﻳﺪ‪ .‬ﺑﺮﺍﻱ ﻣﺸﺎﻫﺪﻩ ﺍﻳﻦ ﺻﻔﺤﻪ ﺑﻪ‬ ‫ﺁﺩﺭﺱ ﺯﻳﺮ ﻣﺮﺍﺟﻌﻪ ﻧﻤﺎﻳﻴﺪ‪:‬‬ ‫‪http://cdm.unfccc.int/Statistics/Public/CDMinsights/index.html‬‬

‫‪4‬‬ ‫ﺧﺒﺮﻧﺎﻣﻪ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ‪ ،‬ﺳﺎﻝ ﭼﻬﺎﺭﻡ‪ ،‬ﺷﻤﺎﺭﻩ ‪ -22‬ﺩﻱ ﻭ ﺑﻬﻤﻦ ‪91‬‬


‫ﮔﺰﺍﺭﺵ‪:‬‬ ‫>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>‬

‫ﻋﺎﺩﻝ ﭘﺮﺗﻮﻱ ‪ -‬ﻣﻴﻨﺎ ﻛﻼﮔﺮ‬ ‫ﮔﺰﺍﺭﺵ ‪ :1‬ﻧﮕﺎﻫﻲ ﺑﺮ ﺍﻧﺘﺸﺎﺭ ‪ -CO 2‬ﺁﺧﺮﻳﻦ ﺗﺤﻮﻻﺕ ﺩﺭ ﺳﺎﻝ ‪ ) 1 2009‬ﻭ ﺑﻌﺪ ﺍﺯ ﺁﻥ (‬ ‫‪R‬‬

‫‪P0F‬‬

‫‪R‬‬

‫‪P‬‬

‫ﺑﺨﺶ ﺳﻮﻡ )ﺑﺨﺶ ﺍﻭﻝ ﻭ ﺩﻭﻡ ﺍﻳﻦ ﮔﺰﺍﺭﺵ ﺩﺭ ﺷﻤﺎﺭﻩ ﻫﺎﻱ ﻗﺒﻠﻲ ﺧﺒﺮﻧﺎﻣﻪ ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﺍﺳﺖ(‬ ‫ﺍﺭﺗﺒﺎﻁ ﺍﻧﺘﺸﺎﺭﺍﺕ ﺑﺎ ﺷﺎﺧﺺ ﻫﺎﻱ ﺍﻗﺘﺼﺎﺩﻱ ‪ -‬ﺍﺟﺘﻤﺎﻋﻲ‬

‫‪2‬‬ ‫‪P1F‬‬

‫‪P‬‬

‫ﺷﺎﺧﺺ ﻫﺎﻳﻲ ﻧﻈﻴﺮ ﺁﻧﭽﻪ ﺑﻄﻮﺭ ﺧﻼﺻﻪ ﺩﺭ ﺍﻳﻦ ﺑﺨﺶ ﺑﺤﺚ ﺷﺪﻩ ﺍﺳﺖ ﺑﺸﺪﺕ ﻣﺒﻴ ‪‬ﻦ ﻣﺤﺪﻭﺩﻳﺖ ﻫﺎﻱ ﺍﻧﺮژﻱ ﻭ ﺍﻧﺘﺨﺎﺏ ﻫﺎﻱ ﺻﻮﺭﺕ ﮔﺮﻓﺘﻪ‬ ‫ﺑﺮﺍﻱ ﺗﺄﻣﻴﻦ ﻓﻌﺎﻟﻴﺖ ﻫﺎﻱ ﺍﻗﺘﺼﺎﺩﻱ ﻫﺮ ﻳﻚ ﺍﺯ ﻛﺸﻮﺭ ﻫﺎ ﺍﺳﺖ ‪ .‬ﺁﻧﻬﺎ ﻫﻤﭽﻨﻴﻦ ﺑﻴﺎﻥ ﻛﻨﻨﺪﻩ ﺑﺨﺶ ﻫﺎﻱ ﻏﺎﻟﺐ ﺩﺭ ﺍﻗﺘﺼﺎﺩ ﻛﺸﻮﺭ ﻫﺎﻱ ﻣﺨﺘﻠﻒ‬ ‫ﻣﻲ ﺑﺎﺷﻨﺪ ‪.‬‬ ‫ﺩﺭ ﺳﺎﻝ ‪ 2009‬ﭘﻨﺞ ﻣﻨﺘﺸﺮ ﻛﻨﻨﺪﻩ ﻋﻤﺪﻩ )ﭼﻴﻦ‪ ،‬ﺁﻣﺮﻳﻜﺎ‪ ،‬ﻫﻨﺪ‪ ،‬ﺭﻭﺳﻴﻪ‪ ،‬ژﺍﭘﻦ( ﺩﺍﺭﻧﺪﻩ ‪ % 45‬ﻛﻞ ﺟﻤﻌﻴﺖ ﻭ ﺗﻮﻟﻴﺪ ﻛﻨﻨﺪﻩ ‪ % 56‬ﻛﻞ ﺍﻧﺘﺸﺎﺭ‬ ‫ﺟﻬﺎﻧﻲ ‪ CO 2‬ﻫﺴﺘﻨﺪ ﻭ ﻧﻴﺰ ‪ % 51‬ﺗﻮﻟﻴﺪ ﻧﺎﺧﺎﻟﺺ ﺩﺍﺧﻠﻲ )‪ ( 3GPD‬ﺩﻧﻴﺎ ﻣﻲ ﺑﺎﺷﻨﺪ‪ .‬ﺑﺎ ﺍﻳﻦ ﺣﺎﻝ ﺳﻬﻢ ﻣﺮﺑﻮﻃﻪ ﺍﻳﻦ ﭘﻨﺞ ﻛﺸﻮﺭ ﺑﺮﺍﻱ ﻫﺮ ﺳﻪ‬ ‫ﻣﺘﻐﻴﺮ ﺑﺴﻴﺎﺭ ﻣﺘﻔﺎﻭﺕ ﺍﺳﺖ‪.‬‬ ‫ﺩﺭ ﺍﻳﺎﻻﺕ ﻣﺘﺤﺪﻩ ﺁﻣﺮﻳﻜﺎ ﺑﺎ ﺩﺍﺷﺘﻦ ﺳﻬﻢ ﺑﺰﺭگ ﺍﻧﺘﺸﺎﺭﺍﺕ ﺟﻬﺎﻧﻲ‪ ،‬ﻣﺘﻨﺎﻇﺮﺍً ﺳﻬﻢ ﻣﺘﻨﺎﺳﺒﻲ ﺍﺯ ﺗﻮﻟﻴﺪﺍﺕ ﺍﻗﺘﺼﺎﺩﻱ )ﻛﻪ ﺑﺎ ‪ GDP‬ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮﻱ‬ ‫ﻣﻲ ﺷﻮﺩ (ﺭﺍ ﻧﻴﺰ ﺩﺍﺭﺩ ﻛﻪ ﺑﺰﺭﮔﺘﺮﻳﻦ ﻣﻘﺪﺍﺭ ﺩﺭ ﺩﻧﻴﺎ ﻣﻲ ﺑﺎﺷﺪ‪ .‬ژﺍﭘﻦ ﺑﺎ ‪ GDP‬ﺑﻴﺶ ﺍﺯ ﺩﻭ ﺑﺮﺍﺑﺮ ﺭﻭﺳﻴﻪ‪ %29 ،‬ﻛﻤﺘﺮ ﺍﺯ ﺭﻭﺳﻴﻪ ﺍﻧﺘﺸﺎﺭ ﺩﺍﺭﺩ‪.‬‬ ‫ﺑﺎ ﺍﻳﻨﻜﻪ ﺁﺏ ﻭ ﻫﻮﺍ ﻭ ﭘﺎﺭﺍﻣﺘﺮﻫﺎﻱ ﺩﻳﮕﺮ ﺑﺮ ﻣﺼﺮﻑ ﺍﻧﺮژﻱ ﺗﺎﺛﻴﺮ ﺩﺍﺭﻧﺪ‪ ،‬ﻣﻘﺎﺩﻳﺮ ﻧﺴﺒﺘﺎ ً ﺑﺎﻻﻱ ﺍﻧﺘﺸﺎﺭ ﺑﻪ ‪ GDP‬ﻧﺸﺎﻧﮕﺮ ﭘﺘﺎﻧﺴﻴﻠﻲ ﺑﺮﺍﻱ ﺟﺪﺍ‬ ‫ﺳﺎﺧﺘﻦ ﺍﻧﺘﺸﺎﺭ ‪ CO 2‬ﺍﺯ ﺭﺷﺪ ﺍﻗﺘﺼﺎﺩﻱ ﺍﺳﺖ‪ .‬ﺑﻬﻴﻨﻪ ﺳﺎﺯﻱ ﻫﺎﻱ ﻣﻤﻜﻦ ﻣﻲ ﺗﻮﺍﻧﺪ ﺣﺎﺻﻞ ﺍﺯ ﺗﻐﻴﻴﺮ ﺳﻮﺧﺖ ﺍﺯ ﻣﻨﺎﺑﻊ ﭘﺮ ﻛﺮﺑﻦ ﻳﺎ ﺑﻬﺒﻮﺩ‬ ‫ﺑﺎﺯﺩﻫﻲ ﺍﻧﺮژﻱ ﺩﺭ ﻫﻤﻪ ﻣﺮﺍﺣﻞ ﺯﻧﺠﻴﺮﻩ ﺗﺄﻣﻴﻦ ﺍﻧﺮژﻱ ) ﺍﺳﺘﺨﺮﺍﺝ ﺳﻮﺧﺖ ﺗﺎ ﻣﺼﺮﻑ ﻧﻬﺎﻳﻲ ﺍﻧﺮژﻱ ‪ ( 4‬ﺑﺎﺷﺪ‪ .‬ﺩﺭ ﺑﻴﻦ ﭘﻨﺞ ﻣﻨﺘﺸﺮ ﻛﻨﻨﺪﻩ ﻋﻤﺪﻩ‬ ‫‪ CO 2‬ﺩﺭ ﺳﺎﻝ ‪ ،2009‬ﭼﻴﻦ‪ ،‬ﺭﻭﺳﻴﻪ‪ ،‬ﺁﻣﺮﻳﻜﺎ‪ ،‬ﺑﻄﻮﺭ ﻗﺎﺑﻞ ﻣﻼﺣﻈﻪ ﺍﻱ ﻣﻘﺎﺩﻳﺮ ﺍﻧﺘﺸﺎﺭ ‪ CO 2‬ﺑﻪ ﻭﺍﺣﺪ ‪ GDP‬ﺭﺍ ﺩﺭ ﻓﺎﺻﻠﻪ ﺳﺎﻝ ﻫﺎﻱ ‪1990‬‬ ‫ﺗﺎ ‪ 2009‬ﻛﺎﻫﺶ ﺩﺍﺩﻩ ﺍﻧﺪ )ﺷﻜﻞ ‪ .( 8‬ﺩﻭ ﻛﺸﻮﺭ ﻫﻨﺪ ﻭ ژﺍﭘﻦ ﻗﺒ ً‬ ‫ﻼ ﻫﻢ ﻣﻘﺪﺍﺭ ﺍﻧﺘﺸﺎﺭ ﺑﻪ ‪ GDP‬ﺑﺴﻴﺎﺭ ﭘﺎﻳﻴﻦ ﺗﺮﻱ ﺩﺍﺷﺘﻪ ﺍﻧﺪ‪.‬‬ ‫‪R‬‬

‫‪P‬‬

‫‪R‬‬

‫‪R‬‬

‫‪P2F‬‬

‫‪R‬‬

‫‪P3F‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪P‬‬

‫‪R‬‬

‫‪-1‬ﻣﺼﺮﻑ ﺍﻧﺮژﻱ ﺩﺭ ﺳﺎﻝ ‪ 2009‬ﺍﺯ ﺑﺤﺮﺍﻥ ﺍﻗﺘﺼﺎﺩﻱ ﺟﻬﺎﻧﻲ ﻣﺘﺎﺛﺮ ﺑﻮﺩﻩ ﻭ ﺑﺮﺧﻲ ﺭﻭﻧﺪﻫﺎﻱ ﺍﻧﺘﺸﺎﺭ ‪ CO2‬ﻣﻤﻜﻦ ﺍﺳﺖ ﮔﻤﺮﺍﻩ ﻛﻨﻨﺪﻩ ﺑﺎﺷﻨﺪ‪.‬‬ ‫‪ -2‬ﻫﻴﭻ ﺗﻚ ﺷﺎﺧﺼﻲ ﻧﻤﻲ ﺗﻮﺍﻧﺪ ﺗﺼﻮﻳﺮ ﻛﺎﻣﻠﻲ ﺍﺯ ﻛﺎﺭﻛﺮﺩ ﺍﻧﺘﺸﺎﺭ ‪ CO2‬ﻳﻚ ﻛﺸﻮﺭ ﻳﺎ ﻇﺮﻓﻴﺖ ﻣﺮﺑﻮﻃﻪ ﺑﺮﺍﻱ ﻛﺎﻫﺶ ﺍﻧﺘﺸﺎﺭﺍﺕ ﺭﺍ ﺍﺭﺍﺋﻪ ﻧﻤﺎﻳﺪ‪ .‬ﺷﺎﺧﺺ ﻫﺎﻱ ﺑﺤﺚ ﺷﺪﻩ‬ ‫ﺩﺭ ﺍﻳﻨﺠﺎ ﻧﻤﺎﻳﺎﻧﮕﺮ ﻳﻚ ﻛﺎﺭﻛﺮﺩ ﺍﺳﺖ ﺍﻣﺎ ﺑﻄﻮﺭ ﺣﺘﻢ ﻛﺎﻣﻞ ﻧﻴﺴﺘﻨﺪ ‪.‬‬ ‫‪ -3‬ﺩﺭ ﻃﻮﻝ ﺍﻳﻦ ﺗﺤﻠﻴﻞ ‪ GDP ،‬ﺍﺷﺎﺭﻩ ﺑﻪ ‪ GDP‬ﺑﺮﺍﺳﺎﺱ ﺩﻻﺭ ﺳﺎﻝ ‪ 2000‬ﺑﺎ ﻗﺪﺭﺕ ﺧﺮﻳﺪ ﺑﺮﺍﺑﺮ ﺩﺍﺭﺩ‪.‬‬ ‫‪ -4‬ﺑﺎﻧﻚ ﺍﻃﻼﻋﺎﺗﻲ ﺭﺍﻫﻜﺎﺭ ﻫﺎ ﻭ ﺳﻴﺎﺳﺖ ﻫﺎ ‪ IEA‬ﺩﺳﺘﺮﺳﻲ ﺑﻪ ﺍﻃﻼﻋﺎﺕ ﺩﺭ ﺧﺼﻮﺹ ﺭﺍﻫﻜﺎﺭﻫﺎ ﻭ ﺳﻴﺎﺳﺖ ﻫﺎﻱ ﺍﺧﺬ ﺷﺪﻩ ﻣﺮﺑﻮﻁ ﺑﻪ ﺍﻧﺮژﻱ ﻳﺎ ﺳﻴﺎﺳﺖ ﻫﺎﻱ ﺑﺮﻧﺎﻣﻪ ﺭﻳﺰﻱ‬ ‫ﺷﺪﻩ ﺑﺮﺍﻱ ﻛﺎﻫﺶ ﺍﻧﺘﺸﺎﺭ ﮔﺎﺯ ﻫﺎﻱ ﮔﻠﺨﺎﻧﻪ ﺍﻱ‪ ،‬ﺑﻬﺒﻮﺩ ﺭﺍﻧﺪﻣﺎﻥ ﺍﻧﺮژﻱ ﻭ ﭘﺸﺘﻴﺒﺎﻧﻲ ﺍﺯ ﺗﻮﺳﻌﻪ ﻭ ﭘﻴﺎﺩﻩ ﺳﺎﺯﻱ ﺍﻧﺮژﻱ ﻫﺎﻱ ﺗﺠﺪﻳﺪ ﭘﺬﻳﺮ ﺭﺍ ﻣﻤﻜﻦ ﻣﻲ ﺳﺎﺯﺩ‪ .‬ﺑﺎﻧﻚ ﺍﻃﻼﻋﺎﺕ ﺑﺮ‬ ‫ﺧﻂ ﺩﺭ ‪ www.iea.org/textbase/pm/index.html‬ﻗﺎﺑﻞ ﺩﺳﺘﺮﺳﻲ ﺍﺳﺖ‪.‬‬

‫‪5‬‬ ‫ﺧﺒﺮﻧﺎﻣﻪ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ‪ ،‬ﺳﺎﻝ ﭼﻬﺎﺭﻡ‪ ،‬ﺷﻤﺎﺭﻩ ‪ -22‬ﺩﻱ ﻭ ﺑﻬﻤﻦ ‪91‬‬


‫ﺷﻜﻞ ‪ :8‬ﺭﻭﻧﺪ ﺷﺪﺕ ﺍﻧﺘﺸﺎﺭ ‪ CO 2‬ﺑﺮﺍﻱ ‪ 5‬ﻛﺸﻮﺭ ﺑﺎ ﺑﻴﺸﺘﺮﻳﻦ ﺍﻧﺘﺸﺎﺭ‬ ‫‪R‬‬

‫‪R‬‬

‫*‬ ‫‪P‬‬

‫* ﺍﻧﺪﺍﺯﻩ ﺩﺍﻳﺮﻩﻫﺎ ﻧﺸﺎﻥ ﺩﻫﻨﺪﻩ ﻣﺠﻤﻮﻉ ﻣﻴﺰﺍﻥ ﺍﻧﺘﺸﺎﺭ ‪ CO 2‬ﻛﺸﻮﺭ ﺩﺭ ﺁﻥ ﺳﺎﻝ ﺍﺳﺖ‪.‬‬ ‫‪4T‬‬

‫‪4T‬‬

‫‪4T‬‬

‫‪4T‬‬

‫‪4T‬‬

‫‪4T‬‬

‫‪R‬‬

‫‪4T‬‬

‫‪R‬‬

‫‪4T‬‬

‫‪4T‬‬

‫ﻧﻜﺘﻪ ﺍﺻﻠﻲ ‪ :‬ﭼﻴﻦ‪ ،‬ﺭﻭﺳﻴﻪ ﻭ ﺍﻳﺎﻻﺕ ﻣﺘﺤﺪﻩ ﺁﻣﺮﻳﻜﺎ ﺑﻬﻴﻨﻪ ﺳﺎﺯﻱ ﻣﺤﺴﻮﺳﻲ ﺩﺭ ﻣﻴﺰﺍﻥ ﺍﻧﺘﺸﺎﺭﺍﺕ ‪ CO 2‬ﻣﻨﺘﺸﺮ ﺷﺪﻩ ﺑﻪ ﺍﺯﺍﻱ ﻭﺍﺣﺪ ‪GDP‬‬ ‫‪R‬‬

‫‪R‬‬

‫ﺩﺍﺷﺘﻪ ﺍﻧﺪ‪.‬‬ ‫ﺩﺭ ﺳﻄﺢ ﺟﻬﺎﻧﻲ ﺑﻴﺸﺘﺮﻳﻦ ﺳﻄﺢ ﺍﻧﺘﺸﺎﺭ ﺑﻪ ‪ GDP‬ﺑﺮﺍﻱ ﻧﺎﺣﻴﻪ ﺻﺎﺩﺭ ﻛﻨﻨﺪﻩ ﻧﻔﺖ ﻭ ﮔﺎﺯ ﺧﺎﻭﺭﻣﻴﺎﻧﻪ ﻭ ﻧﻴﺰ ﺍﻗﺘﺼﺎﺩﻫﺎﻱ ﺩﺭ ﺣﺎﻝ ﮔﺬﺭ) ‪( EIT‬‬ ‫ﺑﺎ ﻣﺼﺮﻑ ﺍﻧﺮژﻱ ﺑﺎﻻ ﻣﺸﺎﻫﺪﻩ ﺷﺪﻩ ﺍﺳﺖ ) ﺷﻜﻞ ‪ .( 9‬ﻣﻴﺰﺍﻥ ﺍﻧﺘﺸﺎﺭ ﺑﻪ ‪ GDP‬ﭼﻴﻦ ﺑﻪ ﺳﻄﺤﻲ ﻧﺰﺩﻳﻚ ﺑﻪ ﺳﻄﺢ ﺁﻣﺮﻳﻜﺎ ﻧﺰﻭﻝ ﻛﺮﺩﻩ ﺍﺳﺖ‪.‬‬ ‫‪5‬‬

‫‪P4F‬‬

‫‪P‬‬

‫ﺷﻜﻞ ‪ :9‬ﺍﻧﺘﺸﺎﺭ ‪ CO 2‬ﺑﻪ ﺍﺯﺍﻱ ‪ ،GDP‬ﺩﺭ ﻣﻨﺎﻃﻖ ﺑﺰﺭگ ﺟﻬﺎﻥ ﺩﺭ ﺳﺎﻝ ‪2009‬‬ ‫‪R‬‬

‫‪R‬‬

‫‪ -5‬ﺍﻗﺘﺼﺎﺩ ﻫﺎﻱ ﺩﺭ ﺣﺎﻝ ﮔﺬﺭ )‪ (ETS‬ﻛﺸﻮﺭ ﻫﺎﻱ ﻋﻀﻮ ﺿﻤﻴﻤﻪ ﻳﻚ ﻫﺴﺘﻨﺪ ﻛﻪ ﺩﺭ ﺣﺎﻝ ﮔﺬﺭ ﺑﻪ ﺍﻗﺘﺼﺎﺩ ﺑﺎﺯﺍﺭ ﻫﺴﺘﻨﺪ ﻛﻪ ﺷﺎﻣﻞ ﺑﻼﺭﻭﺱ‪ ،‬ﺑﻠﻐﺎﺭﺳﺘﺎﻥ‪ ،‬ﻛﺮﻭﺍﺳﻲ‪،‬‬ ‫ﺟﻤﻬﻮﺭﻱ ﭼﻚ‪ ،‬ﺍﺳﺘﻮﻧﻲ‪ ،‬ﻣﺠﺎﺭﺳﺘﺎﻥ‪ ،‬ﻻﺗﻮﻧﻲ‪ ،‬ﻟﻴﺘﻮﺍﻧﻲ‪ ،‬ﻟﻬﺴﺘﺎﻥ‪ ،‬ﺭﻭﻣﺎﻧﻲ‪ ،‬ﺭﻭﺳﻴﻪ‪ ،‬ﺟﻤﻬﻮﺭﻱ ﺍﺳﻠﻮﺍﻛﻲ‪ ،‬ﺍﺳﻠﻮﺍﻧﻲ ﻭ ﺍﻛﺮﺍﻳﻦ ﻣﻲ ﺑﺎﺷﻨﺪ‪.‬‬

‫‪6‬‬

‫ﺧﺒﺮﻧﺎﻣﻪ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ‪ ،‬ﺳﺎﻝ ﭼﻬﺎﺭﻡ‪ ،‬ﺷﻤﺎﺭﻩ ‪ -22‬ﺩﻱ ﻭ ﺑﻬﻤﻦ ‪91‬‬


‫*ﺩﺭ ﭼﻴﻦ‪ ،‬ﻫﻨﻚ ﻛﻨﮓ ﻧﻴﺰ ﺩﺭﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪﻩ ﺍﺳﺖ‪.‬‬

‫ﻧﻜﺘﻪ ﺍﺻﻠﻲ ‪ :‬ﺷﺪﺕ ﺍﻧﺘﺸﺎﺭ ﺑﺮ ﻣﺒﻨﺎﻱ ﭘﺎﺭﺍﻣﺘﺮﻫﺎﻱ ﺍﻗﺘﺼﺎﺩﻱ ﺗﻔﺎﻭﺕ ﻫﺎﻱ ﺯﻳﺎﺩﻱ ﺩﺭ ﻣﻨﺎﻃﻖ ﻣﺨﺘﻠﻒ ﺩﻧﻴﺎ ﺩﺍﺭﺩ‪.‬‬

‫ﺑﺎﺯﺩﻩ ﺗﻐﻴﻴﺮ ﺍﻧﺘﺸﺎﺭﺍﺕ ﺳﺮﺍﻧﻪ ﺩﺭ ﻣﻨﺎﻃﻖ ﻣﺨﺘﻠﻒ ﺩﻧﻴﺎ ﺩﺭ ﻣﻘﺎﻳﺴﻪ ﺑﺎ ﻣﻴﺰﺍﻥ ﺍﻧﺘﺸﺎﺭﺍﺕ ﺑﻪ ﺍﺯﺍﻱ ﻭﺍﺣﺪ ‪ ،GDP‬ﺑﺰﺭﮔﺘﺮ ﺍﺳﺖ ﻭ ﺍﻳﻦ ﺑﻪ ﻣﻌﻨﻲ‬ ‫ﺗﻔﺎﻭﺕ ﻫﺎﻱ ﮔﺴﺘﺮﺩﻩ ﺩﺭ ﻧﺤﻮﻩ ﻣﺼﺮﻑ ﺍﻧﺮژﻱ ﺩﺭ ﻧﻮﺍﺣﻲ ﻭ ﻛﺸﻮﺭﻫﺎﻱ ﻣﺨﺘﻠﻒ ﺍﺳﺖ‪.‬‬ ‫ﺩﺭ ﺳﺎﻝ ‪ 2009‬ﺍﻳﺎﻻﺕ ﻣﺘﺤﺪﻩ ﺁﻣﺮﻳﻜﺎ ﺩﺭ ﺣﺎﻟﻴﻜﻪ ﻛﻤﺘﺮ ﺍﺯ ‪ %5‬ﺟﻤﻌﻴﺖ ﻛﻞ ﺩﻧﻴﺎ ﺭﺍ ﺑﻪ ﺧﻮﺩ ﺍﺧﺘﺼﺎﺹ ﺩﺍﺩﻩ ﺍﺳﺖ‪ ،‬ﺑﻪ ﺗﻨﻬﺎﻳﻲ ‪ %18‬ﻛﻞ ﺍﻧﺘﺸﺎﺭ‬ ‫‪CO 2‬ﺩﻧﻴﺎﺭﺍ ﺗﻮﻟﻴﺪ ﻛﺮﺩﻩ ﺍﺳﺖ‪ .‬ﺍﺯ ﺳﻮﻳﻲ ﺩﻳﮕﺮ‪ ،‬ﭼﻴﻦ ﺑﺎ ‪ %20‬ﺟﻤﻌﻴﺖ ﻛﻞ ﺩﻧﻴﺎ‪ ،‬ﺳﻬﻢ ﻗﺎﺑﻞ ﻗﻴﺎﺱ )‪ (%24‬ﺍﺯ ﻛﻞ ﺍﻧﺘﺸﺎﺭ ‪ CO 2‬ﺭﺍ ﺩﺍﺷﺘﻪ ﺩﺭ‬ ‫ﺣﺎﻟﻴﻜﻪ ﻫﻨﺪ ﺑﺎ ‪ %17‬ﺟﻤﻌﻴﺖ ﺩﻧﻴﺎ‪ ،‬ﺑﻴﺶ ﺍﺯ ‪ %5‬ﺍﻧﺘﺸﺎﺭ ‪ CO 2‬ﺭﺍ ﺑﻪ ﺧﻮﺩ ﺍﺧﺘﺼﺎﺹ ﺩﺍﺩﻩ ﺍﺳﺖ‪.‬‬ ‫ﺩﺭ ﺑﻴﻦ ﭘﻨﺞ ﻣﻨﺘﺸﺮ ﻛﻨﻨﺪﻩ ﻋﻤﺪﻩ ‪ ،‬ﺳﻄﺢ ﺍﻧﺘﺸﺎﺭ ﺳﺮﺍﻧﻪ ﺑﺴﻴﺎﺭ ﻣﺘﻔﺎﻭﺕ ﺑﻮﺩﻩ ﺍﺳﺖ ﻛﻪ ﺍﺯ ﺳﺮﺍﻧﻪ ﻳﻚ ﺗﻦ ‪ CO 2‬ﺩﺭ ﻫﻨﺪ ﺗﺎ ‪ 5‬ﺗﻦ ﺩﺭ ﭼﻴﻦ ﻭ ‪17‬‬ ‫ﺗﻦ ﺩﺭ ﺁﻣﺮﻳﻜﺎ ﻣﺘﻐﻴﺮ ﺍﺳﺖ‪.‬‬ ‫ﺍﮔﺮ ﭼﻪ ﺑﺮﺧﻲ ﺍﻗﺘﺼﺎﺩﻫﺎﻱ ﺑﺎ ﺭﺷﺪ ﺳﺮﻳﻊ ﺑﻄﻮﺭ ﻣﺤﺴﻮﺳﻲ ﺳﺮﺍﻧﻪ ﺍﻧﺘﺸﺎﺭ ﺧﻮﺩ ﺭﺍ ﺍﻓﺰﺍﻳﺶ ﻣﻲ ﺩﻫﻨﺪ‪ ،‬ﻛﺸﻮﺭﻫﺎﻱ ﺻﻨﻌﺘﻲ ﺳﺮﺍﻧﻪ ﺍﻧﺘﺸﺎﺭ ‪CO 2‬‬ ‫ﺑﺴﻴﺎﺭ ﺑﺎﻻﺗﺮﻱ ﻧﺴﺒﺖ ﺑﻪ ﻣﺘﻮﺳﻂ ﺩﻧﻴﺎ ﺩﺍﺭﻧﺪ‪ .‬ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﺜﺎﻝ ﺩﺭ ﻓﺎﺻﻠﻪ ﺳﺎﻝ ﻫﺎﻱ ‪ ،2009-1990‬ﺑﻴﻦ ﭘﻨﺞ ﻛﺸﻮﺭ ﻣﻨﺘﺸﺮ ﻛﻨﻨﺪﻩ ﻋﻤﺪﻩ‪ ،‬ﭼﻴﻦ‬ ‫ﺳﺮﺍﻧﻪ ﺍﻧﺘﺸﺎﺭ ﺧﻮﺩ ﺭﺍ ﺑﻴﺶ ﺍﺯ ‪ 2/5‬ﺑﺮﺍﺑﺮ ﺍﻓﺰﺍﻳﺶ ﺩﺍﺩﻩ ﻭ ﻫﻨﺪ ﺩﻭ ﺑﺮﺍﺑﺮ ﻧﻤﻮﺩﻩ ﺍﺳﺖ‪ .‬ﺑﻮﺿﻮﺡ ﺍﻳﻦ ﺩﻭ ﻛﺸﻮﺭ ﺳﻬﻢ ﻋﻤﺪﻩﺍﻱ ﺩﺭ ﺍﻓﺰﺍﻳﺶ ‪ %8‬ﺳﺮﺍﻧﻪ‬ ‫ﺍﻧﺘﺸﺎﺭ ﺩﻧﻴﺎ ﺩﺭ ﺩﻭﺭﻩ ﻓﻮﻕ ﺩﺍﺷﺘﻪ ﺍﻧﺪ‪ .‬ﺑﺮﻋﻜﺲ ﻫﺮ ﺩﻭ ﻛﺸﻮﺭ ﺭﻭﺳﻴﻪ ﻭ ﺁﻣﺮﻳﻜﺎ ﺳﺮﺍﻧﻪ ﺍﻧﺘﺸﺎﺭ ﺧﻮﺩ ﺭﺍ ﺑﻪ ﻣﻴﺰﺍﻥ ﻗﺎﺑﻞ ﻣﻼﺣﻈﻪ ‪ % 27‬ﻭ ‪ %13‬ﺩﺭ‬ ‫ﺩﻭﺭﻩ ﻣﺸﺎﺑﻪ ﻛﺎﻫﺶ ﺩﺍﺩﻩ ﺍﻧﺪ‪.‬‬ ‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫ﺷﻜﻞ ‪ :10‬ﺳﺮﺍﻧﻪ ﺍﻧﺘﺸﺎﺭ ‪ CO 2‬ﺩﺭ ﻣﻨﺎﻃﻖ ﺑﺰﺭگ ﺟﻬﺎﻥ ﺩﺭ ﺳﺎﻝ ‪2009‬‬ ‫‪R‬‬

‫‪R‬‬

‫* ﺩﺭ ﭼﻴﻦ‪ ،‬ﻫﻨﻚ ﻛﻨﮓ ﻧﻴﺰ ﺩﺭﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪﻩ ﺍﺳﺖ‪.‬‬

‫ﻧﻜﺘﻪ ﺍﺻﻠﻲ ‪ :‬ﺍﻧﺘﺸﺎﺭ ﺳﺮﺍﻧﻪ ﺣﺘﻲ ﺑﻴﺶ ﺍﺯ ﺍﻧﺘﺸﺎﺭ ﺑﻪ ﺍﺯﺍﻱ ﻭﺍﺣﺪ ‪ GDP‬ﺩﺭ ﻣﻨﺎﻃﻖ ﻣﺨﺘﻠﻒ ﺩﻧﻴﺎ ﺗﻐﻴﻴﺮ ﺩﺍﺷﺘﻪ ﺍﺳﺖ ‪.‬‬

‫‪7‬‬ ‫ﺧﺒﺮﻧﺎﻣﻪ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ‪ ،‬ﺳﺎﻝ ﭼﻬﺎﺭﻡ‪ ،‬ﺷﻤﺎﺭﻩ ‪ -22‬ﺩﻱ ﻭ ﺑﻬﻤﻦ ‪91‬‬


‫ﻧﮕﺎﻫﻲ ﺑﻪ ﻭﺿﻌﻴﺖ ﺍﻳﺮﺍﻥ ﺩﺭ ﮔﺰﺍﺭﺵ‬

‫ﺍﻳﺮﺍﻥ ﺩﺭ ﺭﺩﺓ ﻫﻔﺘﻢ ﻣﻨﺘﺸﺮﻛﻨﻨﺪﮔﺎﻥ ‪ CO 2‬ﺩﺭ ﺳﻄﺢ ﺟﻬﺎﻥ ﻗﺮﺍﺭ ﮔﺮﻓﺘﻪ ﺍﺳﺖ‪ .‬ﻻﺯﻡ ﺑﺬﻛﺮ ﺍﺳﺖ‪ ،‬ﺍﻳﺮﺍﻥ ﺩﺭ ﺑﻴﻦ ﻛﺸﻮﺭ ﻫﺎﻱ ﺩﺭ ﺣﺎﻝ ﺗﻮﺳﻌﻪ ﺑﻌﺪ‬ ‫ﺍﺯ ﭼﻴﻦ ﻭ ﻫﻨﺪ ﻗﺮﺍﺭ ﺩﺍﺭﺩ‪.‬‬ ‫ﻣﻘﺪﺍﺭ ﺍﻧﺘﺸﺎﺭ ‪ CO 2‬ﺍﻳﺮﺍﻥ ﺩﺭ ﺳﺎﻝ ‪ 2009‬ﺣﺪﻭﺩ ‪ %197‬ﺑﻴﺶ ﺍﺯ ﻣﻴﺰﺍﻥ ﺁﻥ ﺩﺭ ﺳﺎﻝ ‪ 1990‬ﺍﺳﺖ ﻛﻪ ﺩﺭ ﺍﻳﻦ ﻣﻴﺎﻥ‪ ،‬ﺳﻬﻢ ﮔﺎﺯ ﻃﺒﻴﻌﻲ ﺑﺎ‬ ‫‪ % 618‬ﺍﻓﺰﺍﻳﺶ‪ ،‬ﺑﻴﺶ ﺍﺯ ﻧﻔﺖ ) ‪ %87‬ﺍﻓﺰﺍﻳﺶ( ﻭ ﺯﻏﺎﻝ ﺳﻨﮓ ) ‪ % 120‬ﺍﻓﺰﺍﻳﺶ( ﺑﻮﺩﻩ ﺍﺳﺖ‪.‬‬ ‫ﺍﻧﺘﺸﺎﺭﺍﺕ ﺍﻳﺮﺍﻥ ﺩﺭ ﺑﺨﺶ ﺣﻤﻞ ﻭ ﻧﻘﻞ ﺩﺭﻳﺎﻳﻲ ‪ % 538‬ﺩﺭ ﻓﺎﺻﻠﻪ ﺳﺎﻝ ﻫﺎﻱ ‪ 1990‬ﺗﺎ ‪ 2009‬ﺍﻓﺰﺍﻳﺶ ﻳﺎﻓﺘﻪ ﺍﺳﺖ‪ .‬ﺑﺨﺶ ﺣﻤﻞ ﻭ ﻧﻘﻞ ﻫﻮﺍﻳﻲ‬ ‫ﺍﻓﺰﺍﻳﺶ ‪ % 149‬ﺩﺭ ﺩﻭﺭﻩ ﻓﻮﻕ ﺩﺍﺷﺘﻪ ﺍﺳﺖ‪.‬‬ ‫ﺑﻄﻮﺭ ﺧﻼﺻﻪ ﻛﻞ ﺍﻧﺘﺸﺎﺭ ‪ CO 2‬ﺍﻳﺮﺍﻥ ﺍﺯ ﺳﻮﺯﺍﻧﺪﻥ ﺳﻮﺧﺖ ﻫﺎ‪ 533 ،‬ﻣﻴﻠﻴﻮﻥ ﺗﻦ ﺑﻮﺩﻩ ﻛﻪ ‪ 128‬ﻣﻴﻠﻴﻮﻥ ﺗﻦ ﺁﻥ ﺑﺮﺍﻱ ﺗﻮﻟﻴﺪ ﺑﺮﻕ ﻭ ﺣﺮﺍﺭﺕ‪،‬‬ ‫‪ 114‬ﻣﻴﻠﻴﻮﻥ ﺗﻦ ﺩﺭ ﺑﺨﺶ ﺣﻤﻞ ﻭ ﻧﻘﻞ‪ 122 ،‬ﻣﻴﻠﻴﻮﻥ ﺗﻦ ﺻﻨﻌﺖ ﻭ ﺳﺎﺧﺘﻤﺎﻥ ﻭ ‪ 105‬ﻣﻴﻠﻴﻮﻥ ﺗﻦ ﻣﺨﺘﺺ ﺑﺨﺶ ﺧﺎﻧﮕﻲ ﺑﻮﺩﻩ ﺍﺳﺖ‪.‬‬ ‫ﻛﻞ ﺍﻧﺮژﻱ ﺍﻭ ‪‬ﻟﻴﻪ ﺗﺄﻣﻴﻦ ﺷﺪﻩ ﺍﻳﺮﺍﻥ ﺍﺯ ‪ 2841‬ﭘﺘﺎژﻭﻝ ﺩﺭ ﺳﺎﻝ ‪ 1990‬ﺑﻪ ‪ 9037‬ﭘﺘﺎژﻭﻝ ﺩﺭ ﺳﺎﻝ ‪ 2009‬ﺍﻓﺰﺍﻳﺶ ﻳﺎﻓﺘﻪ ﻛﻪ ﻣﺒ ‪‬ﻴﻦ ﺍﻓﺰﺍﻳﺶ‬ ‫‪ %218‬ﺍﺳﺖ‪ .‬ﺩﺭ ﺍﻳﻦ ﻓﺎﺻﻠﻪ‪ ،‬ﺗﻮﻟﻴﺪ ﻧﺎﺧﺎﻟﺺ ﺩﺍﺧﻠﻲ ﻧﻴﺰ ﺑﺎ ﺭﺷﺪ ‪ % 125‬ﺍﺯ ‪ 70‬ﻣﻴﻠﻴﺎﺭﺩ ﺩﻻﺭ ﺑﻪ ‪ 158‬ﻣﻴﻠﻴﺎﺭﺩ ﺩﻻﺭ ﺭﺳﻴﺪﻩ ﺍﺳﺖ‪GDP ).‬‬ ‫ﺑﺮﻣﺒﻨﺎﻱ ﻧﺮﺥ ﺗﺴﻌﻴﺮ(‪ GDP .‬ﺑﺮ ﻣﺒﻨﺎﻱ ﻗﺪﺭﺕ ﺧﺮﻳﺪ ﺑﺮﺍﺑﺮ ﺩﺭ ﺳﺎﻝ ‪ 2009‬ﻣﻌﺎﺩﻝ ‪ 577‬ﻣﻴﻠﻴﺎﺭﺩ ﺩﻻﺭ ﻣﻲ ﺑﺎﺷﺪ‪ .‬ﺟﻤﻌﻴﺖ ﺍﻳﺮﺍﻥ ﺩﺭ ﺍﻳﻦ ﺩﻭﺭﻩ‬ ‫ﺍﺯ ‪ 54‬ﻣﻴﻠﻴﻮﻥ ﻧﻔﺮ ﺑﻪ ‪ 73‬ﻣﻴﻠﻴﻮﻥ ﻧﻔﺮ )‪ (%34‬ﺍﻓﺰﺍﻳﺶ ﻳﺎﻓﺘﻪ ﺍﺳﺖ‪ .‬ﺍﺯ ﺍﻳﻨﺮﻭ ﻣﻴﺰﺍﻥ ﺍﻧﺘﺸﺎﺭ ‪ CO 2‬ﺑﻪ ﻛﻞ ﺍﻧﺮژﻱ ﺍﻭ‪‬ﻟﻴﻪ ﺗﺄﻣﻴﻦ ﺷﺪﻩ‪ ،‬ﺍﺯ ‪ 63/2‬ﺗﻦ‬ ‫ﺑﺮ ﺗﺮﺍژﻭﻝ ﺑﻪ ‪ 59‬ﺗﻦ ﺑﺮ ﺗﺮﺍژﻭﻝ ﻛﺎﻫﺶ ﻳﺎﻓﺘﻪ ﺍﺳﺖ )‪ .(%66‬ﺩﺭ ﺣﺎﻟﻴﻜﻪ ﻣﻴﺰﺍﻥ ﺍﻧﺘﺸﺎﺭ ‪ CO 2‬ﺑﻪ ‪ GDP‬ﺩﺭ ﻓﺎﺻﻠﻪ ‪ 1990‬ﺗﺎ ‪ 2009‬ﺣﺪﻭﺩ ‪32‬‬ ‫‪ %‬ﺭﺷﺪ ﺩﺍﺷﺘﻪ ﺍﺳﺖ‪.‬‬ ‫ﺳﺮﺍﻧﻪ ﺍﻧﺘﺸﺎﺭ ‪ CO 2‬ﺍﺯ‪ 3/3‬ﺗﻦ ﺩﺭ ﻫﺮ ﻧﻔﺮ ﺩﺭ ﺳﺎﻝ ‪ 1990‬ﺑﻪ ‪ 7/31‬ﺗﻦ ﺩﺭ ﻫﺮ ﻧﻔﺮ ﺩﺭ ﺳﺎﻝ ‪ 2009‬ﺍﻓﺰﺍﻳﺶ ﻳﺎﻓﺘﻪ ﺍﺳﺖ‬ ‫)ﺭﺷﺪ ‪ ،(% 121/6‬ﻛﻪ ﺩﺭ ﺍﻳﻦ ﻣﻴﺎﻥ‪ ،‬ﺗﻮﻟﻴﺪ ﺑﺮﻕ ﻭ ﺣﺮﺍﺭﺕ ﺑﻴﺸﺘﺮﻳﻦ ﺳﻬﻢ ﺭﺍ ﺩﺍﺭﺩ )‪ 1/76‬ﺗﻦ ﺩﺭ ﻫﺮ ﻧﻔﺮ( ﻭ ﺑﺨﺶ ﺻﻨﻌﺖ‬ ‫) ‪ 1/67‬ﺗﻦ ﺩﺭ ﻫﺮ ﻧﻔﺮ(‪ ،‬ﺣﻤﻞ ﻭ ﻧﻘﻞ )‪ 1/56‬ﺗﻦ ﺩﺭ ﻫﺮ ﻧﻔﺮ ( ﻭ ﺧﺎﻧﮕﻲ )‪ 1/44‬ﺗﻦ ﺩﺭ ﻫﺮ ﻧﻔﺮ ( ﺩﺭ ﺭﺩﻩ ﻫﺎﻱ ﺑﻌﺪﻱ ﻗﺮﺍﺭ ﺩﺍﺭﻧﺪ‪ .‬ﺑﺎ ﺗﻮﺯﻳﻊ ﺳﻬﻢ‬ ‫ﺗﻮﻟﻴﺪ ﺑﺮﻕ ﻭ ﺣﺮﺍﺭﺕ ﺑﻪ ﺳﺎﻳﺮ ﺑﺨﺶ ﻫﺎﻱ ﻣﺼﺮﻑ ﻛﻨﻨﺪﻩ‪ ،‬ﺳﻬﻢ ﺑﺨﺶ ﺻﻨﻌﺖ ﺍﺯ ﺳﺮﺍﻧﻪ ‪ 7/31‬ﺗﻦ ﺑﻪ ‪ 2/26‬ﺗﻦ ﺩﺭ ﻫﺮ ﻧﻔﺮ ﻛﺎﻫﺶ ﻣﻲ ﻳﺎﺑﺪ ﻭ‬ ‫ﭘﺲ ﺍﺯ ﺁﻥ ﺑﺨﺶ ﺧﺎﻧﮕﻲ ﺑﺎ ﺳﺮﺍﻧﻪ‪ 2/00‬ﺗﻦ ﺩﺭ ﻫﺮ ﻧﻔﺮ ﻭ ﺣﻤﻞ ﻭ ﻧﻘﻞ ‪ 1/57‬ﺗﻦ ﺩﺭ ﻫﺮ ﻧﻔﺮ ﻗﺮﺍﺭ ﺩﺍﺭﺩ‪.‬‬ ‫ﻣﻴﺰﺍﻥ ﺍﻧﺘﺸﺎﺭ ‪ CO 2‬ﺑﻪ ﺍﺯﺍﻱ ﻫﺮ ﻛﻴﻠﻮﻭﺍﺕ ﺳﺎﻋﺖ ﺑﺮﻕ ﻭ ﺣﺮﺍﺭﺕ ﺗﻮﻟﻴﺪﻱ ﺍﺯ ‪ 606‬ﮔﺮﻡ ﺑﻪ ‪ 630‬ﮔﺮﻡ ﺩﺭ ﺳﺎﻝ ‪ 2009‬ﺍﻓﺰﺍﻳﺶ ﻳﺎﻓﺘﻪ ﺍﺳﺖ‪.‬‬ ‫ﻣﻘﺎﻳﺴﻪ ﭘﺎﺭﺍﻣﺘﺮﻫﺎﻱ ﺳﺮﺍﻧﻪ ﺍﻧﺘﺸﺎﺭ ‪ CO 2‬ﻭ ﺍﻧﺘﺸﺎﺭ ‪ CO 2‬ﺑﻪ ﺍﺯﺍﻱ ﻭﺍﺣﺪ ‪ GDP‬ﻧﺸﺎﻥ ﻣﻲ ﺩﻫﺪ ﻛﻪ ﺍﻳﺮﺍﻥ ﺑﻪ ﺭﻭﻧﺪ ﻣﺼﺮﻑ ﺍﻧﺮژﻱ‪ ،‬ﺑﺪﻭﻥ ﺗﻮﺟﻪ‬ ‫ﺑﻪ ﺍﻓﺰﺍﻳﺶ ﺑﺎﺯﺩﻫﻲ ﺁﻥ ﺍﺩﺍﻣﻪ ﺩﺍﺩﻩ ﺍﺳﺖ‪ ،‬ﮔﺮﭼﻪ ﺭﻭﻧﺪ ﺍﻧﺘﺸﺎﺭ ‪ CO 2‬ﺑﻪ ﺍﺯﺍﻱ ﻭﺍﺣﺪ ‪ GDP‬ﺩﺭ ﺳﺎﻝﻫﺎﻱ ﺍﺧﻴﺮ ﺷﻴﺐ ﺭﺷﺪ ﻣﻼﻳﻤﺘﺮﻱ ﺩﺍﺷﺘﻪ‬ ‫ﺍﺳﺖ ﻟﻴﻜﻦ ﺳﺮﺍﻧﻪ ﺍﻧﺘﺸﺎﺭ ‪ CO 2‬ﺑﺎ ﺷﻴﺐ ﺗﻨﺪﻱ ﺍﻓﺰﺍﻳﺶ ﻳﺎﻓﺘﻪ ﺍﺳﺖ‪.‬‬ ‫ﻣﺘﻦ ﻛﺎﻣﻞ ﮔﺰﺍﺭﺵ ﺩﺭ ‪ www.iea.org/co2highlights/co2highlights.pdf‬ﻗﺎﺑﻞ ﺩﺳﺘﺮﺳﻲ ﺍﺳﺖ‪.‬‬ ‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪5TU‬‬

‫‪R‬‬

‫‪R‬‬

‫‪U5T‬‬

‫‪8‬‬ ‫ﺧﺒﺮﻧﺎﻣﻪ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ‪ ،‬ﺳﺎﻝ ﭼﻬﺎﺭﻡ‪ ،‬ﺷﻤﺎﺭﻩ ‪ -22‬ﺩﻱ ﻭ ﺑﻬﻤﻦ ‪91‬‬


‫ﮔﺰﺍﺭﺵ ‪ :2‬ﺍﻫﺪﺍﻑ ‪ CO2‬ﺧﻮﺩﺭﻭﺳﺎﺯﺍﻥ ﺍﺭﻭﭘﺎ ﺧﻴﻠﻲ ﺁﺳﺎﻥ ﺍﺳﺖ‬ ‫>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>‬

‫ﺑﺮﮔﺮﻓﺘﻪ ﺍﺯ‪ :‬ﻣﺠﻠﻪ ‪ ،Carbon Trading‬ﺷﻤﺎﺭﻩ ﻓﻮﺭﻳﻪ ‪2013‬‬ ‫ﺗﺮﺟﻤﻪ‪ :‬ﻋﺎﺩﻝ ﭘﺮﺗﻮﻱ‬ ‫ﺑﺮ ﻣﺒﻨﺎﻱ ﮔﺰﺍﺭﺵ ﻳﻚ ﻣﻮﺳﺴﻪ ﻣﺮﺩﻡ ﻧﻬﺎﺩ ﺑﻠﮋﻳﻜﻲ ﺑﻪ ﻧﺎﻡ ﺣﻤﻞﻭ ﻧﻘﻞ ﻭ ﻣﺤﻴﻂ ﺯﻳﺴﺖ )‪ ،(T&E‬ﺍﻫﺪﺍﻑ ﺍﺗﺤﺎﺩﻳﻪ ﺍﺭﻭﭘﺎ ﺑﺮﺍﻱ ﻛﺎﻫﺶ ﻣﻴﺰﺍﻥ‬ ‫ﺍﻧﺘﺸﺎﺭ ﺩﻱ ﺍﻛﺴﻴﺪﻛﺮﺑﻦ )‪ (CO2‬ﺩﺭ ﻫﺮ ﻛﻴﻠﻮﻣﺘﺮ ﭘﻴﻤﺎﻳﺶ ﺧﻮﺩﺭﻭﻫﺎ ﺑﻪ ﺍﻧﺪﺍﺯﻩ ﻛﺎﻓﻲ ﺳﺨﺘﮕﻴﺮﺍﻧﻪ ﻧﻴﺴﺖ‪.‬‬ ‫ﮔﺰﺍﺭﺵ ﺧﻮﺩﺭﻭﻫﺎﻱ ﺍﺭﻭﭘﺎﻳﻲ ﭼﻘﺪﺭ ﺗﻤﻴﺰ ﻫﺴﺘﻨﺪ‪ ،‬ﺍﻇﻬﺎﺭ ﻣﻲﺩﺍﺭﺩ ﺻﻨﻌﺖ ﺧﻮﺩﺭﻭﺳﺎﺯﻱ ﺍﺭﻭﭘﺎ ﺩﺭ ﺳﺎﻝ ‪ 2011‬ﺗﻨﻬﺎ ﺣﺪﻭﺩ ‪ %4‬ﺑﺎ ﺩﺳﺘﻴﺎﺑﻲ ﺑﻪ‬ ‫ﺍﻫﺪﺍﻑ ﺳﺎﻝ ‪ 2015‬ﻳﻌﻨﻲ ﻣﺘﻮﺳﻂ ﺍﻧﺘﺸﺎﺭ ‪ 130‬ﮔﺮﻡ ﺩﻱﺍﻛﺴﻴﺪﻛﺮﺑﻦ ﺑﻪ ﺍﺯﺍﻱ ﻫﺮ ﻛﻴﻠﻮﻣﺘﺮ ﭘﻴﻤﺎﻳﺶ ﻓﺎﺻﻠﻪ ﺩﺍﺭﻧﺪ‪ .‬ﺍﻳﻦ ﻓﺎﺻﻠﻪ ﺑﺮ ﻣﺒﻨﺎﻱ ﮔﺰﺍﺭﺵ‬ ‫ﻓﻮﻕ ﺩﺭ ﺳﺎﻝ ﮔﺬﺷﺘﻪ ‪ %7‬ﺑﻮﺩﻩ ﺍﺳﺖ‪.‬‬ ‫‪ T&E‬ﻣﻲﮔﻮﻳﺪ ﻫﻤﻪﻱ ﺷﻮﺍﻫﺪ ﻧﺸﺎﻥ ﻣﻲﺩﻫﻨﺪ ﺧﻮﺩﺭﻭﺳﺎﺯﺍﻥ ﺍﺭﻭﭘﺎ‬ ‫ﺭﺩﻩ ﺑﻨﺪﻱ ﺩﺭﺻﺪ ﻛﺎﻫﺶ ‪ CO2‬ﻛﻪ ﻫﺮ ﺧﻮﺩﺭﻭﺳﺎﺯ ﺑﺎﻳﺪ ﻛﺎﻫﺶ‬ ‫ﺟﻠﻮﺗﺮ ﺍﺯ ﺗﻌﻬﺪﺍﺕ ﻛﺎﻫﺶ ﺍﻧﺘﺸﺎﺭ ﺣﺮﻛﺖ ﻣﻲﻛﻨﻨﺪ ﻭ ﺑﻨﻈﺮ ﻣﻲﺭﺳﺪ‬ ‫ﺩﻫﺪ ﺗﺎ ﺑﻪ ﺍﻫﺪﺍﻑ ‪ 2015‬ﺍﺗﺤﺎﺩﻳﻪ ﺍﺭﻭﭘﺎ ﺩﺳﺖ ﻳﺎﺑﺪ‬ ‫ﺍﻏﻠﺐ ﺁﻧﻬﺎ ﻫﺪﻑ ‪ 130‬ﮔﺮﻡ ﺩﻱﺍﻛﺴﻴﺪ ﻛﺮﺑﻦ ﺩﺭ ﻫﺮ ﻛﻴﻠﻮﻣﺘﺮ ﺭﺍ‬ ‫)ﮔﺮﻡ ﺩﻱ‪ -‬ﺍﻛﺴﻴﺪﻛﺮﺑﻦ ﺩﺭ ﻫﺮ ﻛﻴﻠﻮﻣﺘﺮ(‬ ‫ﺳﺎﻟﻬﺎ ﻗﺒﻞ ﺍﺯ ‪ 2015‬ﺗﺎﻣﻴﻦ ﺧﻮﺍﻫﻨﺪ ﻛﺮﺩ‪.‬‬ ‫ﻛﺎﺭﻛﺮﺩ ‪ 2011‬ﻫﺪﻑ ‪ 2015‬ﺩﺭﺻﺪ ﻛﺎﻫﺶ‬ ‫ﺍﻳﻦ ﮔﺰﺍﺭﺵ ﻣﻲﺍﻓﺰﺍﻳﺪ ﺩﻭ ﺧﻮﺩﺭﻭﺳﺎﺯ ﺍﺯ ‪ 15‬ﺧﻮﺩﺭﻭﺳﺎﺯ ﺑﺮﺯگ ﺍﺭﻭﭘﺎ‬ ‫ﻣﻮﺭﺩ ﻧﻴﺎﺯ‬ ‫)ﺗﻮﻳﻮﺗﺎ ﻭ ﭘﮋﻭ‪ -‬ﺳﻴﺘﺮﻭﺋﻦ( ﻫﺪﻑ ﺳﺎﻝ ‪ 2015‬ﺭﺍ ﺩﺭ ﺳﺎﻝ ‪2011‬‬ ‫‪-0/3‬‬ ‫‪127/8‬‬ ‫‪127/4‬‬ ‫ﭘﮋﻭ‪ -‬ﺳﻴﺘﺮﻭﺋﻦ‬ ‫ﺑﺮﺁﻭﺭﺩﻩ ﻧﻤﻮﺩﻩﺍﻧﺪ‪ .‬ﻭ ﻓﻴﺎﺕ ﻛﻪ ﻛﻤﺘﺮﻳﻦ ﻣﺘﻮﺳﻂ ﺍﻧﺘﺸﺎﺭ ‪ CO2‬ﺭﺍ‬ ‫‪-0/3‬‬ ‫‪127/2‬‬ ‫‪126/8‬‬ ‫ﺗﻮﻳﻮﺗﺎ‬ ‫ﺩﺍﺭﺩ‪ ،‬ﺗﻨﻬﺎ ‪ 0/3‬ﺩﺭﺻﺪ ﺑﺎ ﻫﺪﻑ ﺳﺎﻝ ‪ 2015‬ﻓﺎﺻﻠﻪ ﺩﺍﺭﺩ )ﺟﺪﻭﻝ‬ ‫‪0/3‬‬ ‫‪119/1‬‬ ‫‪119/4‬‬ ‫ﻓﻴﺎﺕ‬ ‫ﻣﻘﺎﺑﻞ ﺭﺍ ﻣﺸﺎﻫﺪﻩ ﻧﻤﺎﺋﻴﺪ(‪.‬‬ ‫‪3/2‬‬ ‫‪131/2‬‬ ‫‪135/4‬‬ ‫ﺟﻨﺮﺍﻝ ﻣﻮﺗﻮﺭ‬ ‫ﺩﺭ ﭘﺎﻳﻴﻦ ﺟﺪﻭﻝ ﻣﺰﺩﺍ ﻫﻨﻮﺯ ‪ %12/5‬ﺑﺎ ﻫﺪﻑ ‪ 2015‬ﻓﺎﺻﻠﻪ ﺩﺍﺭﺩ ﻛﻪ‬ ‫‪4/0‬‬ ‫‪127/0‬‬ ‫‪132/2‬‬ ‫ﻓﻮﺭﺩ‬ ‫ﺩﺍﻳﻤﻠﺮ)‪ (%9/9‬ﻭ ﻧﻴﺴﺎﻥ )‪ (%9/5‬ﻭ ﺳﻮﺯﻭﻛﻲ )‪ (%9/2‬ﺑﻪ ﺩﻧﺒﺎﻝ ﺁﻥ‬ ‫‪4/0‬‬ ‫‪131/8‬‬ ‫‪137/3‬‬ ‫ﻓﻮﻟﻜﺲ ﻭﺍﮔﻦ‬ ‫ﻫﺴﺘﻨﺪ‪ .‬ﺍﻳﻦ ﮔﺰﺍﺭﺵ ﻫﻤﭽﻨﻴﻦ ﭘﻴﺸﺮﻓﺖ ﺩﺭ ﺭﺍﺳﺘﺎﻱ ‪2020‬‬ ‫‪4/4‬‬ ‫‪125/7‬‬ ‫‪131/4‬‬ ‫ﺭﻧﻮ‬ ‫)ﻳﻌﻨﻲ ﻣﺘﻮﺳﻂ ‪ 95‬ﮔﺮﻡ ﺩﻱﺍﻛﺴﻴﺪﻛﺮﺑﻦ ﺑﻪ ﺍﺯﺍﻱ ﭘﻴﻤﺎﻳﺶ ﻫﺮ‬ ‫‪4/4‬‬ ‫‪138/4‬‬ ‫‪144/8‬‬ ‫ﺑﻲ ﺍﻡ ﻭ‬ ‫ﻛﻴﻠﻮﻣﺘﺮ( ﺭﺍ ﻧﻴﺰ ﺩﺭﻧﻈﺮ ﺩﺍﺷﺘﻪ ﺍﺳﺖ‪ .‬ﺑﻨﺎﺑﺮﺍﻳﻦ ﮔﺰﺍﺭﺵ"ﺣﻔﻆ‬ ‫‪4/7‬‬ ‫‪144/2‬‬ ‫‪151/4‬‬ ‫ﻣﺘﻮﺳﻂ ﺭﻭﻧﺪ ﭘﻴﺸﺮﻓﺖ ﭼﻬﺎﺭ ﺳﺎﻝ ﮔﺬﺷﺘﻪ ﻓﺮﺍﺗﺮ ﺍﺯ ﻧﻴﺎﺯ ﻛﻞ ﺻﻨﻌﺖ ﻭﻟﻮﻭ‬ ‫‪5/5‬‬ ‫‪126/5‬‬ ‫‪134/2‬‬ ‫ﻫﻴﻮﻧﺪﺍﻳﻲ‬ ‫ﺑﺮﺍﻱ ﺩﺳﺘﻴﺎﺑﻲ ﺑﻪ ‪ 95‬ﮔﺮﻡ ﺩﺭ ﻛﻴﻠﻮﻣﺘﺮ ﺩﺭ ﺳﺎﻝ ‪ 2020‬ﺍﺳﺖ"‪.‬‬ ‫‪6/6‬‬ ‫‪135/2‬‬ ‫‪144/9‬‬ ‫ﺟﻮﺱ ﺩﻳﻨﮓ ﻣﺪﻳﺮ ﻣﻮﺳﺴﻪ ﺣﻤﻞﻭﻧﻘﻞ ﻭ ﻣﺤﻴﻂ ﺯﻳﺴﺖ ﻣﻲﮔﻮﻳﺪ؛ ﻫﻮﻧﺪﺍ‬ ‫‪9/2‬‬ ‫‪119/5‬‬ ‫‪131/6‬‬ ‫»ﺍﻳﻦ ﻳﺎﻓﺘﻪﻫﺎ ﺑﻪ ﺭﻭﺷﻨﻲ ﻧﺸﺎﻥ ﻣﻲﺩﻫﺪ ﻛﻪ ﺧﻮﺩﺭﻭﺳﺎﺯﺍﻥ ﺩﺭ ﺳﺎﻝ ﺳﻮﺯﻭﻛﻲ‬ ‫‪9/5‬‬ ‫‪129/3‬‬ ‫‪142/9‬‬ ‫‪ 2008‬ﻫﻨﮕﺎﻣﻲ ﻛﻪ ﺍﺩﻋﺎ ﻣﻲﻛﺮﺩﻧﺪ ﻫﺪﻑ ‪ 130‬ﮔﺮﻡ ﺩﺭ ﻛﻴﻠﻮﻣﺘﺮ ﻧﻴﺴﺎﻥ‬ ‫‪9/9‬‬ ‫‪138/3‬‬ ‫‪153/5‬‬ ‫ﻏﻴﺮ ﻗﺎﺑﻞ ﺗﺤﻤﻞ ﺍﺳﺖ‪ ،‬ﺑﻪ ﻏﺎﻳﺖ ﺑﺰﺭﮔﻨﻤﺎﻳﻲ ﻣﻲﻛﺮﺩﻩﺍﻧﺪ‪ .‬ﺷﺮﻛﺘﻬﺎﻱ ﺩﺍﻳﻤﻠﺮ‬ ‫ﺯﻳﺎﺩﻱ ﺳﻮﺩﺩﻫﻲ ﺭﻛﻮﺭﺩﻱ ﮔﺰﺍﺭﺵ ﻣﻲﻛﻨﻨﺪ ﻭ ﺛﺎﺑﺖ ﺷﺪ ﺩﺍﺳﺘﺎﻧﻬﺎﻱ‬ ‫‪12/5‬‬ ‫‪128/3‬‬ ‫‪146/6‬‬ ‫ﻣﺰﺩﺍ‬ ‫ﻫﻮﻟﻨﺎﻛﻲ ﻛﻪ ﻣﻲﮔﻔﺖ ﻗﻮﺍﻧﻴﻦ ﻣﺤﺪﻭﺩ ﻛﻨﻨﺪﻩ ﻣﻨﺠﺮ ﺑﻪ ﻭﺭﺷﻜﺴﺘﮕﻲ‬ ‫‪4/3‬‬ ‫‪130/0‬‬ ‫‪135/8‬‬ ‫ﻣﺘﻮﺳﻂ‬ ‫ﺻﻨﻌﺖ ﺧﻮﺩﻭﺳﺎﺯﻱ ﺍﺭﻭﭘﺎ ﺧﻮﺍﻫﺪ ﺷﺪ‪ ،‬ﻣﻀﺤﻚ ﺑﻮﺩﻩ ﺍﻧﺪ‪«.‬‬

‫‪9‬‬ ‫ﺧﺒﺮﻧﺎﻣﻪ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ‪ ،‬ﺳﺎﻝ ﭼﻬﺎﺭﻡ‪ ،‬ﺷﻤﺎﺭﻩ ‪ -22‬ﺩﻱ ﻭ ﺑﻬﻤﻦ ‪91‬‬


‫ﮔﺰﺍﺭﺵ ‪ :3‬ﻫﻤﺴﻮﻳﻲ ﻓﺮﺍﻳﻨﺪﻫﺎﻱ ﺻﻨﻌﺘﻲ ﺩﺭ ﺗﺤﻘﻖ ﺟﻬﺎﻥ ﺑﺪﻭﻥ ﺯﺑﺎﻟﻪ‬ ‫>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>‬

‫ﻣﺘﺮﺟﻢ‪ :‬ﻧﺴﺮﻳﻦ ﺍﻟﻤﺎﺳﻲ‬

‫ﺻﻨﻌﺖ ﺳﻴﻤﺎﻥ ﺑﻪ ﺩﻟﻴﻞ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻓﺮﺍﻳﻨﺪﻫﺎﻱ ﺩﻣﺎ ﺑﺎﻻ ﺑﻪ ﻣﻨﻈﻮﺭ ﺣﺮﺍﺭﺕ ﺩﺍﺩﻥ ﺳﻨﮓ ﺁﻫﻚ ﺍﺯ ﺭﺩﭘﺎﻱ ﻛﺮﺑﻦ ﺑﺎﻻﻳﻲ ﺑﺮﺧﻮﺭﺩﺍﺭ ﻣﻲﺑﺎﺷﺪ‪ .‬ﺑﺎ‬ ‫ﺁﻏﺎﺯ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺿﺎﻳﻌﺎﺕ ﺻﻨﻌﺘﻲ ﻭ ﺍﻧﺮژﻱﻫﺎﻱ ﺗﺠﺪﻳﺪ ﭘﺬﻳﺮ ﺩﺭ ﺑﺮﺧﻲ ﺷﺮﻛﺖﻫﺎﻱ ﺗﻮﻟﻴﺪ ﻛﻨﻨﺪﻩ ﺳﻴﻤﺎﻥ ﺑﺮﺧﻲ ﺑﺮ ﺍﻳﻦ ﺑﺎﻭﺭ ﺷﺪﻧﺪ ﻛﻪ ﺍﻳﻦ‬ ‫ﺻﻨﻌﺖ ﻣﻲﺗﻮﺍﻧﺪ ﺍﻟﮕﻮ ﻭ ﺭﺍﻫﻨﻤﺎﻳﻲ ﺟﻬﺖ ﺗﻮﺳﻌﻪ ﺻﻨﺎﻳﻊ ﻫﻤﺰﻳﺴﺖ )ﺩﺭ ﺻﻨﺎﻳﻊ ﻫﻤﺰﻳﺴﺖ‪ ،‬ﺿﺎﻳﻌﺎﺕ ﻳﻚ ﺻﻨﻌﺖ ﻣﻮﺍﺩ ﺍﻭﻟﻴﻪ ﺻﻨﻌﺘﻲ ﺩﻳﮕﺮ‬ ‫ﺧﻮﺍﻫﺪ ﺑﻮﺩ( ﻭ ﺷﺘﺎﺏ ﺩﻫﻨﺪﻩ ﻓﺮﺍﻳﻨﺪ ﺣﺮﻛﺖ ﺑﻪ ﺳﻮﻱ ﺻﻔﺮ ﻧﻤﻮﺩﻥ ﺿﺎﻳﻌﺎﺕ ﻭ ﭘﺴﻤﺎﻧﺪﻫﺎﻱ ﺟﻬﺎﻧﻲ ﺷﻮﺩ‪.‬‬ ‫ﺗﻮﻟﻴﺪ ﻛﻠﻴﻨﻜﺮ ) ﺑﻪ ﺻﻮﺭﺕ ﻣﺘﺪﺍﻭﻝ ‪ 90‬ﺩﺭﺻﺪ ﺳﻴﻤﺎﻥ ﺭﺍ‬ ‫ﻛﻠﻴﻨﻜﺮ ﺗﺸﻜﻴﻞ ﻣﻲﺩﻫﺪ( ﻳﻜﻲ ﺍﺯ ﺑﺨﺶﻫﺎﻱ ﺍﻧﺮژﻱ ﺑﺮ ﺗﻮﻟﻴﺪ‬ ‫ﺳﻴﻤﺎﻥ ﺍﺳﺖ‪ .‬ﺩﺭ ﻃﻲ ﻓﺮﺍﻳﻨﺪ ﺗﻮﻟﻴﺪ ﻛﻠﻴﻨﻜﺮ ﻻﺯﻡ ﺍﺳﺖ ﻛﻪ‬ ‫ﺳﻨﮓ ﺁﻫﻚ ﺩﺭ ﺩﻣﺎﻱ ﺑﺴﻴﺎﺭ ﺑﺎﻻ ﺣﺮﺍﺭﺕ ﺑﺒﻴﻨﺪ )ﺣﺪﻭﺩ ‪1500‬‬ ‫ﺩﺭﺟﻪ ﺳﺎﻧﺘﻴﮕﺮﺍﺩ( ﺗﺎ ﺑﻪ ﻛﻠﻴﻨﻜﺮ ﺗﻐﻴﻴﺮ ﻳﺎﺑﺪ‪ .‬ﺍﻳﺠﺎﺩ ﭼﻨﻴﻦ‬ ‫ﺣﺮﺍﺭﺕ ﺑﺎﻻﻳﻲ ﻣﺴﺘﻠﺰﻡ ﺍﺣﺘﺮﺍﻕ ﻣﻘﺪﺍﺭ ﻗﺎﺑﻞ ﺗﻮﺟﻬﻲ ﺳﻮﺧﺖ‬ ‫ﺍﺳﺖ‪ .‬ﻟﺬﺍ ﻳﻜﻲ ﺍﺯ ﺍﻗﺪﺍﻣﺎﺕ ﺍﺳﺎﺳﻲ ﺩﺭ ﻛﺎﻫﺶ ﺭﺩﭘﺎﻱ ﻛﺮﺑﻦ‬ ‫ﺻﻨﻌﺖ ﺳﻴﻤﺎﻥ ﺍﻓﺰﺍﻳﺶ ﺭﺍﻧﺪﻣﺎﻥ ﺍﻧﺮژﻱ ﻛﺎﺭﺧﺎﻧﺠﺎﺕ ﺗﻮﻟﻴﺪ‬ ‫ﺳﻴﻤﺎﻥ ﻭ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺳﻮﺧﺖﻫﺎﻱ ﺟﺎﻳﮕﺰﻳﻦ ﺳﻮﺧﺖﻫﺎﻱ‬ ‫ﻓﺴﻴﻠﻲ ﺑﺎ ﻛﺮﺑﻦ ﻛﻤﺘﺮ ﺟﻬﺖ ﺍﺣﺘﺮﺍﻕ ﺩﺭ ﻛﻮﺭﻩ ﻣﻲﺑﺎﺷﺪ‪ .‬ﻣﻨﺒﻊ‬ ‫ﺩﻳﮕﺮﻱ ﺍﺯ ﺍﻧﺘﺸﺎﺭ ﺩﻱ ﺍﻛﺴﻴﺪ ﻛﺮﺑﻦ ﺩﺭ ﺗﻮﻟﻴﺪ ﺳﻴﻤﺎﻥ ﻛﻪ‬ ‫ﺣﺪﻭﺩ ﻧﻴﻤﻲ ﺍﺯ ﻛﻞ ﺍﻧﺘﺸﺎﺭﺍﺕ ﺩﻱ ﺍﻛﺴﻴﺪ ﻛﺮﺑﻦ ﺭﺍ ﺷﺎﻣﻞ ﻣﻲﺷﻮﺩ ﺣﺎﺻﻞ ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ ﻛﺮﺑﻨﺎﺕ ﺩﺭ ﻓﺮﺍﻳﻨﺪ ﺗﻮﻟﻴﺪ ﻛﻠﻴﻨﻜﺮ ﻣﻲﺑﺎﺷﺪ‪ .‬ﺍﻳﻦ ﻓﺮﺍﻳﻨﺪ‬ ‫ﻳﻜﻲ ﺍﺯ ﻓﺮﺍﻳﻨﺪﻫﺎﻱ ﺍﺻﻠﻲ ﺻﻨﻌﺖ ﺳﻴﻤﺎﻥ ﻭ ﻫﻤﭽﻨﻴﻦ ﻳﻜﻲ ﺍﺯ ﺑﺰﺭﮔﺘﺮﻳﻦ ﻣﻨﺎﺑﻊ ﻏﻴﺮ ﺍﺣﺘﺮﺍﻗﻲ ﺍﻧﺘﺸﺎﺭ ﺩﻱ ﺍﻛﺴﻴﺪ ﻛﺮﺑﻦ ﻣﻲﺑﺎﺷﺪ ﻭ ﺣﺪﻭﺩ ‪%4‬‬ ‫ﻛﻞ ﺍﻧﺘﺸﺎﺭﺍﺕ ﺟﻬﺎﻧﻲ ﺩﻱ ﺍﻛﺴﻴﺪ ﻛﺮﺑﻦ ﺭﺍ ﺑﻪ ﺧﻮﺩ ﺍﺧﺘﺼﺎﺹ ﺩﺍﺩﻩ ﺍﺳﺖ‪ .‬ﻫﻤﭽﻨﻴﻦ ﺍﻧﺘﺸﺎﺭ ﺩﻱ ﺍﻛﺴﻴﺪ ﻛﺮﺑﻦ ﺩﺭ ﻃﻲ ﻓﺮﺍﻳﻨﺪﻫﺎﻱ ﺍﺣﺘﺮﺍﻗﻲ‬ ‫ﺗﻮﻟﻴﺪ ﺳﻴﻤﺎﻥ ﻧﻴﺰ ﺩﺭ ﻫﻤﻴﻦ ﺳﻄﺢ ﻗﺮﺍﺭ ﮔﺮﻓﺘﻪ ﻭ ﻟﺬﺍ ﺩﺭ ﻣﺠﻤﻮﻉ ‪ %8‬ﻛﻞ ﺍﻧﺘﺸﺎﺭ ﺩﻱ ﺍﻛﺴﻴﺪ ﻛﺮﺑﻦ ﺟﻬﺎﻧﻲ )ﻓﺮﺍﻳﻨﺪﻱ ﻭ ﺍﺣﺘﺮﺍﻗﻲ( ﻧﺎﺷﻲ ﺍﺯ‬ ‫ﺗﻮﻟﻴﺪ ﺳﻴﻤﺎﻥ ﻣﻲﺑﺎﺷﺪ‪ .‬ﺍﺯ ﺍﻳﻦ ﺭﻭ ﺍﻓﺰﺍﻳﺶ ﺭﺍﻧﺪﻣﺎﻥ ﺳﻮﺧﺖ ﻭ ﻛﺎﺭﺧﺎﻧﻪ ﺑﻪ ﺗﻨﻬﺎﻳﻲ ﻧﻤﻲﺗﻮﺍﻧﺪ ﺩﺭ ﺭﺍﺳﺘﺎﻱ ﻛﺎﻫﺶ ﺍﻧﺘﺸﺎﺭ ﻣﺜﻤﺮ ﺛﻤﺮ ﺑﺎﺷﺪ ﻭ ﺍﻳﻦ‬ ‫ﺑﺪﻳﻦ ﻣﻌﻨﺎﺳﺖ ﻛﻪ ﺗﻮﻟﻴﺪ ﻛﻨﻨﺪﮔﺎﻥ ﺳﻴﻤﺎﻥ ﻧﺎﮔﺰﻳﺮ ﺑﻪ ﻳﺎﻓﺘﻦ ﺟﺎﻳﮕﺰﻳﻨﻲ ﺑﺮﺍﻱ ﻛﻠﻴﻨﻜﺮ ﺩﺭ ﺗﻮﻟﻴﺪ ﺳﻴﻤﺎﻥ ﻛﻪ ﺩﺍﺭﺍﻱ ﻣﺰﺍﻳﺎﻱ ﺩﻭ ﺟﺎﻧﺒﻪ ﺍﺳﺖ ﻣﻲ‬ ‫ﺑﺎﺷﻨﺪ‪ .‬ﭼﺮﺍ ﻛﻪ ﺑﺎ ﻛﺎﻫﺶ ﺩﺭﺻﺪ ﻛﻠﻴﻨﻜﺮ ﺩﺭ ﺳﻴﻤﺎﻥ ﻣﻘﺪﺍﺭ ﺳﻮﺧﺖ ﻣﻮﺭﺩ ﻧﻴﺎﺯ ﻛﻮﺭﻩ ﺗﻮﻟﻴﺪ ﻛﻠﻴﻨﻜﺮ ﻛﺎﻫﺶ ﻳﺎﻓﺘﻪ ﻭ ﺍﻳﻦ ﻣﻨﺠﺮ ﺑﻪ ﻛﺎﻫﺶ‬ ‫ﺍﻧﺘﺸﺎﺭﺍﺕ ﻧﺎﺷﻲ ﺍﺯ ﺍﺣﺘﺮﺍﻕ ﻣﻲﺷﻮﺩ‪ .‬ﺍﺯ ﻃﺮﻓﻲ ﺩﻳﮕﺮ ﺳﻴﻤﺎﻧﻲ ﻛﻪ ﺩﺭﺻﺪ ﻛﻠﻴﻨﻜﺮ ﺩﺭ ﺁﻥ ﻛﺎﻫﺶ ﻳﺎﻓﺘﻪ ﺑﺎﺷﺪ‪ ،‬ﺍﻧﺘﺸﺎﺭﺍﺕ ﻓﺮﺍﻳﻨﺪﻱ ﻣﺮﺑﻮﻁ ﺑﻪ‬ ‫ﺗﺠﺰﻳﻪ ﻛﺮﺑﻨﺎﺕ ﻛﻠﺴﻴﻢ ﺑﻪ ﺩﻟﻴﻞ ﻛﺎﻫﺶ ﻣﻴﺰﺍﻥ ﺁﻥ ﻛﺎﻫﺶ ﺧﻮﺍﻫﺪ ﻳﺎﻓﺖ‪.‬‬ ‫ﺑﺎ ﺗﻮﻟﻴﺪ ﺳﻴﻤﺎﻥﻫﺎﻱ ﻣﺨﻠﻮﻁ ﺷﺪﻩ ﻛﻪ ﺩﺭ ﺁﻧﻬﺎ ﺩﺭﺻﺪ ﻛﻠﻴﻨﻜﺮ ﺑﺎ ﺟﺎﻳﮕﺰﻳﻨﻲ ﻣﻮﺍﺩ ﻣﺸﺎﺑﻬﻲ ﭼﻮﻥ ﺧﺎﻛﺴﺘﺮ ﺑﺎﺩﻱ‪ ،‬ﺳﺮﺑﺎﺭﻩ ﻛﻮﺭﻩ ﺫﻭﺏ ﺁﻫﻦ )ﺍﻟﺒﺘﻪ‬ ‫ﺩﺭ ﺻﻮﺭﺕ ﻭﺟﻮﺩ ﻣﻨﺎﺑﻊ ﻣﻮﺍﺩ ﻓﻮﻕ ﺩﺭ ﻣﻨﻄﻘﻪ( ﻭ ﺩﻳﮕﺮ ﺿﺎﻳﻌﺎﺕ ﺻﻨﻌﺘﻲ ﻛﺎﻫﺶ ﻣﻲﻳﺎﺑﺪ‪ ،‬ﺻﺮﻓﻪ ﺟﻮﻳﻲ ﻗﺎﺑﻞ ﺗﻮﺟﻬﻲ ﺩﺭ ﻣﺼﺮﻑ ﺍﻧﺮژﻱ ﻭ ﺍﻧﺘﺸﺎﺭ‬ ‫ﺩﻱ ﺍﻛﺴﻴﺪ ﻛﺮﺑﻦ ﺑﻪ ﺩﻧﺒﺎﻝ ﺧﻮﺍﻫﺪ ﺩﺍﺷﺖ‪ .‬ﻟﺬﺍ ﭘﺘﺎﻧﺴﻴﻞ ﻛﺎﺭﺧﺎﻧﺠﺎﺕ ﺳﻴﻤﺎﻥ ﺑﺮﺍﻱ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺿﺎﻳﻌﺎﺕ ﺻﻨﻌﺘﻲ ﻗﺎﺑﻞ ﺗﻮﺟﻪ ﺍﺳﺖ‪ .‬ﺑﻪ ﻋﻨﻮﺍﻥ‬ ‫ﻣﺜﺎﻝ ﺳﺮﺑﺎﺭﻩ ﻫﻢ ﻣﻲﺗﻮﺍﻧﺪ ﺑﻪ ﻣﻨﻈﻮﺭ ﺗﺄﻣﻴﻦ ﺍﻧﺮژﻱ ﻣﻮﺭﺩ ﻧﻴﺎﺯ ﻛﻮﺭﻩﻫﺎﻱ ﺳﻴﻤﺎﻥ ﻭ ﻫﻢ ﺑﻪ ﻋﻨﻮﺍﻥ ﺟﺎﻳﮕﺰﻳﻦ ﻛﻠﻴﻨﻜﺮ ﺍﺳﺘﻔﺎﺩﻩ ﺷﻮﺩ‪.‬‬

‫‪10‬‬ ‫ﺧﺒﺮﻧﺎﻣﻪ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ‪ ،‬ﺳﺎﻝ ﭼﻬﺎﺭﻡ‪ ،‬ﺷﻤﺎﺭﻩ ‪ -22‬ﺩﻱ ﻭ ﺑﻬﻤﻦ ‪91‬‬


‫ﭼﻨﺎﻧﭽﻪ ﺩﺭ ﻛﻮﺭﻩﻫﺎ ﺑﺘﻮﺍﻥ ﺍﺯ ﺍﻧﺮژﻱﻫﺎﻱ ﺗﺠﺪﻳﺪ ﭘﺬﻳﺮ ﺑﺮﺍﻱ ﺗﻮﻟﻴﺪ ﺣﺮﺍﺭﺕ ﺍﺳﺘﻔﺎﺩﻩ ﻧﻤﻮﺩ ﻣﻲﺗﻮﺍﻥ ﺍﺯ ﺿﺎﻳﻌﺎﺕ ﺻﻨﺎﻳﻊ ﭼﻮﺏ ﺳﺎﺯﻱ‪ ،‬ﻟﺠﻦ‬ ‫ﻓﺎﺿﻼﺏ‪ ،‬ﻻﺳﺘﻴﻚﻫﺎﻱ ﻣﺴﺘﻬﻠﻚ ﻭ ﭘﻼﺳﺘﻴﻚ ﺑﻪ ﻋﻨﻮﺍﻥ ﺳﻮﺧﺖ ﺍﺳﺘﻔﺎﺩﻩ ﻧﻤﻮﺩ‪ .‬ﺑﻪ ﻋﻨﻮﺍﻥ ﻧﻤﻮﻧﻪ ﻛﺎﺭﺧﺎﻧﻪ ‪ CEMEX‬ﺑﻪ ﻋﻨﻮﺍﻥ ﻳﻜﻲ ﺍﺯ‬ ‫ﺑﺰﺭﮔﺘﺮﻳﻦ ﺗﻮﻟﻴﺪ ﻛﻨﻨﺪﮔﺎﻥ ﺳﻴﻤﺎﻥ ﺩﺭ ﺟﻬﺎﻥ ﻫﺪﻑ ﺧﻮﺩ ﺭﺍ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺿﺎﻳﻌﺎﺕ ﺑﻪ ﻋﻨﻮﺍﻥ ﺳﻮﺧﺖ ﻭ ﺍﺩﻏﺎﻡ ﺁﻥ ﺩﺭ ﻣﺤﺼﻮﻝ ﺑﺪﻭﻥ ﻫﻴﭽﮕﻮﻧﻪ‬ ‫ﺭﻳﺴﻚ ﻭﺗﻬﺪﻳﺪ ﺳﻼﻣﺖ ﻗﺮﺍﺭ ﺩﺍﺩﻩ ﺍﺳﺖ‪ .‬ﺑﺮﺍﻱ ﻛﺴﺎﻧﻴﻜﻪ ﺩﺭ ﺑﺨﺶ ﻣﺪﻳﺮﻳﺖ ﭘﺴﻤﺎﻧﺪ ﻓﻌﺎﻝ ﻫﺴﺘﻨﺪ ﻛﻮﺭﻩﻫﺎﻱ ﺳﻴﻤﺎﻥ ﺑﺎ ﺩﻣﺎﻱ ﺑﺴﻴﺎﺭ ﺑﺎﻻ ﺭﻭﺷﻲ‬ ‫ﺍﻳﻤﻦ ﺑﺮﺍﻱ ﺍﺯ ﺑﻴﻦ ﺑﺮﺩﻥ ﻣﻮﺍﺩ ﺟﺎﻧﺒﻲ ﻭ ﻧﺎﺧﻮﺍﺳﺘﻪ ﻭ ﺩﺭ ﺑﺮﺧﻲ ﻣﻮﺍﻗﻊ ﺧﻄﺮﻧﺎﻙ ﺍﺳﺖ ﻭ ﻣﻲﺗﻮﺍﻧﺪ ﺭﺍﻩ ﺣﻠﻲ ﺑﺮﺍﻱ ﺳﻼﻣﺖ ﻋﻤﻮﻣﻲ ﻭ ﭼﺎﻟﺶﻫﺎﻱ‬ ‫ﺍﻳﻤﻨﻲ ﺑﺎﺷﺪ‪.‬ﺩﺭ ﺳﺎﻝ ‪ 1999‬ﻭﻗﺘﻲ ﻛﻪ ﺩﻭﻟﺖ ﺑﻠﮋﻳﻚ ﻧﻴﺎﺯﻣﻨﺪ ﺩﻓﻊ ﻫﺰﺍﺭﺍﻥ ﺗﻦ ﺿﺎﻳﻌﺎﺕ ﺻﻨﺎﻳﻊ ﻏﺬﺍﻳﻲ ﺧﻮﺩ ﺷﺪ ﺻﻨﻌﺖ ﺳﻴﻤﺎﻥ ﻣﺘﻘﺎﺿﻲ ﺍﻳﻦ‬ ‫ﺍﻣﺮ ﮔﺸﺖ ﻭ ﺗﻀﻤﻴﻦ ﻧﻤﻮﺩ ﻛﻪ ﻣﻲﺗﻮﺍﻧﺪ ﺑﻪ ﻃﻮﺭ ﻛﺎﻣﻞ ﺍﻳﻦ ﺿﺎﻳﻌﺎﺕ ﺭﺍ ﻛﻪ ﻣﻨﺸﺎء ﺁﻟﻮﺩﮔﻲ ﻧﻴﺰ ﺑﻮﺩﻧﺪ ﺭﺍ ﺑﻪ ﻃﻮﺭ ﻛﺎﻣﻞ ﺩﺭ ﻛﻮﺭﻩﻫﺎ ﻣﻨﻬﺪﻡ ﻧﻤﺎﻳﺪ‬ ‫ﻭ ﻫﻤﭽﻨﻴﻦ ﺍﺯ ﻃﺮﻳﻖ ﺟﺎﻳﮕﺰﻳﻨﻲ ﺍﻳﻦ ﺿﺎﻳﻌﺎﺕ ﺑﺎ ﺳﻮﺧﺖ ﻓﺴﻴﻠﻲ ﻣﻮﺭﺩ ﺍﺳﺘﻔﺎﺩﻩ ﻛﻮﺭﻩﻫﺎ ﺑﻪ ﻛﺎﻫﺶ ﺍﻧﺘﺸﺎﺭ ﮔﺎﺯﻫﺎﻱ ﺁﻻﻳﻨﺪﻩ ﺣﺎﺻﻞ ﺍﺯ ﺍﺣﺘﺮﺍﻕ‬ ‫ﻧﻴﺰ ﺩﺳﺖ ﻳﺎﺑﺪ‪.‬‬ ‫ﻓﻴﻠﻴﭗ ﻓﻮﻧﺘﺎ ﻣﺪﻳﺮ ﻃﺮﺡ ﺗﻮﻟﻴﺪ ﺳﻴﻤﺎﻥ ﭘﺎﻳﺪﺍﺭ ﺑﻪ ﺍﻧﺒﻮﻩ ﻻﺳﺘﻴﻚ‪-‬‬ ‫ﻫﺎﻱ ﻣﺴﺘﻬﻠﻚ ﻏﻴﺮ ﻗﺎﺑﻞ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺷﺎﺭﻩ ﻣﻲﻧﻤﺎﻳﺪ ﻛﻪ ﺩﺭ ﺑﺮﺧﻲ‬ ‫ﻧﻘﺎﻁ ﺍﻳﻦ ﻻﺳﺘﻴﻚﻫﺎ ﺑﻪ ﺻﻮﺭﺕ ﺯﺑﺎﻟﻪ ﺭﻫﺎ ﺷﺪﻩﺍﻧﺪ ﻭ ﺑﻪ ﻣﺮﻭﺭ ﺯﻣﺎﻥ‬ ‫ﻭ ﺟﻤﻊ ﺷﺪﻥ ﺁﺏ ﺩﺭ ﺁﻥ ﻧﺎﺣﻴﻪ‪ ،‬ﺯﻣﻴﻦﻫﺎﻱ ﻣﺴﺘﻌﺪ ﭘﺮﻭﺭﺵ ﭘﺸﻪ‬ ‫ﻣﺎﻻﺭﻳﺎ ﺭﺍ ﺑﻮﺟﻮﺩ ﺁﻭﺭﺩﻩﺍﻧﺪ‪ .‬ﻓﻮﻧﺘﺎ ﺑﻴﺎﻥ ﻣﻴﻜﻨﺪ ﻛﻪ ﺍﮔﺮ ﺍﻳﻦ‬ ‫ﻻﺳﺘﻴﻚﻫﺎﻱ ﺭﻫﺎ ﺷﺪﻩ ﺗﻮﺳﻂ ﻛﺎﺭﺧﺎﻧﺠﺎﺕ ﺳﻴﻤﺎﻥ ﻣﻮﺭﺩ ﺍﺳﺘﻔﺎﺩﻩ‬ ‫ﻗﺮﺍﺭ ﮔﻴﺮﻧﺪ ﺍﺯ ﻣﺰﺍﻳﺎﻱ ﺍﺟﺘﻤﺎﻋﻲ ﻧﻴﺰ ﺑﺮﺧﻮﺭﺩﺍﺭ ﺧﻮﺍﻫﺪ ﺑﻮﺩ‪.‬‬ ‫ﺗﻜﻨﻮﻟﻮژﻱﻫﺎﻱ ﻻﺯﻡ ﺑﻪ ﻣﻨﻈﻮﺭ ﺗﻄﺎﺑﻖ ﻭ ﻫﻢ ﺳﻮﻳﻲ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ‬ ‫ﺿﺎﻳﻌﺎﺕ ﺩﺭ ﺻﻨﺎﻳﻊ ﺑﻪ ﺧﻮﺑﻲ ﺍﻳﺠﺎﺩ ﺷﺪﻩ ﺍﺳﺖ‪ .‬ﺍﻣﺎ ﻣﺴﺌﻠﻪ ﺍﺻﻠﻲ ﻭ‬ ‫ﭼﺎﻟﺶ ﺑﺮﺍﻧﮕﻴﺰ‪ ،‬ﺍﻳﺠﺎﺩ ﺍﻧﻮﺍﻉ ﺯﻳﺮ ﺳﺎﺧﺖﻫﺎ ﻭ ﻫﻤﻜﺎﺭﻱ ﺻﻨﻌﺖ ﺑﻪ‬ ‫ﻣﻨﻈﻮﺭ ﺗﺴﻬﻴﻞ ﻣﺒﺎﺩﻟﻪ ﺿﺎﻳﻌﺎﺕ ﺑﻴﻦ ﺗﻮﻟﻴﺪ ﻛﻨﻨﺪﮔﺎﻥ ﺿﺎﻳﻌﺎﺕ ﻭ‬ ‫ﭘﺴﻤﺎﻧﺪﻫﺎ ﻭ ﺗﻮﻟﻴﺪ ﻛﻨﻨﺪﮔﺎﻥ ﺳﻴﻤﺎﻥ ﻭ ﺑﻪ ﻋﺒﺎﺭﺗﻲ ﻫﻤﺴﻮﻳﻲ ﺁﻧﻬﺎ ﺑﺎ ﻳﻜﺪﻳﮕﺮ ﺍﺳﺖ‪ .‬ﻫﻤﺴﻮﻳﻲ ﻓﺮﺍﻳﻨﺪﻫﺎﻱ ﺻﻨﻌﺘﻲ ﻣﺴﺌﻠﻪﺍﻱ ﺩﺭ ﺧﻮﺭ ﺗﻮﺟﻪ ﺩﺭ‬ ‫ﻣﺤﻴﻂ ﺯﻳﺴﺖ ﺻﻨﻌﺘﻲ ﻣﻲﺑﺎﺷﺪ‪ .‬ﺩﺭ ﻭﺍﺣﺪﻫﺎﻱ ﺟﺪﻳﺪﻱ ﻛﻪ ﻃﺮﺡ ﺭﻳﺰﻱ ﺷﺪﻩﺍﻧﺪ ﻣﺴﺌﻠﻪ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﭘﺴﻤﺎﻧﺪ ﺩﺭ ﺗﻮﻟﻴﺪ ﺳﻴﻤﺎﻥ ﻣﻲﺗﻮﺍﻧﺪ ﺩﺭ‬ ‫ﺍﻧﺘﺨﺎﺏ ﻣﻜﺎﻥ ﺳﺎﺧﺖ ﻭﺍﺣﺪ ﺗﺎﺛﻴﺮ ﺑﺴﺰﺍﻳﻲ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ‪ .‬ﺩﺭ ﺧﺼﻮﺹ ﺍﻧﺘﺨﺎﺏ ﻣﺤﻞ ﺍﺣﺪﺍﺙ ﻭﺍﺣﺪ ﻳﻚ ﻋﺎﻣﻞ ﻣﻬﻢ ﺩﺭ ﺍﻧﺘﺨﺎﺏ‪ ،‬ﺗﻮﺟﻪ ﺑﻪ ﺩﺭ‬ ‫ﺩﺳﺘﺮﺱ ﺑﻮﺩﻥ ﻭ ﺩﺳﺘﺮﺳﻲ ﺑﻪ ﺳﺎﻳﺮ ﮔﺮﻭﻩﻫﺎﻱ ﺻﻨﻌﺘﻲ ﺑﻪ ﻣﻨﻈﻮﺭ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺗﻮﻟﻴﺪﺍﺕ ﺁﻧﻬﺎ ﻭ ﺑﻬﺮﻩ ﻣﻨﺪﻱ ﺍﺯ ﻣﺰﺍﻳﺎﻱ ﺣﺎﺻﻞ ﺍﺯ ﺁﻧﻬﺎ ﻣﻲﺑﺎﺷﺪ‪.‬‬ ‫ﺍﻟﺒﺘﻪ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻭﺿﻌﻴﺖ ﻛﺎﺭﺧﺎﻧﺠﺎﺕ ﺳﻴﻤﺎﻥ ﻣﻮﺟﻮﺩ ﺯﻣﺎﻥ ﺯﻳﺎﺩﻱ ﻻﺯﻡ ﺍﺳﺖ ﻛﻪ ﺻﻨﺎﻳﻊ ﺑﺘﻮﺍﻧﻨﺪ ﺑﻪ ﻃﻮﺭ ﻛﺎﻣﻞ ﺑﺎ ﺑﺨﺶ ﻣﺪﻳﺮﻳﺖ ﭘﺴﻤﺎﻧﺪ‬ ‫ﻫﻤﺴﻮ ﺷﺪﻩ ﻭ ﺍﺩﻏﺎﻡ ﮔﺮﺩﻧﺪ‪ .‬ﺭﺍﺝ ﺳﺎﭘﺮﺍ ﻣﺪﻳﺮ ﺧﺪﻣﺎﺕ ﻣﺸﺎﻭﺭﻩ ﺍﻧﺠﻤﻦ ﺗﺠﺎﺭﻱ ﻭ ﻣﺸﺎﻭﺭﻩﺍﻱ ﺑﻴﺎﻥ ﻣﻲﻛﻨﺪ ﻛﻪ ﺳﻴﻤﺎﻥ ﻳﻚ ﺗﻜﻨﻮﻟﻮژﻱ ﻗﺪﻳﻤﻲ‬ ‫ﺍﺳﺖ‪ ،‬ﻧﻪ ﺩﺭ ﻣﻮﺭﺩ ﺗﻜﻨﻮﻟﻮژﻱ ﺑﻠﻜﻪ ﺩﺭ ﻣﻮﺭﺩ ﺗﺼﻤﻴﻤﺎﺕ ﺳﻴﺎﺳﻲ ﺍﺗﺨﺎﺫ ﺷﺪﻩ ﺩﺭ ﺁﻥ‪ ،‬ﻟﺬﺍ ﺷﺮﻁ ﻛﻠﻴﺪﻱ ﻣﺸﺎﺭﻛﺖ ﺻﻨﻌﺖ ﺳﻴﻤﺎﻥ ﺩﺭ ﻣﺪﻳﺮﻳﺖ‬ ‫ﭘﺴﻤﺎﻧﺪ ﺍﻳﺠﺎﺩ ﺍﻧﮕﻴﺰﻩ ﻭ ﻣﺤﺮﻛﻬﺎﻱ ﻻﺯﻡ ﺗﻮﺳﻂ ﺩﻭﻟﺖ ﻣﻲﺑﺎﺷﺪ‪ .‬ﺍﺯ ﻃﺮﻓﻲ ﺑﺮﺍﻱ ﺭﺳﻴﺪﻥ ﺑﻪ ﻣﻮﻓﻘﻴﺖ ﺯﻭﺩ ﻫﻨﮕﺎﻡ ﺩﺭ ﺍﻳﻦ ﺑﺨﺶ ﻧﻴﺎﺯ ﺑﻪ ﻫﻤﻜﺎﺭﻱ‬ ‫ﺑﻴﺸﺘﺮ ﻣﻴﺎﻥ ﺑﺨﺶ ﺗﺠﺎﺭﻱ‪ ،‬ﺩﻭﻟﺘﻲ ﻭ ﺟﻮﺍﻣﻊ ﻣﺪﻧﻲ ﺍﺳﺖ‪.‬‬ ‫ﻣﺮﺟﻊ‬ ‫‪Matching up companies is a move to a world without waste, Sustainable Business: Green‬‬ ‫‪Technology, Financial Times. november2012‬‬ ‫‪Trends in global co2 emissions, 2012 Report, PBL Netherlands Environmental Assessment Agency.‬‬

‫‪11‬‬ ‫ﺧﺒﺮﻧﺎﻣﻪ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ‪ ،‬ﺳﺎﻝ ﭼﻬﺎﺭﻡ‪ ،‬ﺷﻤﺎﺭﻩ ‪ -22‬ﺩﻱ ﻭ ﺑﻬﻤﻦ ‪91‬‬

‫‪‬‬ ‫‪‬‬


‫ﮔﺰﺍﺭﺵ ‪ :4‬ﻣﻔﻬﻮﻡ ﺑﻴﻮﺫﻏﺎﻝ‬ ‫>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>‬ ‫ﺑﺮﮔﺮﻓﺘﻪ ﺍﺯ‪ :‬ﻣﻘﺎﻟﻪ ﺗﻮﺳﻌﻪ ﭘﺎﻳﺪﺍﺭ؛ ﻣﺠﻠﻪ ‪ tce‬ﻧﻮﺍﻣﺒﺮ ‪2012‬‬ ‫ﻧﻮﻳﺴﻨﺪﮔﺎﻥ‪Franco Berruti, Ondej Masek and Raffaella Ocon :‬‬

‫ﻣﺘﺮﺟﻢ‪ :‬ﺍﻟﻬﺎﻡ ﺷﻴﺮﺩﻝ‬ ‫ﺑﺮﺍﻱ ‪ 800،000‬ﺳﺎﻝ ‪ CO 2‬ﺍﺗﻤﺴﻔﺮﻱ ﺯﻣﻴﻦ ﺩﺭ ﻣﺤﺪﻭﺩﻩ ‪ ppm 180-280‬ﺗﻐﻴﻴﺮ ﻛﺮﺩﻩ ﺍﺳﺖ‪ .‬ﻫﺮﭼﻨﺪ‪ ،‬ﺩﺭ ﻗﺮﻥ ﮔﺬﺷﺘﻪ‪ ،‬ﻏﻠﻈﺖ ‪CO 2‬‬ ‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫ﺳﺮﻳﻌﺎ ﺑﻪ ﺳﻄﺢ ﺣﺎﺿﺮ ﻳﻌﻨﻲ ‪ 396 ppm‬ﺍﻓﺰﺍﻳﺶ ﻳﺎﻓﺘﻪ ﺍﺳﺖ ﻭ ﭘﻴﺶ ﺑﻴﻨﻲ ﻣﻲﺷﻮﺩ ﺗﺎ ‪ 450 ppm‬ﺍﻓﺰﺍﻳﺶ ﻳﺎﺑﺪ‪ .‬ﺑﺪﻭﻥ ﺩﺧﺎﻟﺖ ﺍﻧﺴﺎﻥ‪ ،‬ﻫﺰﺍﺭﺍﻥ‬ ‫ﺳﺎﻝ ﺯﻣﺎﻥ ﺧﻮﺍﻫﺪ ﺑﺮﺩ ﺗﺎ ﻣﻴﺰﺍﻥ ‪ CO 2‬ﺑﻪ ﺳﻄﺢ ﻣﻮﺭﺩ ﻧﻴﺎﺯ ﺑﺮﺍﻱ ﺯﻧﺪﮔﻲ ﭘﺎﻳﺪﺍﺭ ﺑﺸﺮﻱ ﺑﺎﺯ ﮔﺮﺩﺩ‪.‬‬ ‫ﭼﮕﻮﻧﻪ ﻏﻠﻈﺖ ‪ CO 2‬ﺑﻪ ﺑﻴﺸﺘﺮﻳﻦ ﺳﻄﺢ ﭘﺎﻳﺪﺍﺭ ﻛﺎﻫﺶ ﻣﻲﻳﺎﺑﺪ؟ ﺩﺭﺣﺎﻟﻴﻜﻪ ﺑﻴﻮﺫﻏﺎﻝ ﻧﻤﻲﺗﻮﺍﻧﺪ ﺑﻪ ﺗﻨﻬﺎﻳﻲ ﺭﺍﻩ ﺣﻠﻲ ﺑﺮﺍﻱ ﻛﺎﻫﺶ ﻏﻠﻈﺖ‬ ‫ﮔﺎﺯﻫﺎﻱ ﮔﻠﺨﺎﻧﻪﺍﻱ )‪ (GHG‬ﻭ ﺗﻐﻴﻴﺮﺍﺕ ﺁﺏ ﻭ ﻫﻮﺍﻳﻲ ﻓﺮﺍﻫﻢ ﻛﻨﺪ‪ ،‬ﺍﻣﺎ ﻣﻲﺗﻮﺍﻧﺪ ﺳﻬﻢ ﻗﺎﺑﻞ ﻣﻼﺣﻈﻪﺍﻱ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ‪ .‬ﭘﻴﺶ ﺑﻴﻨﻲ ﻣﻲﺷﻮﺩ ﻛﻪ ﺩﺭ‬ ‫ﺳﻄﺢ ﺟﻬﺎﻧﻲ‪ ،‬ﺑﻴﻮﺫﻏﺎﻝ ﭘﺎﻳﺪﺍﺭ ﺑﺘﻮﺍﻧﺪ ﻣﺠﻤﻮﻉ ﺍﻧﺘﺸﺎﺭﺍﺕ ‪ GHG‬ﺭﺍ ﺗﺎ ﻣﻌﺎﺩﻝ ‪ 1.8 Gt CO 2 -C‬ﺩﺭ ﺳﺎﻝ ﻛﺎﻫﺶ ﺩﻫﺪ ) ﻳﻌﻨﻲ ‪ 12%‬ﺍﺯ ﺍﻧﺘﺸﺎﺭﺍﺕ‬ ‫ﺣﺎﺿﺮ ﺑﺸﺮﻱ(‪.‬‬ ‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫‪R‬‬

‫ﺑﻴﻮﺫﻏﺎﻝ ﭼﮕﻮﻧﻪ ﻋﻤﻞ ﻣﻲﻛﻨﺪ‬

‫ﺯﻣﺎﻧﻴﻜﻪ ﻣﻮﺍﺩ ﺁﻟﻲ ﺑﺼﻮﺭﺕ ﺣﺮﺍﺭﺗﻲ ﺩﺭ ﻏﻴﺎﺏ ﺍﻛﺴﻴﮋﻥ ﺗﺠﺰﻳﻪ ﻣﻲﺷﻮﻧﺪ‪ ،‬ﻳﻜﻲ ﺍﺯ ﻣﺤﺼﻮﻻﺕ ﺑﻴﻮﺫﻏﺎﻝ ﺍﺳﺖ‪ ،‬ﺗﺮﻛﻴﺒﻲ ﺟﺎﻣﺪ‪ ،‬ﻏﻨﻲ ﺍﺯ ﻛﺮﺑﻦ ﻭ‬ ‫ﺍﺟﺰﺍﻱ ﻏﻴﺮ ﺁﻟﻲ‪ .‬ﺑﺎ ﺗﺮﻛﻴﺐ ﺩﺭ ﺯﻣﻴﻦ ﺑﻮﺳﻴﻠﻪ ﻫﺮ ﻳﻚ ﺍﺯ ﻣﻮﺍﺭﺩ )ﺷﺨﻢ ﺯﺩﻥ ﻭ ﭘﺮ ﻛﺮﺩﻥ‪ ،‬ﺗﻮﺯﻳﻊ ﻛﻨﻨﺪﻩ ﻛﻮﺩ‪ ،‬ﻧﺸﺎء ﻋﻤﻴﻖ ﻭ ﻏﻴﺮﻩ(‪ ،‬ﺑﻴﻮﺫﻏﺎﻝ‬ ‫ﺑﻬﺒﻮﺩ ﺩﻫﻨﺪﻩ ﺗﺨﻠﺨﻞ ﺧﺎﻙ ﺍﺳﺖ ﻛﻪ ﻣﻲﺗﻮﺍﻧﺪ ﻛﺮﺑﻦ ﺭﺍ ﺣﺒﺲ ﻛﻨﺪ‪ ،‬ﻣﻮﺍﺩ ﻣﻌﺪﻧﻲ ﺭﺍ ﺗﺎﻣﻴﻦ ﻛﻨﺪ‪ ،‬ﺍﺯ ﻋﺒﻮﺭ ﻣﻮﺍﺩ ﻣﻐﺬﻱ ﻭ ﺁﻟﻮﺩﮔﻲ ﺁﺏ ﻣﻤﺎﻧﻌﺖ‬ ‫ﻛﻨﺪ ﻭ ﺭﻃﻮﺑﺖ ﺧﺎﻙ ﺭﺍ ﺣﻔﻆ ﻛﻨﺪ‪ .‬ﺍﻭﻟﻴﻦ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺁﻥ ﺑﻪ ‪ 2000‬ﺳﺎﻝ ﻗﺒﻞ ﺑﺎﺯ ﻣﻲﮔﺮﺩﺩ‪ .‬ﺩﺭ ﺍﻳﻦ ﻣﺴﻴﺮ‪ ،‬ﻗﺴﻤﺘﻲ ﺍﺯ ﻛﺮﺑﻦ ﺣﺬﻑ ﺷﺪﻩ ﺍﺯ‬ ‫ﺍﺗﻤﺴﻔﺮ ﺗﻮﺳﻂ ﮔﻴﺎﻫﺎﻥ ﺍﺯ ﻃﺮﻳﻖ ﻓﺘﻮﺳﻨﺘﺰ ﺩﺭ ﺑﻴﻮﺫﻏﺎﻝ ﺗﺜﺒﻴﺖ ﺷﺪﻩ ﻭ ﺩﺭ ﺧﺎﻙ ﺫﺧﻴﺮﻩ ﻣﻲﺷﻮﺩ‪ .‬ﻣﻄﺎﻟﻌﺎﺕ ﺯﻳﺎﺩ ﺩﺭ ﺯﻣﻴﻦﻫﺎﻱ ﺗﻴﺮﻩ ﺭﻧﮓ ﻏﻨﻲ‬ ‫ﺍﺯ ﺑﻴﻮﺫﻏﺎﻝ ﻣﻨﻄﻘﻪ ﺁﺭﻳﺰﻭﻧﺎ )‪ (terra preta‬ﻣﻨﺠﺮ ﺑﻪ ﺷﻨﺎﺧﺖ ﻭﺳﻴﻊﺗﺮ ﺧﺼﻮﺻﻴﺎﺕ ﺍﺭﺗﻘﺎ ﺧﺎﻙ ﺑﻴﻮﺫﻏﺎﻝ ﮔﺮﺩﻳﺪ‪.‬‬

‫‪12‬‬ ‫ﺧﺒﺮﻧﺎﻣﻪ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ‪ ،‬ﺳﺎﻝ ﭼﻬﺎﺭﻡ‪ ،‬ﺷﻤﺎﺭﻩ ‪ -22‬ﺩﻱ ﻭ ﺑﻬﻤﻦ ‪91‬‬


‫ﺑﻴﻮﻣﺲ ﺑﺴﻴﺎﺭ ﺧﻮﺏ ﺑﺮﺍﻱ ﺍﺳﺘﻔﺎﺩﻩ ﺑﺮﺍﻱ ﺗﻮﻟﻴﺪ ﺑﻴﻮﺫﻏﺎﻝ ﻭﺟﻮﺩ ﻧﺪﺍﺭﺩ‪ -‬ﺍﻳﻦ ﻣﻮﺿﻮﻉ ﺑﻴﺸﺘﺮ ﻭﺍﺑﺴﺘﻪ ﺑﻪ ﻣﻜﺎﻥ ﺟﻐﺮﺍﻓﻴﺎﻳﻲ‬ ‫ﺍﺳﺖ‪ .‬ﺩﺭ ﻛﻞ‪ ،‬ﭘﺲ ﻣﺎﻧﺪﻫﺎﻱ ﻛﺸﺎﻭﺭﺯﻱ ) ﻭ ﺩﻳﮕﺮ ﻓﺮﺍﻳﻨﺪﻫﺎﻱ ﺑﻴﻮﻣﺲ( ﻣﺤﺘﻤﻞﺗﺮﻳﻦ ﺧﻮﺭﺍﻙ ﺑﺮﺍﻱ ﺗﻮﻟﻴﺪ ﺑﻴﻮﺫﻏﺎﻝ ﻫﺴﺘﻨﺪ‪ ،‬ﺑﻨﺎﺑﺮﺍﻳﻦ ﺩﺭ‬ ‫ﻣﻘﻴﺎﺱ ﺟﻬﺎﻧﻲ ﺳﺒﻮﺱ ﻭ ﻛﺎﻩ ﺑﺮﻧﺞ‪ ،‬ﺗﻔﺎﻟﻪ ﻭ ﺑﺎﮔﺎﺱ ﻧﻴﺸﻜﺮ ﻭ ﺩﻳﮕﺮ ﻣﻮﺍﺩ ﺩﺭ ﺩﺳﺘﺮﺱ ﺑﻪ ﻣﻴﺰﺍﻥ ﺯﻳﺎﺩ ﻭ ﻫﺰﻳﻨﻪ ﻛﻢ ﻣﺤﺘﻤﻞ ﻣﻲﺑﺎﺷﻨﺪ‪ .‬ﺩﻳﮕﺮ‬ ‫ﺧﻮﺭﺍﻙﻫﺎﻱ ﻣﺤﺘﻤﻞ ﭘﺲ ﻣﺎﻧﺪﻫﺎﻱ ﺁﻟﻲ ﻧﻈﻴﺮ ﻟﺠﻦ ﻓﺎﺿﻼﺏ‪ ،‬ﻫﺎﺿﻢ ﻫﺎﻱ ‪ AD‬ﻭ ﺑﻴﻮﻣﺲ ﭼﻮﺑﻲ ﻣﻲﺑﺎﺷﻨﺪ‪.‬‬ ‫ﺳﻮﺍﻻﺕ ﺑﻲ ﭘﺎﺳﺦ‬

‫ﺗﺤﻘﻴﻘﺎﺕ ﺩﺭ ﭼﻨﺪﻳﻦ ﺭﺷﺘﻪ ﺩﺭ ﺗﻮﻟﻴﺪ ﭘﺎﻳﺪﺍﺭ ﻭ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺑﻴﻮﺫﻏﺎﻝ ﺑﻪ ﻋﻨﻮﺍﻥ ﺫﺧﻴﺮﻩ ﻃﻮﻻﻧﻲ ﻣﺪﺕ ‪ CO 2‬ﻫﻨﻮﺯ ﺩﺭ ﺍﺑﺘﺪﺍﻱ ﺭﺍﻩ ﺍﺳﺖ‪ .‬ﺑﺮﺧﻲ ﺍﺯ‬ ‫ﺳﻮﺍﻻﺕ ﺍﺳﺎﺳﻲ ﻛﻪ ﺣﻞ ﻧﺸﺪﻩ ﻣﺎﻧﺪﻩﺍﻧﺪ ﺷﺎﻣﻞ ﭼﮕﻮﻧﮕﻲ ﺍﻧﺘﺨﺎﺏ ﻣﻨﺎﺑﻊ ﺑﻴﻮﻣﺲ ﻣﻨﺎﺳﺐ‪ ،‬ﺑﻬﺘﺮﻳﻦ ﺷﺮﺍﻳﻂ ﻓﺮﺁﻳﻨﺪﻱ ﺑﺮﺍﻱ ﺗﻮﻟﻴﺪ ﺑﻴﻮﺫﻏﺎﻝ‪،‬‬ ‫ﺧﺼﻮﺻﻴﺎﺕ ﻓﻴﺰﻳﻜﻲ ﻭ ﺷﻴﻤﻴﺎﻳﻲ‪ ،‬ﭘﺎﻳﺪﺍﺭﻱ ﻃﻮﻻﻧﻲ ﺑﻪ ﻫﻤﺮﺍﻩ ﺍﺛﺮﺍﺕ ﺑﺮ ﺧﺼﻮﺻﻴﺎﺕ ﺧﺎﻙ ﻭ ﮔﻴﺎﻫﺎﻥ ﻭ ﺟﻮﺍﻧﺐ ﻣﻴﻜﺮﻭﺑﻲ ﻫﺴﺘﻨﺪ‪.‬‬ ‫ﭘﺎﺭﺍﻣﺘﺮﻫﺎﻱ ﺍﺛﺮﮔﺬﺍﺭ ﺑﺮ ﺗﻮﻟﻴﺪ ﻭ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺑﻴﻮﺫﻏﺎﻝ ﻭ ﺍﺛﺮﺍﺕ ﻣﺘﻘﺎﺑﻞ ﺁﻧﻬﺎ ﭘﻴﭽﻴﺪﻩ ﺍﺳﺖ‪ ،‬ﺑﻨﺎﺑﺮﺍﻳﻦ ﺑﺮﺍﻱ ﭘﺎﺳﺦ ﺑﻪ ﻣﻬﻤﺘﺮﻳﻦ ﺳﻮﺍﻻﺕ ﻭ ﺍﻧﺘﻘﺎﻝ‬ ‫ﺁﺧﺮﻳﻦ ﻳﺎﻓﺘﻪﻫﺎ ﺑﻪ ﻛﺎﺭﺑﺮﺩﻫﺎﻱ ﻋﻤﻠﻲ‪ ،‬ﺑﺎﻳﺪ ﻣﺘﺨﺼﺼﺎﻥ ﭼﻨﺪﻳﻦ ﺭﺷﺘﻪ ﺭﺍ ﻛﻨﺎﺭ ﻫﻢ ﺟﻤﻊ ﻧﻤﻮﺩ‪.‬‬ ‫‪R‬‬

‫‪R‬‬

‫ﺍﺩﻏﺎﻡ ﺗﺨﺼﺺﻫﺎ‬

‫ﺍﺑﺪﺍﻉ ﺍﺧﻴﺮ ﺷﺒﻜﻪ ﺍﻧﮕﻠﻴﺴﻲ‪ -‬ﻛﺎﻧﺎﺩﺍﻳﻲ‪ ،‬ﺑﺎ ﺣﺎﻣﻴﺖ ‪Levehulme‬‬

‫‪ ،Trust‬ﺑﻪ ﻣﺤﻘﻘﺎﻥ ﺍﺟﺎﺯﻩ ﺩﺍﺩ ﻛﻪ ﭘﺘﺎﻧﺴﻴﻞ ﺑﻴﻮﺫﻏﺎﻝ ﺭﺍ ﺑﻪ ﻋﻨﻮﺍﻥ‬ ‫ﺷﻴﻮﻩ ﻣﻮﺛﺮ ﺍﻗﺘﺼﺎﺩﻱ ﻭ ﺗﻜﻨﻴﻜﻲ ﺟﺬﺏ ‪ CO 2‬ﺩﺭ ﺷﻜﻞ ﭘﺎﻳﺪﺍﺭ‪،‬‬ ‫ﺩﺭﺣﻴﻦ ﺍﻓﺰﺍﻳﺶ ﻛﻴﻔﻴﺖ ﺧﺎﻙ ﻭ ﺑﻨﺎﺑﺮﺍﻳﻦ ﺍﻧﻄﺒﺎﻕ ﭘﺬﻳﺮﻱ ﻛﺸﺎﻭﺭﺯﻱ‬ ‫ﺑﺎ ﺗﻐﻴﻴﺮﺍﺕ ﺁﺏ ﻭ ﻫﻮﺍﻳﻲ‪ ،‬ﺑﺮﺭﺳﻲ ﻛﻨﻨﺪ‪.‬‬ ‫ﻣﻬﻨﺪﺳﺎﻥ ﻭ ﺩﺍﻧﺸﻤﻨﺪﺍﻥ ﺍﻧﮕﻠﻴﺲ ﻭ ﻛﺎﻧﺎﺩﺍ ﺭﻭﺵﻫﺎ ﺭﺍ ﺗﻐﻴﻴﺮ ﺧﻮﺍﻫﻨﺪ‬ ‫ﺩﺍﺩ ﻭ ﭼﮕﻮﻧﮕﻲ ﺗﻮﻟﻴﺪ ﺑﻴﻮﺫﻏﺎﻝ ﺭﺍ ﺑﺎ ﻫﺪﻑ ﺗﻮﺳﻌﻪ ﺭﻭﺵﻫﺎﻱ‬ ‫ﻣﺪﻟﺴﺎﺯﻱ ﺑﻬﺘﺮ ﺑﺮﺍﻱ ﺗﻜﻤﻴﻞ ﺩﺍﺩﻩﻫﺎﻱ ﺗﺠﺮﺑﻲ ﻣﻮﺟﻮﺩ ﻭ ﻗﺮﺍﺭ ﺩﺍﺩﻥ‬ ‫ﺍﻧﮕﻠﻴﺲ ﻭ ﻛﺎﻧﺎﺩﺍ ﺑﻪ ﻋﻨﻮﺍﻥ ﺭﻫﺒﺮﺍﻥ ﺗﻮﻟﻴﺪ‪ ،‬ﺍﺳﺘﻔﺎﺩﻩ ﻭ ﺍﺳﺘﺎﻧﺪﺍﺭ‬ ‫ﺳﺎﺯﻱ ﺑﻴﻮﺫﻏﺎﻝ‪ ،‬ﺧﻮﺍﻫﻨﺪ ﺷﻨﺎﺧﺖ‪.‬‬ ‫ﺩﺍﻧﺸﮕﺎﻩ ‪ Edinburgh‬ﺍﺯ ﻃﺮﻳﻖ ﻣﺮﻛﺰ ﺗﺤﻘﻴﻘﺎﺕ ﺑﻴﻮﺫﻏﺎﻝ ﺍﻧﮕﻠﻴﺲ‬ ‫ﺩﺭ ﭘﺮﻭژﻩ ﺩﺭﮔﻴﺮ ﺧﻮﺍﻫﺪ ﺷﺪ ﻛﻪ ﺑﺮﺧﻲ ﺯﻣﻴﻨﻪﻫﺎ ﺍﺯ ﻋﻠﻮﻡ ﺧﺎﻙ ﻭ ﻋﻠﻮﻡ ﺍﺟﺘﻤﺎﻋﻲ ﺗﺎ ﻣﻬﻨﺪﺳﻲ ﺑﻴﻮﺫﻏﺎﻝ ﺭﺍ ﭘﻮﺷﺶ ﻣﻲﺩﻫﺪ‪ .‬ﺩﺭ ﻛﺎﻧﺎﺩﺍ‪ ،‬ﻣﻮﺳﺴﻪ‬ ‫ﻣﻮﺍﺩ ﺷﻴﻤﻴﺎﻳﻲ ﻭ ﺳﻮﺧﺖ ﺍﺯ ﻣﻨﺎﺑﻊ ﺗﺠﺪﻳﺪ ﭘﺬﻳﺮ )‪ (ECFAR‬ﺩﺭ ﺩﺍﻧﺸﮕﺎﻩ ‪ Western‬ﺑﺎ ﺗﺠﺎﺭﺑﺶ ﺩﺭ ﺗﻜﻨﻮﻟﻮژﻱﻫﺎﻱ ﺗﺒﺪﻳﻞ ﺗﺮﻣﻮﺷﻴﻤﻴﺎﻳﻲ‬ ‫ﺷﺮﻛﺖ ﻣﻲﻛﻨﺪ ﻭ ﺩﺍﻧﺸﮕﺎﻩ ‪، Saskatchwan‬ﻗﻄﺐ ﺗﺤﻘﻴﻘﺎﺕ ﻛﺸﺎﻭﺭﺯﻱ‪ ،‬ﭼﮕﻮﻧﮕﻲ ﻛﺎﺭﺑﺮﺩ ﺑﻴﻮﺫﻏﺎﻝ ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﻜﻤﻞ‪ /‬ﺑﺎﺭﻭﺭﻛﻨﻨﺪﻩ ﺧﺎﻙ‪ ،‬ﻋﺎﻣﻞ‬ ‫ﺟﺬﺏ ﻭ ﻛﺮﺑﻦ ﻓﻌﺎﻝ ﺭﺍ ﺍﺿﺎﻓﻪ ﻣﻲﻛﻨﺪ‪ .‬ﺳﺮﺁﺧﺮ ﺩﺍﻧﺸﻜﺪﻩ ﻋﻠﻮﻡ ﮔﻴﺎﻫﻲ ﺩﺍﻧﺸﮕﺎﻩ ‪ McGill‬ﺍﺛﺮ ﻣﺘﻘﺎﺑﻞ ﺑﻴﻦ ﺑﻴﻮﺫﻏﺎﻝ ﻭ ﮔﻴﺎﻫﺎﻥ ﻭ ﺟﻨﺒﻪﻫﺎﻱ‬ ‫ﻣﻴﻜﺮﻭﺑﻲ ﺩﺭ ﺧﺎﻙ ﺑﻪ ﻫﻤﺮﺍﻩ ﺍﺳﺘﻔﺎﺩﻩ ﺑﻴﻮﺫﻏﺎﻝ ﺭﺍ ﺑﺮﺭﺳﻲ ﺧﻮﺍﻫﺪ ﻛﺮﺩ‪.‬‬ ‫‪R‬‬

‫‪R‬‬

‫ﺍﺳﺘﺎﻧﺪﺍﺭﺩ ﺗﻌﻴﻴﻦ ﺧﺼﻮﺻﻴﺎﺕ‬

‫ﺩﺭ ﺣﺎﻝ ﺣﺎﺿﺮ ﺑﺎﻭﺟﻮﺩ ﺗﻼﺵﻫﺎﻱ ﻗﺎﺑﻞ ﻣﻼﺣﻈﻪ ﺗﻮﺳﻂ ﭘﻴﺶﮔﺎﻣﺎﻥ ﺑﻴﻦﺍﻟﻤﻠﻠﻲ ﺑﻴﻮﺫﻏﺎﻝ )‪ ،(IBI‬ﺑﻮﻳﮋﻩ ﺩﺭ ﺯﻣﻴﻨﻪ ﻛﺎﺭﺑﺮﺩﻫﺎﻱ ﻛﺸﺎﻭﺭﺯﻱ‬ ‫ﺑﻴﻮﺫﻏﺎﻝ‪ ،‬ﺍﺳﺘﺎﻧﺪﺍﺭﺩﻫﺎﻱ ﭘﺬﻳﺮﻓﺘﻪ ﺷﺪﻩ ﺑﻴﻦﺍﻟﻤﻠﻠﻲ ﺑﺮﺍﻱ ﺗﻌﻴﻴﻦ ﺧﺼﻮﺻﻴﺎﺕ ﺑﻴﻮﺫﻏﺎﻝ ﻛﻪ ﺑﺮﺍﻱ ﺫﺧﻴﺮﻩ ﻛﺮﺑﻦ ﺍﺳﺘﻔﺎﺩﻩ ﺷﻮﺩ ﻭﺟﻮﺩ ﻧﺪﺍﺭﺩ‪ .‬ﺍﻳﻦ‬ ‫ﭘﺮﻭژﻩ ﺩﺍﺩﻩﻫﺎﻱ ﺟﺪﻳﺪ ﺷﺮﺍﻳﻂ ﺗﻮﻟﻴﺪ ﻭ ﻓﺮﺁﻳﻨﺪ ﺭﺍ ﺟﻤﻊﺁﻭﺭﻱ ﺧﻮﺍﻫﺪ ﻛﺮﺩ ﻛﻪ ﻣﻲﺗﻮﺍﻧﺪ ﺩﺭ ﻣﺪﻝﻫﺎﻱ ‪ Heriot-Watt‬ﺗﺮﻛﻴﺐ ﺷﻮﺩ‪ .‬ﺩﺭ ﻣﻘﺎﺑﻞ‬ ‫ﺗﻼﺵ ﺣﺎﺿﺮ ﺭﻭﻱ ﺑﻴﻮﺫﻏﺎﻝ‪ ،‬ﺍﻳﻦ ﺷﺒﻜﻪ ﺟﺪﻳﺪ ﻣﺘﺨﺼﺼﻴﻦ ﺩﺭ ﻓﺮﺁﻳﻨﺪﻫﺎﻱ ﺗﻮﻟﻴﺪ ﭘﻴﻮﺳﺘﻪ ﺑﻴﻮﺫﻏﺎﻝ ﺭﺍ ﺩﺭ ﻛﻨﺎﺭ ﻫﻢ ﻗﺮﺍﺭ ﺧﻮﺍﻫﺪ ﺩﺍﺩ ﻫﻢ ﺑﺮﺍﻱ‬ ‫ﭘﻴﺮﻭﻟﻴﺰ ﻛﻨﺪ ﻭ ﻫﻢ ﺳﺮﻳﻊ ﻭ ﻧﻴﺰ ﺟﻨﺒﻪ ﻣﺪﻟﺴﺎﺯﻱ ﺁﻥ‪.‬‬ ‫‪13‬‬ ‫ﺧﺒﺮﻧﺎﻣﻪ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ‪ ،‬ﺳﺎﻝ ﭼﻬﺎﺭﻡ‪ ،‬ﺷﻤﺎﺭﻩ ‪ -22‬ﺩﻱ ﻭ ﺑﻬﻤﻦ ‪91‬‬


‫ﻣﺮﻛﺰ ﺗﺤﻘﻴﻘﺎﺕ ﺑﻴﻮﺫﻏﺎﻝ ﺍﻧﮕﻠﻴﺲ‬

‫ﻣﺮﻛﺰ ﺗﺤﻘﻴﻘﺎﺕ ﺑﻴﻮﺫﻏﺎﻝ ﺍﻧﮕﻠﻴﺲ ﻣﺠﻤﻮﻋﻪﺍﻱ ﺍﺯ ﺗﺠﻬﻴﺰﺍﺕ ﭘﺒﺮﻭﻟﻴﺰ ﻛﻨﺪ ﭘﻴﻮﺳﺘﻪ ﺭﺍ ﺩﺭ ﺧﻮﺩ ﺟﺎﻱ ﺩﺍﺩﻩ ﺍﺳﺖ ﻛﻪ ﻣﺨﺘﺺ ﺗﺤﻘﻴﻖ ﺑﺮ ﺭﻭﻱ‬ ‫ﺑﻴﻮﺫﻏﺎﻝ ﺍﺳﺖ‪ ،‬ﺷﺎﻣﻞ ﻛﻮﺭﻩ ﺩﻭﺍﺭ ﺩﺭ ﻣﻘﻴﺎﺱ ﭘﺎﻳﻠﻮﺕ ﻛﻪ ﻣﻲﺗﻮﺍﻧﺪ ‪ 50 kg/h‬ﺑﻴﻮﻣﺲ ﺭﺍ ﺗﺎ ‪ 850 ̊C‬ﺑﺎ ﺯﻣﺎﻥ ﻣﺎﻧﺪ ﭼﻨﺪ ﺩﻗﻴﻘﻪ ﺗﺎ ﺑﻴﺸﺘﺮ ﺍﺯ ﻳﻚ‬ ‫ﺳﺎﻋﺖ ﺭﺍ ﺗﺤﺖ ﻛﻨﺘﺮﻝ ﺩﻗﻴﻖ ﻭ ﺷﺮﺍﻳﻂ ﻋﻤﻠﻜﺮﺩ ﻧﻈﺎﺭﺗﻲ ﭘﺮﻭﺳﺲ ﻛﻨﺪ‪ .‬ﻋﻤﻠﻜﺮﺩ ﺍﺻﻠﻲ ﻭﺍﺣﺪ ﺑﺮﺭﺳﻲ ﺍﺛﺮﺍﺕ ﺧﻮﺭﺍﻙ ﻭ ﺷﺮﺍﻳﻂ ﺗﻮﻟﻴﺪ ﺑﺮ ﺑﺎﺯﺩﻫﻲ‬ ‫ﻭ ﺧﺼﻮﺻﻴﺎﺕ ﺑﻴﻮﺫﻏﺎﻝ ﺑﻪ ﻫﻤﺮﺍﻩ ﻣﺤﺼﻮﻻﺕ ﺟﺎﻧﺒﻲ ﮔﺎﺯ ﻭ ﻣﺎﻳﻊ ﻣﻲﺑﺎﺷﺪ‪ .‬ﺩﻭﻡ‪ ،‬ﻭﺍﺣﺪ ﭘﻴﺮﻭﻟﻴﺰ ﻣﺘﻪﺍﻱ ﺩﺭ ﻣﻘﻴﺎﺱ ﺁﺯﻣﺎﻳﺸﮕﺎﻫﻲ ﺑﺎ ﻇﺮﻓﻴﺖ‬ ‫‪ 2kg/h‬ﺑﻴﻮﻣﺲ‪ ،‬ﺑﺮﺍﻱ ﻏﺮﺑﺎﻝ ﻛﺮﺩﻥ ﺧﻮﺭﺍﻙ ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﺷﻮﺩ‪ .‬ﺍﻳﻦ ﻭﺍﺣﺪ ﻫﻤﭽﻮﻥ ﻭﺍﺣﺪ ﭘﺎﻳﻠﻮﺕ ﻗﺎﺑﻞ ﺍﻧﻌﻄﺎﻑ ﻭ ﻛﻨﺘﺮﻝ ﺍﺳﺖ‪ ،‬ﺗﻌﻴﻴﻦ ﻣﻮﺍﺯﻧﻪ‬ ‫ﺟﺮﻡ ﻭ ﺍﻧﺮژﻱ ﻛﻞ ﻓﺮﺁﻳﻨﺪ ﭘﻴﺮﻭﻟﻴﺰ ﺭﺍ ﻣﻤﻜﻦ ﻣﻲﺳﺎﺯﺩ‪ ،‬ﻛﻪ ﺩﺍﺩﻩﻫﺎﻱ ﻣﻬﻤﻲ ﺑﺮﺍﻱ ﻣﺪﻟﺴﺎﺯﻱ ﻭ ﺍﺭﺯﻳﺎﺑﻲ ﺍﻗﺘﺼﺎﺩﻱ‪ -‬ﺗﻜﻨﻴﻜﻲ ﻓﺮﺍﻫﻢ ﻣﻲﺁﻭﺭﺩ‪.‬‬ ‫ﺍﻳﻦ ﻣﺠﻤﻮﻋﻪ ﺍﺯ ﻭﺍﺣﺪﻫﺎﻱ ﭘﻴﺮﻭﻟﻴﺰ ﭘﻴﻮﺳﺘﻪ ﺑﺎ ﻳﻚ ﺳﺮﻱ ﺗﺠﻬﻴﺰﺍﺕ ﺗﺤﻠﻴﻠﻲ )‪ (TGA/DSC-MS, Ms‬ﺑﺮﺍﻱ ﺗﻌﻴﻴﻦ ﻣﺸﺨﺼﺎﺕ ﺧﻮﺭﺍﻙ ﻭ‬ ‫ﻣﺤﺼﻮﻝ ﺗﺮﻛﻴﺐ ﺷﺪﻩ ﺍﺳﺖ‪ .‬ﻣﺮﻛﺰ ﺗﺤﻘﻴﻘﺎﺕ ﺑﻴﻮﺫﻏﺎﻝ ﺍﻧﮕﻠﻴﺲ ﻫﻤﭽﻨﻴﻦ ﻇﺮﻓﻴﺖ ﺭﺍ ﺑﺮﺍﻱ ﺗﻌﻴﻴﻦ ﺧﺼﻮﺻﻴﺎﺕ ﺑﻴﻮﺫﻏﺎﻝ )ﻭﺍﺑﺴﺘﻪ ﺑﻪ ﺗﻮﺍﺑﻊ‬ ‫ﺧﺎﻙ( ﺗﻮﺳﻌﻪ ﺩﺍﺩﻩ ﺍﺳﺖ ﻭ ﺟﻌﺒﻪ ﺍﺑﺰﺍﺭ ﺗﻌﻴﻴﻦ ﺧﺼﻮﺻﻴﺎﺕ ﺟﺪﻳﺪﻱ ﺗﻮﺳﻌﻪ ﺩﺍﺩﻩ ﺍﺳﺖ ﻛﻪ ﺟﺪﺍﺳﺎﺯﻱ ﻧﺴﺒﺘﺎ ﺳﺮﻳﻊ ﺑﻴﻮﺫﻏﺎﻝ ﺑﺮﺍﻱ ﭘﻨﺞ ﻓﺎﻛﺘﻮﺭ‬ ‫ﺍﺻﻠﻲ ﺗﻮﺍﺑﻊ ﺧﺎﻙ ﺭﺍ ﻣﻤﻜﻦ ﻣﻲﺳﺎﺯﺩ‪ .‬ﺗﺠﻬﻴﺰﺍﺕ ﻣﺮﺗﺒﺎ ﺑﻮﺳﻴﻠﻪ ﺷﺒﻜﻪ ﻣﺸﺎﺭﻛﺎﻥ ﺻﻨﻌﺘﻲ‪ ،‬ﺷﺎﻣﻞ ﺳﺎﺯﻣﺎﻥﻫﺎﻱ ﭼﻨﺪ ﻣﻠﻴﺘﻲ ﻭ ﺷﺮﻛﺖﻫﺎﻱ‬ ‫ﻣﺪﻳﺮﻳﺖ ﺁﺏ‪ ،‬ﻛﺴﺎﻧﻲ ﻛﻪ ﻋﻼﻗﻪ ﻣﻨﺪ ﺑﻪ ﺑﻴﻮﺫﻏﺎﻝ ﺑﻪ ﻋﻨﻮﺍﻥ ﺍﺑﺰﺍﺭ ﺟﺬﺏ ﻛﺮﺑﻦ‪ ،‬ﺍﺭﺗﻘﺎﺩﻫﻨﺪﻩ ﺧﺎﻙ‪ ،‬ﺟﺎﻳﮕﺰﻳﻦ ﺳﻮﺧﺖ ﻓﺴﻴﻠﻲ ﻭ ﻳﺎ ﺗﺮﻛﻴﺐ ﺍﻳﻨﻬﺎ ﻭ‬ ‫ﺩﻳﮕﺮ ﻓﺎﻛﺘﻮﺭﻫﺎ ﻫﺴﺘﻨﺪ‪ ،‬ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﺷﻮﻧﺪ‪.‬‬

‫ﻣﺸﺎﺭﻛﺖ ‪ICFAR‬‬

‫ﺩﺭ ‪ ICFAR‬ﺩﻭ ﺗﻜﻨﻮﻟﻮژﻱ ﺑﺮﺍﻱ ﺗﻮﻟﻴﺪ ﺑﻴﻮﺫﻏﺎﻝ ﺗﻮﺳﻌﻪ ﻳﺎﻓﺘﻪ ﺍﺳﺖ‪ .‬ﺍﻭﻟﻴﻦ ﻣﻮﺭﺩ ﺭﺍﻛﺘﻮﺭ ﺳﻴﺎﻝ ‪،‬ﺩﺭ ﻣﻘﻴﺎﺱ ﭘﺎﻳﻠﻮﺕ ﺍﺯ ﻟﺤﺎﻅ ﻣﻜﺎﻧﻴﻜﻲ‪ ،‬ﺍﺳﺖ‬ ‫ﻛﻪ ﻣﻲﺗﻮﺍﻧﺪ ‪ 35 kg/h‬ﺑﻴﻮﻣﺲ ﺭﺍ ﻓﺮﺁﻭﺭﻱ ﻛﻨﺪ‪ ،‬ﻭ ﺑﻴﻮﺫﻏﺎﻝ ﺑﺎ ﺑﺎﺯﺩﻩ ‪ 25-45%‬ﻭﺍﺑﺴﺘﻪ ﺑﻪ ﺷﺮﺍﻳﻂ ﻋﻤﻠﻜﺮﺩ ﻭ ﻧﻮﻉ ﺑﻴﻮﻣﺲ )ﺑﺎﻗﻴﻤﺎﻧﺪﻩ ﺑﻪ ﺑﻴﻮﻧﻔﺖ‬ ‫ﻭ ﮔﺎﺯ ﺗﺒﺪﻳﻞ ﻣﻴﺸﻮﺩ( ﺗﻮﻟﻴﺪ ﻛﻨﺪ‪ .‬ﺍﻳﻦ ﻳﻚ ﻭﺍﺣﺪ ﺁﺯﻣﺎﻳﺸﮕﺎﻫﻲ ﺍﺳﺖ ﻛﻪ ﻛﻨﺘﺮﻝ ﺩﻗﻴﻖ ﺷﺮﺍﻳﻂ ﻋﻤﻠﻜﺮﺩ‪ ،‬ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﺜﺎﻝ ﺗﻌﻴﻴﻦ ﭘﺘﺎﻧﺴﻴﻞ‬ ‫ﺧﻮﺭﺍﻙﻫﺎﻱ ﮔﻮﻧﺎﮔﻮﻥ‪ ،‬ﺭﺍ ﻣﻤﻜﻦ ﻣﻲﺳﺎﺯﺩ‪ .‬ﺩﻭﻣﻴﻦ ﻣﻮﺭﺩ ﻭﺍﺣﺪ ﭘﺎﻳﻠﻮﺕ ﺑﺴﺘﺮ ﺳﻴﺎﻝ ﺣﺒﺎﺑﻲ‪ ،‬ﺁﺯﻣﺎﻳﺸﮕﺎﻫﻲ ﻣﺠﻬﺰ ﺑﻪ ﻭﺭﻭﺩﻱ ﺑﻴﻮﻣﺲ ﻭﻳﮋﻩ ﺍﺳﺖ‬ ‫ﻛﻪ ﻣﻲﺗﻮﺍﻧﺪ ﺣﺘﻲ ﻫﺮ ﻳﻚ ﺍﺯ ﻣﻮﺍﺩ ﭼﺴﺒﻨﺪﻩ ﻭ ﭼﺴﺒﻨﺎﻙ ﺑﺎ ﻇﺮﻓﻴﺖ ‪ 1 kg/h‬ﺑﺎﺷﺪ‪.‬‬ ‫ﺍﺧﻴﺮﺍ ﺩﺭ ﻣﻘﻴﺎﺱ ﭘﻴﺶ ﺗﺠﺎﺭﻱ‪ ،‬ﺗﺠﻬﻴﺰﺍﺕ ﺁﺯﻣﺎﻳﺸﮕﺎﻫﻲ ﺑﻪ ﻭﺍﺣﺪ ﭘﻴﺮﻭﻟﻴﺰ ﺳﻴﺎﺭ ﻣﺠﻬﺰ ﻣﻲﺷﻮﻧﺪ‪ ،‬ﻛﻪ ﺗﻮﺳﻂ ‪ Agri-Therm‬ﺯﻳﺮﻣﺠﻤﻮﻋﻪ‬ ‫‪ IFCAR‬ﺗﺠﺎﺭﻱ ﺧﻮﺍﻫﻨﺪ ﺷﺪ‪ .‬ﻧﻤﻮﻧﻪﺍﻱ ﻛﻪ ﺑﻴﺸﺘﺮ ﺍﻣﺘﺤﺎﻥ ﺷﺪﻩ ﺍﺳﺖ ﻣﻲﺗﻮﺍﻧﺪ ‪ 5-10 t/d‬ﺑﻴﻮﻣﺲ ﺭﺍ ﺑﺴﺘﻪ ﺑﻪ ﺷﺮﺍﻳﻂ ﻋﻤﻠﻜﺮﺩ ﻭ ﺧﻮﺭﺍﻙ‪ ،‬ﺑﻪ‬ ‫‪ 1.5-4.5 t/d‬ﺑﻴﻮﺫﻏﺎﻝ ﺗﺒﺪﻳﻞ ﻛﻨﺪ‪ .‬ﺍﻳﻦ ﻭﺍﺣﺪ ﻣﺘﺤﺮﻙ ﺍﺳﺖ ﻭ ﻣﻲﺗﻮﺍﻧﺪ ﺩﺭ ﻳﻚ ﻛﺎﻣﻴﻮﻥ ﻛﻮﭼﻚ ﺟﺎﻱ ﮔﻴﺮﺩ ﻭ ﺑﻪ ﻫﺮ ﺟﺎﻳﻲ ﻛﻪ ﺑﻴﻮﻣﺲ ﺗﻮﻟﻴﺪ‬ ‫ﻣﻲﺷﻮﺩ ﻣﻨﺘﻘﻞ ﺷﻮﺩ‪.‬‬ ‫‪ ICFAR‬ﻭ ﺑﺴﻴﺎﺭﻱ ﺍﺯ ﻣﺸﺎﺭﻛﺎﻥ ﺻﻨﻌﺘﻲ ﺍﻭ ﺩﺭ ﺣﺎﻝ ﻛﺎﺭ ﺭﻭﻱ ﭼﻨﺪ ﺗﻜﻨﻮﻟﻮژﻱ ﻋﻤﺪﺗﺎ ﺁﺯﻣﺎﻳﺸﮕﺎﻫﻲ ﺑﺮﺍﻱ ﺗﻮﻟﻴﺪ ﺑﻴﻮﺫﻏﺎﻝ ﺩﺭ ﻫﺮ ﺩﻭ ﺯﻣﻴﻨﻪ‬ ‫ﻓﺮﺁﻳﻨﺪﻫﺎﻱ ﺟﺪﻳﺪ ﻭ ﺑﻬﺒﻮﺩ ﺭﻭﺵﻫﺎﻱ ﻣﻮﺟﻮﺩ ﻣﻲﺑﺎﺷﻨﺪ‪ .‬ﺑﺮﺧﻲ ﺍﺯ ﻣﺸﺎﺭﻛﺎﻥ ﺻﻨﻌﺘﻲ ﺗﻜﻨﻮﻟﻮژﻱ ﺑﺎ ﻇﺮﻓﻴﺖ ﻓﺮﺁﻳﻨﺪ ﺩﺭ ﻣﺤﺪﻭﺩﻩ ‪40-160 t/d‬‬ ‫ﺭﺍ ﺩﺭﻧﻈﺮ ﺩﺍﺭﻧﺪ‪ .‬ﻣﻮﺿﻮﻉ ﺍﺻﻠﻲ ﻫﺰﻳﻨﻪ ﻭ ﺩﺳﺘﺮﺳﻲ ﺑﻴﻮﻣﺲ ﺧﺎﻡ )ﻭ ﻓﺼﻠﻲ ﺑﻮﺩﻥ ﺁﻥ(‪ ،‬ﺣﺪﺍﻗﻞ ﺳﺎﺯﻱ ﻫﺰﻳﻨﻪﻫﺎﻱ ﺍﻧﺘﻘﺎﻝ‪ ،‬ﺍﺯ ﺁﻧﺠﺎﻳﻴﻜﻪ ﭼﻨﻴﻦ‬ ‫ﻇﺮﻓﻴﺖﻫﺎﻱ ﺗﻮﻟﻴﺪﻱ ﺗﻨﻬﺎ ﺑﺎ ﻭﺍﺣﺪﻫﺎﻱ ﺛﺎﺑﺖ ﺍﻣﻜﺎﻥﭘﺬﻳﺮ ﺍﺳﺖ‪ ،‬ﺩﺭ ﺍﺭﺗﺒﺎﻁ ﺧﻮﺍﻫﻨﺪ ﺑﻮﺩ‪.‬‬

‫ﻣﺪﻟﺴﺎﺯﻱ ﺩﺭ ‪Heriot-Watt‬‬

‫ﺗﻮﻟﻴﺪ ﺑﻴﻮﺫﻏﺎﻝ ﺑﻪ ﺧﻮﺭﺍﻙ ﻭﺭﻭﺩﻱ‪ ،‬ﺩﻣﺎ ﻭ ﺯﻣﺎﻥ ﻣﺎﻧﺪﻱ ﻛﻪ ﺗﻮﻟﻴﺪ ﺩﺭ ﺁﻥ ﺍﻧﺠﺎﻡ ﻣﻲﺷﻮﺩ‪ ،‬ﺑﺴﺘﮕﻲ ﺩﺍﺭﺩ‪ .‬ﺍﮔﺮ ﺗﻮﻟﻴﺪ ﻭ ﻛﺎﺭﺑﺮﺩ ﺑﻴﻮﺫﻏﺎﻝ ﭘﻴﻮﺳﺘﻪ ﺩﺭ‬ ‫ﻣﻘﻴﺎﺱ ﺻﻨﻌﺘﻲ ﺗﻮﺳﻌﻪ ﻳﺎﺑﺪ‪ ،‬ﺗﻮﺳﻌﻪ ﻣﺪﻝﻫﺎﻱ ﭘﺎﻳﻪ ﻣﻨﺎﺳﺐ ﻛﻪ ﺑﺮ ﺍﺳﺎﺱ ﺷﻴﻤﻲ ﻭ ﻓﻴﺰﻳﻚ ﭘﺎﻳﻪ ﺑﺎﺷﻨﺪ ﻭ ﺑﺘﻮﺍﻧﻨﺪ ﺑﻪ ﻋﻨﻮﺍﻥ ﺍﺑﺰﺍﺭ ﭘﻴﺶﺑﻴﻨﻲ‬ ‫ﺍﺳﺘﻔﺎﺩﻩ ﺷﻮﻧﺪ‪ ،‬ﺿﺮﻭﺭﻱ ﺍﺳﺖ‪ .‬ﭼﻨﻴﻦ ﻣﺪﻟﻲ ﺑﻪ ﻓﻬﻢ‪ ،‬ﻃﺮﺍﺣﻲ ﻭ ﻛﻨﺘﺮﻝ ﻓﺮﺁﻳﻨﺪ ﻛﻤﻚ ﺧﻮﺍﻫﺪ ﻛﺮﺩ ﻭ ﺻﺮﻓﻪ ﺟﻮﻳﻲ ﻫﺰﻳﻨﻪ ﻭ ﻛﺎﻫﺶ ﺍﺛﺮﺍﺕ‬ ‫ﺯﻳﺴﺖ ﻣﺤﻴﻄﻲ ﺑﺎ ﻛﺎﻫﺶ ﺗﻌﺪﺍﺩ ﺁﺯﻣﺎﻳﺶﻫﺎ ﺭﺍ ﺑﻪ ﺩﻧﺒﺎﻝ ﺩﺍﺭﺩ‪ .‬ﺍﻳﻦ ﭘﺮﻭژﻩ ﻛﺎﺭﺷﻨﺎﺳﺎﻥ ﺗﺠﺮﺑﻲ ﺭﺍ ﻛﻨﺎﺭ ﻫﻢ ﺟﻤﻊ ﺧﻮﺍﻫﺪ ﻧﻤﻮﺩ ﻛﺴﺎﻧﻲ ﻛﻪ‬ ‫ﻛﺎﺭﺷﺎﻥ ﺑﻪ ﺳﺎﺧﺖ ﺗﻐﻴﻴﺮ ﺑﺰﺭﮔﻲ ﺩﺭ ﺗﻮﺍﻧﻤﻨﺪﻱ ﻣﺎ ﺑﺮﺍﻱ ﺗﻮﻟﻴﺪ ﺑﻴﻮﺫﻏﺎﻝ ﻛﻤﻚ ﺧﻮﺍﻫﺪ ﻛﺮﺩ‪ .‬ﺗﺠﺮﺑﻪ ﻣﺪﻟﺴﺎﺯﻱ ﺩﺭ ﺩﺍﻧﺸﮕﺎﻩ ‪ Heriot-Watt‬ﺑﺮﺍﻱ‬ ‫‪14‬‬ ‫ﺧﺒﺮﻧﺎﻣﻪ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ‪ ،‬ﺳﺎﻝ ﭼﻬﺎﺭﻡ‪ ،‬ﺷﻤﺎﺭﻩ ‪ -22‬ﺩﻱ ﻭ ﺑﻬﻤﻦ ‪91‬‬


‫ﺗﻮﺳﻌﻪ ﻣﺪﻝﻫﺎﻱ ﭘﻴﺮﻭﻟﻴﺰ ﻣﻨﺎﺳﺐ‪ ،‬ﻓﺎﻛﺘﻮﺭ ﺍﺻﻠﻲ ﺧﻮﺍﻫﺪ ﺑﻮﺩ‪ .‬ﻛﺎﺭ ﻗﺒﻠﻲ ﻣﺪﻟﺴﺎﺯﻱ ﺷﻜﺎﻓﺖ ﺣﺮﺍﺭﺗﻲ ﻭ ﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﺗﺮﻛﻴﺒﺎﺕ‬ ‫ﺑﺎ ﻭﺯﻥ ﻣﻮﻟﻜﻮﻟﻲ ﺑﺎﻻ ﺭﺍ ﺷﺎﻣﻞ ﻣﻲﺷﻮﺩ ﻛﻪ ﺑﺮﺍﻱ ﻣﺪﻟﺴﺎﺯﻱ ﻓﺮﺁﻳﻨﺪﻫﺎﻱ ﭘﻴﺮﻭﻟﻴﺰ ﻛﻪ ﺩﺭ ﺍﺳﺎﺱ ﺗﻮﻟﻴﺪ ﺑﻴﻮﺫﻏﺎﻝ ﻭﺟﻮﺩ ﺩﺍﺭﻧﺪ‪ ،‬ﺍﺳﺎﺳﻲ ﺍﺳﺖ‪.‬‬ ‫ﺩﺭ ﭘﺎﻳﺎﻥ‪ ،‬ﺷﺒﻜﻪ ﻗﺼﺪ ﺩﺍﺭﺩ ﺩﺍﻧﺶ ﺑﻴﻮﺫﻏﺎﻝ ﺭﺍ ﻣﻴﺎﻥ ﺟﺎﻣﻌﻪ ﻭ ﻗﺎﻧﻮﻥ ﮔﺬﺍﺭﺍﻥ ﺑﻪ ﻋﻨﻮﺍﻥ ﮔﺰﻳﻨﻪ ﭘﺎﻳﺪﺍﺭ ﺍﻧﻄﺒﺎﻕ ﻭ ﻛﺎﻫﺶ ﺗﻐﻴﻴﺮﺍﺕ ﺁﺏ ﻭ ﻫﻮﺍﻳﻲ‬ ‫ﺍﻓﺰﺍﻳﺶ ﺩﻫﺪ‪.‬‬

‫‪15‬‬ ‫ﺧﺒﺮﻧﺎﻣﻪ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ‪ ،‬ﺳﺎﻝ ﭼﻬﺎﺭﻡ‪ ،‬ﺷﻤﺎﺭﻩ ‪ -22‬ﺩﻱ ﻭ ﺑﻬﻤﻦ ‪91‬‬


‫ﺍﺧﺒﺎﺭ ﺷﺮﻛﺖ ﻣﻬﺮ‪:‬‬ ‫>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>‬

‫ﻋﺎﺩﻝ ﭘﺮﺗﻮﻱ‬

‫‪ -‬ﺑﺮﮔﺰﺍﺭﻱ ﻣﻮﻓﻘﻴﺖ ﺁﻣﻴﺰ ﻫﻤﺎﻳﺶ ﻣﺪﻳﺮﻳﺖ ﺳﺒﺰ‪ -‬ﻧﺸﺴﺖ ﺍﻗﺘﺼﺎﺩ ﻭ ﻣﺪﻳﺮﻳﺖ ﺍﻧﺮژﻱ‬

‫ﻧﺸﺴﺖ ﺍﻗﺘﺼﺎﺩ ﻭ ﻣﺪﻳﺮﻳﺖ ﺍﻧﺮژﻱ ﺩﺭ ﺣﺎﺷﻴﻪ ﻫﻔﺘﻤﻴﻦ ﻫﻤﺎﻳﺶ ﺍﻧﺠﻤﻦ ﻣﺪﻳﺮﻳﺖ ﺳﺒﺰ ﺍﻳﺮﺍﻥ ﺩﺭ ﺗﺎﺭﻳﺦ ﺳﻮﻡ ﺑﻬﻤﻦ ﻣﺎﻩ ﺗﻮﺳﻂ ﺷﺮﻛﺖ ﺍﻧﺮژﻳﻬﺎﻱ‬ ‫ﺗﺠﺪﻳﺪ ﭘﺬﻳﺮ ﻣﻬﺮ ﺑﺮﮔﺰﺍﺭ ﮔﺮﺩﻳﺪ‪ .‬ﺍﻳﻦ ﻧﺸﺴﺖ ﻛﻪ ﺑﺎ ﻣﺪﻳﺮﻳﺖ ﺁﻗﺎﻱ ﻣﻬﻨﺪﺱ ﻧﺠﻔﻴﺎﻥ ﺭﺋﻴﺲ ﺍﻧﺠﻤﻦ ﺑﻬﻴﻨﻪ ﺳﺎﺯﻱ ﺍﻧﺮژﻱ ﺻﻨﺎﻳﻊ ﺍﻳﺮﺍﻥ ﻭ ﺁﻗﺎﻱ‬ ‫ﻣﻬﻨﺪﺱ ﻛﺎﻣﻴﺎﺏ ﺍﺯ ‪ ،UNDP‬ﺁﻗﺎﻱ ﺩﻛﺘﺮ ﻣﺤﻤﺪﻧﮋﺍﺩ ﻣﺪﻳﺮ ﻛﻞ ﺩﻓﺘﺮ ﻣﺤﻴﻂ ﺯﻳﺴﺖ‪ ،‬ﺍﻳﻤﻨﻲ ﻭ ﺑﻬﺪﺍﺷﺖ ﻭﺯﺍﺭﺕ ﺻﻨﻌﺖ‪ ،‬ﻣﻌﺪﻥ ﻭ ﺗﺠﺎﺭﺕ ﻭ‬ ‫ﺁﻗﺎﻱ ﻣﻬﻨﺪﺱ ﻣﻌﺘﻤﺪ ﻣﻌﺎﻭﻥ ﻣﺪﻳﺮ ﻋﺎﻣﻞ ﺍﻳﺮﺍﻥﺧﻮﺩﺭﻭ ﺑﺮﮔﺰﺍﺭ ﺷﺪ ﭘﻨﺞ ﺍﺭﺍﺋﻪ ﺑﺎ ﻋﻨﺎﻭﻳﻦ ﻣﻤﻴﺰﻱ ﻭ ﻣﺪﻳﺮﻳﺖ ﺍﻧﺮژﻱ ﺗﺤﺖ ‪،ISO50001‬‬ ‫ﻛﻨﻮﺍﻧﺴﻴﻮﻥﻫﺎﻱ ﺑﻴﻦ ﺍﻟﻤﻠﻠﻲ ﺑﺮﺍﻱ ﺗﺎﻣﻴﻦ ﻣﺎﻟﻲ ﭘﺮﻭژﻩﻫﺎﻱ ﺯﻳﺴﺖ ﻣﺤﻴﻄﻲ‪ ،‬ﺟﺎﻳﺰﻩ ﺍﻧﺮژﻱ‪ ،‬ﻣﺪﻳﺮﻳﺖ ﻛﺮﺑﻦ ﺩﺭ ﺑﻨﮕﺎﻫﻬﺎﻱ ﺍﻗﺘﺼﺎﺩﻱ ﻭ ﻧﻘﺶ‬ ‫ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﺩﺭ ﮔﺴﺘﺮﺵ ﺍﻧﺮژﻳﻬﺎﻱ ﺗﺠﺪﻳﺪﭘﺬﻳﺮ ﺑﺎ ﻣﻄﺎﻟﻌﻪ ﺩﻭ ﭘﺮﻭژﻩ ﻣﻮﺭﺩﻱ ﺍﻳﺮﺍﻥ ﺩﺭ ﺍﻳﻦ ﺟﻠﺴﻪ ﺍﺭﺍﺋﻪ ﮔﺮﺩﻳﺪ‪.‬‬ ‫‪-‬‬

‫ﺟﺎﻳﺰﻩ ﺍﻧﺮژﻱ ﺍﻳﺮﺍﻥ‬

‫ﺑﺎ ﺣﻤﺎﻳﺖ ﺍﻧﺠﻤﻦ ﻣﺪﻳﺮﻳﺖ ﻛﻴﻔﻴﺖ ﺍﻳﺮﺍﻥ‪ ،‬ﻃﺮﺍﺣﻲ ﺟﺎﻳﺰﻩ ﺍﻧﺮژﻱ ﺍﻳﺮﺍﻥ ﺗﻮﺳﻂ ﺷﺮﻛﺖ ﺍﻧﺮژﻳﻬﺎﻱ ﺗﺠﺪﻳﺪﭘﺬﻳﺮ ﻣﻬﺮ ﺻﻮﺭﺕ ﻣﻲﮔﻴﺮﺩ‪ .‬ﺁﻗﺎﻱ‬ ‫ﻣﻬﻨﺪﺱ ﺫﺍﻛﺮﺯﺍﺩﻩ ﻛﻪ ﻣﺘﻮﻟﻲ ﻃﺮﺍﺣﻲ ﺟﺎﻳﺰﻩ ﻓﻮﻕ ﺍﺳﺖ ﺩﺭ ﺣﺎﺷﻴﻪ ﻫﻤﺎﻳﺶ ﻣﺪﻳﺮﻳﺖ ﺳﺒﺰ ﺍﻋﻼﻡ ﻛﺮﺩ ﻛﻪ ﻓﺎﺯ ﺷﻨﺎﺧﺖ ﻣﺪﻟﻬﺎﻱ ﺟﺎﻳﺰﻩ ﺑﻪ ﺍﺗﻤﺎﻡ‬ ‫ﺭﺳﻴﺪﻩ ﻭ ﺩﺭ ﺣﺎﻝ ﻃﺮﺍﺣﻲ ﻣﺪﻝ ﺟﺎﻳﺰﻩ ﻣﻨﺎﺳﺐ ﺷﺮﺍﻳﻂ ﻛﺸﻮﺭ ﺧﻮﺩ ﻫﺴﺘﻴﻢ‪ .‬ﻭﻱ ﺟﺎﻳﺰﻩ ﺍﻧﺮژﻱ ﺭﺍ ﻓﺮﺍﺗﺮ ﺍﺯ ﺑﺤﺚ ﻣﺪﻳﺮﻳﺖ ﺍﻧﺮژﻱ ﻭ ﭘﻴﺎﺩﻩﺳﺎﺯﻱ‬ ‫ﺍﺳﺘﺎﻧﺪﺍﺭﺩﻫﺎﻱ ﻣﺮﺗﺒﻂ ﺩﺍﻧﺴﺖ ﻭ ﺍﻓﺰﻭﺩ ﺍﻳﻦ ﺟﺎﻳﺰﻩ ﻃﻮﺭﻱ ﻃﺮﺍﺣﻲ ﻣﻲﺷﻮﺩ ﻛﻪ ﻫﻤﺎﻧﻨﺪ ﺳﻴﺴﺘﻢﻫﺎﻱ ﺗﻌﺎﻟﻲ ﻛﻞ ﻳﻚ ﻣﺠﻤﻮﻋﻪ ﺻﻨﻌﺘﻲ ﺭﺍ ﺷﺎﻣﻞ‬ ‫ﺷﻮﺩ‪.‬‬ ‫‪ -‬ﻛﺎﺭﮔﺎﻩ ﺁﻣﻮﺯﺷﻲ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﺩﺭ ﺻﻨﻌﺖ ﺳﻴﻤﺎﻥ‬

‫ﺩﺭ ﺣﺎﺷﻴﻪ ﺍﻭﻟﻴﻦ ﻛﻨﻔﺮﺍﻧﺲ ﺑﻴﻦ ﺍﻟﻤﻠﻠﻲ ﺳﻴﻤﺎﻥ‪ ،‬ﺍﻧﺮژﻱ ﻭ ﻣﺤﻴﻂ ﺯﻳﺴﺖ ﻛﺎﺭﮔﺎﻩ ﻳﻚ ﺭﻭﺯﻩ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻧﻴﺰ ﺑﺎ ﺣﻀﻮﺭ ﻋﻼﻗﻤﻨﺪﺍﻥ‬ ‫ﺻﻨﻌﺖ ﺳﻴﻤﺎﻥ ﺑﺮﮔﺰﺍﺭ ﻣﻲﺷﻮﺩ ﺍﻳﻦ ﻛﺎﺭﮔﺎﻩ ﺑﺎ ﻣﺤﻮﺭﻫﺎﻱ ﺁﺷﻨﺎﻳﻲ ﺑﺎ ﺍﺛﺮﺍﺕ ﺗﻐﻴﻴﺮﺍﺕ ﻭ ﺁﺏ ﻭ ﻫﻮﺍﻳﻲ‪ ،‬ﻛﻨﻮﺍﻧﺴﻴﻮﻥ ﺗﻐﻴﻴﺮ ﺁﺏ ﻭ ﻫﻮﺍ ﻭ ﭘﺮﻭﺗﻜﻞ‬ ‫ﻛﻴﻮﺗﻮ‪ ،‬ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ‪ ،‬ﻓﺮﺻﺘﻬﺎﻱ ﺻﻨﻌﺖ ﺳﻴﻤﺎﻥ ﺩﺭ ﺑﻬﺮﻩﮔﻴﺮﻱ ﺍﺯ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﻣﻄﺎﻟﻌﻪ ﻣﻮﺭﺩﻱ ﭼﻨﺪ ﭘﺮﻭژﻩ ﺍﻧﺠﺎﻡ ﺷﺪﻩ‬ ‫ﺑﺮﮔﺰﺍﺭ ﺧﻮﺍﻫﺪ ﮔﺮﺩﻳﺪ‪ .‬ﺍﻳﻦ ﻛﺎﺭﮔﺎﻩ ﺩﺭ ﺭﻭﺯ ﺑﻴﺴﺖﻭﭼﻬﺎﺭﻡ ﺑﻬﻤﻦ ﻣﺎﻩ ﺩﺭ ﻣﺤﻞ ﺩﺍﻧﺸﮕﺎﻩ ﺗﻬﺮﺍﻥ ﺑﺮﮔﺰﺍﺭ ﻣﻲﺷﻮﺩ‪ .‬ﺑﺮﺍﻱ ﺍﻃﻼﻋﺎﺕ ﺑﻴﺸﺘﺮ ﺑﻪ ﭘﻴﻮﻧﺪ‬ ‫‪ http://cie.ut.ac.ir/cnf/workshop‬ﻣﺮﺍﺟﻌﻪ ﻧﻤﺎﻳﻴﺪ‪.‬‬ ‫‪U5T‬‬

‫‪5TU‬‬

‫‪ -‬ﺗﻮﺳﻌﻪ ﭘﺎﻳﺪﺍﺭ ﺭﻭﺳﺘﺎﻫﺎ‬

‫ﺩﺭ ﺭﺍﺳﺘﺎﻱ ﻣﺴﺌﻮﻟﻴﺘﻬﺎﻱ ﺍﺟﺘﻤﺎﻋﻲ ﺷﺮﻛﺖ ﻣﻬﺮ ﺩﺭ ﺣﺎﻝ ﺑﺮﻧﺎﻣﻪﺭﻳﺰﻱ ﻫﻤﻜﺎﺭﻳﻬﺎﻱ ﺩﻭ ﺟﺎﻧﺒﻪ ﺑﺎ ﻣﺘﻮﻟﻴﺎﻥ ﺩﻭﻟﺘﻲ ﺟﻬﺖ ﺍﺟﺮﺍﻱ ﻃﺮﺣﻬﺎﻱ ﺗﻮﺳﻌﻪ‬ ‫ﭘﺎﻳﺪﺍﺭ ﺭﻭﺳﺘﺎﻳﻲ ﺍﺳﺖ‪ .‬ﺩﺭ ﺍﻳﻦ ﺭﺍﺳﺘﺎ ﺍﻭﻟﻴﻦ ﻫﻤﻜﺎﺭﻱ ﺑﻪ ﺷﺮﻛﺖ ﻣﻠﻲ ﮔﺎﺯ ﺍﻳﺮﺍﻥ ﺟﻬﺖ ﺗﺎﻣﻴﻦ ﺍﻧﺮژﻱ ﺣﺮﺍﺭﺗﻲ ﺭﻭﺳﺘﺎﻫﺎ ﺍﺯ ﻃﺮﻳﻖ ﺑﻴﻮﮔﺎﺯ ﺗﻮﻟﻴﺪﻱ‬ ‫ﺩﺭ ﻣﺤﻞ ﺭﻭﺳﺘﺎ ﭘﻴﺸﻨﻬﺎﺩ ﺷﺪﻩ ﻭ ﺩﺭ ﻣﺮﺍﺣﻞ ﺗﺼﻤﻴﻢﮔﻴﺮﻱ ﺍﺳﺖ‪ .‬ﻫﻤﭽﻨﻴﻦ ﺑﺮﻧﺎﻣﻪﻫﺎﻳﻲ ﺟﻬﺖ ﻫﻤﻜﺎﺭﻱ ﺑﺎ ﺑﺨﺸﻬﺎﻱ ﺧﺼﻮﺻﻲ ﻭ ﻣﻮﺳﺴﺎﺕ‬ ‫ﻣﺮﺩﻡ ﻧﻬﺎﺩ ﺟﻬﺖ ﺗﺸﻮﻳﻖ ﻭ ﻧﻬﺎﺩﻳﻨﻪ ﺳﺎﺯﻱ ﺗﻮﺳﻌﻪ ﭘﺎﻳﺪﺍﺭ ﺭﻭﺳﺘﺎﻳﻲ ﺩﺭ ﺩﺳﺖ ﺗﺪﺍﺭﻙ ﺍﺳﺖ ﻛﻪ ﺩﺭﺁﻳﻨﺪﻩ ﻧﺰﺩﻳﻚ ﺑﻪ ﺍﻃﻼﻉ ﻋﻤﻮﻣﻲ ﺧﻮﺍﻫﺪ‬ ‫ﺭﺳﻴﺪ‪.‬‬

‫‪16‬‬ ‫ﺧﺒﺮﻧﺎﻣﻪ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ‪ ،‬ﺳﺎﻝ ﭼﻬﺎﺭﻡ‪ ،‬ﺷﻤﺎﺭﻩ ‪ -22‬ﺩﻱ ﻭ ﺑﻬﻤﻦ ‪91‬‬


‫‪ -‬ﻛﻨﻔﺮﺍﻧﺲ ﺣﺎﻣﻴﺎﻥ ﺯﻣﻴﻦ ﺩﺭ ﻣﻘﺎﺑﻞ ﺗﻐﻴﻴﺮﺍﺕ ﺁﺏ ﻭ ﻫﻮﺍﻳﻲ‬

‫ﻫﺸﺘﻢ ﺍﺭﺩﻳﺒﻬﺸﺖ ﻣﺎﻩ ‪ ،1392‬ﻛﻨﻔﺮﺍﻧﺲ ﺣﺎﻣﻴﺎﻥ ﺯﻣﻴﻦ ﺑﺎ ﺭﻭﻳﻜﺮﺩ ﻣﻘﺎﺑﻠﻪ ﺑﺎ ﺗﻐﻴﻴﺮﺍﺕ ﺁﺏ ﻭ ﻫﻮﺍﻳﻲ ﺑﺎ ﺣﻤﺎﻳﺖ ﻋﻠﻤﻲ ﺷﺮﻛﺖ ﻣﻬﺮ ﻭ ﻣﺸﺎﺭﻛﺖ‬ ‫ﻣﻌﺎﻭﻧﺖ ﻓﻨﺎﻭﺭﻱ ﻫﺎﻱ ﺭﻳﺎﺳﺖ ﺟﻤﻬﻮﺭﻱ‪ ،‬ﺳﺎﺯﻣﺎﻥ ﺣﻔﺎﻇﺖ ﻣﺤﻴﻂ ﺯﻳﺴﺖ‪ ،‬ﻭﺯﺍﺭﺕ ﻧﻔﺖ‪ ،‬ﺷﺮﻛﺖ ﻣﻠﻲ ﻧﻔﺖ ﺍﻳﺮﺍﻥ‪ ،‬ﺷﺮﻛﺖ ﻣﻠﻲ ﺻﻨﺎﻳﻊ‬ ‫ﭘﺘﺮﻭﺷﻴﻤﻲ ﺍﻳﺮﺍﻥ‪ ،‬ﻭ ‪ ....‬ﺑﺮﮔﺰﺍﺭ ﻣﻲﺷﻮﺩ‪ .‬ﺩﺭ ﺣﺎﺷﻴﻪ ﺍﻳﻦ ﻛﻨﻔﺮﺍﻧﺲ ﻫﻔﺖ ﻛﺎﺭﮔﺎﻩ ﺁﻣﻮﺯﺷﻲ ﻣﺨﺘﻠﻒ ﻧﻴﺰ ﺩﺭ ﺯﻣﻴﻨﻪ ﺗﻐﻴﻴﺮﺍﺕ ﺁﺏ ﻭ ﻫﻮﺍﻳﻲ ﻭ ﺑﺎﺯﺍﺭ‬ ‫ﻛﺮﺑﻦ‪ ،‬ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﺳﺮﻱ ﺍﻳﺰﻭ ‪ 14064‬ﺑﺮﻧﺎﻣﻪﺭﻳﺰﻱ ﺷﺪﻩ ﺍﺳﺖ‪ .‬ﺍﺯ ﻋﻼﻗﻤﻨﺪﺍﻥ ﺩﻋﻮﺕ ﻣﻲﺷﻮﺩ ﺟﻬﺖ ﺍﻃﻼﻋﺎﺕ ﺑﻴﺸﺘﺮ ﺑﻪ ﻭﺏ‬ ‫ﺳﺎﻳﺖ ﻛﻨﻔﺮﺍﻧﺲ ‪ www.cchc.ir‬ﻣﺮﺍﺟﻌﻪ ﻧﻤﺎﻳﻨﺪ‪.‬‬ ‫‪U5T‬‬

‫‪5TU‬‬

‫‪ -‬ﺟﺬﺏ ﻣﻨﺎﺑﻊ ﻣﺎﻟﻲ ﺍﺯ ﺁژﺍﻧﺲ ﺑﻴﻦ ﺍﻟﻤﻠﻠﻲ ﺍﻧﺮژﻳﻬﺎﻱ ﺗﺠﺪﻳﺪﭘﺬﻳﺮ‬

‫ﺍﺧﺬ ﻭﺍﻡ ‪ 7‬ﻣﻴﻠﻴﻮﻥ ﺩﻻﺭﻱ ﺍﺯ ﻣﻨﺎﺑﻊ ﻣﺎﻟﻲ ﺁژﺍﻧﺲ ﺑﻴﻦ ﺍﻟﻤﻠﻠﻲ ﺍﻧﺮژﻳﻬﺎﻱ ﺗﺠﺪﻳﺪﭘﺬﻳﺮ )ﺻﻨﺪﻭﻕ ﺗﻮﺳﻌﻪ ﺍﺑﻮﻇﺒﻲ( ﺑﺮﺍﻱ ﺍﺟﺮﺍﻱ ﻳﻜﻲ ﺍﺯ ﻃﺮﺣﻬﺎﻱ‬ ‫ﺗﺼﻔﻴﻪ ﻓﺎﺿﻼﺏ ﺻﻨﻌﺘﻲ ﻛﺸﻮﺭ ﺩﺭ ﺩﺳﺘﻮﺭ ﻛﺎﺭ ﺷﺮﻛﺖ ﻣﻬﺮ ﻗﺮﺍﺭ ﺩﺍﺭﺩ‪ .‬ﺍﻳﻦ ﻃﺮﺡ ﻛﻪ ﺳﺮﻣﺎﻳﻪﮔﺬﺍﺭﻱ ‪ 14‬ﻣﻴﻠﻴﻮﻥ ﺩﻻﺭﻱ ﻧﻴﺎﺯ ﺩﺍﺭﺩ ﺑﺼﻮﺭﺕ ‪50‬‬ ‫ ‪ 50‬ﺍﺯ ﻣﻨﺎﺑﻊ ﺻﻨﺪﻭﻕ ﻓﻮﻕﺍﻟﺬﻛﺮ ﻭ ﻣﻨﺎﺑﻊ ﻭﺍﺣﺪ ﺻﻨﻌﺘﻲ ﺗﺎﻣﻴﻦ ﺧﻮﺍﻫﺪ ﺷﺪ‪ .‬ﺑﺎ ﺍﺟﺮﺍﻱ ﺍﻳﻦ ﻃﺮﺡ ﻋﻼﻭﻩ ﺑﺮ ﻛﺎﻫﺶ ﻣﺨﺎﻃﺮﺍﺕ ﺯﻳﺴﺖ ﻣﺤﻴﻄﻲ‬‫ﻓﻌﻠﻲ ﻭﺍﺣﺪ ﺻﻨﻌﺘﻲ‪ ،‬ﺳﺎﻟﻴﺎﻧﻪ ﺑﺎﻟﻎ ﺑﺮ ‪ 23‬ﻣﻴﻠﻴﻮﻥ ﻣﺘﺮ ﻣﻜﻌﺐ ﺑﻴﻮﮔﺎﺯ ﺣﺎﺻﻞ ﺧﻮﺍﻫﺪ ﺷﺪ ﻛﻪ ﺑﺎ ﺍﺣﺪﺍﺙ ﻭﺍﺣﺪ ‪ CHP‬ﺳﺎﻟﻴﺎﻧﻪ ﺣﺪﻭﺩ ‪ 17‬ﮔﻴﮕﺎ‪-‬‬ ‫ﻭﺍﺕ ﺳﺎﻋﺖ ﺑﺮﻕ ﺗﺠﺪﻳﺪﭘﺬﻳﺮ ﺗﻮﻟﻴﺪ ﻣﻲﺷﻮﺩ‪ .‬ﺣﺮﺍﺭﺕ ﺗﻮﻟﻴﺪ ﺷﺪﻩ ﻧﻴﺰ ﺩﺭ ﻓﺮﺍﻳﻨﺪ ﺗﻮﻟﻴﺪ ﻭﺍﺣﺪ ﺻﻨﻌﺘﻲ ﻣﺰﺑﻮﺭ ﺍﺳﺘﻔﺎﺩﻩ ﺧﻮﺍﻫﺪ ﺷﺪ‪ .‬ﺍﺟﺮﺍﻱ ﺍﻳﻦ‬ ‫ﻃﺮﺡ ﺳﺎﻟﻴﺎﻧﻪ ﺍﺯ ﺍﻧﺘﺸﺎﺭ ﺣﺪﻭﺩ ‪ 200‬ﻫﺰﺍﺭ ﺗﻦ ﻣﻌﺎﺩﻝ ﺩﻱﺍﻛﺴﻴﺪﻛﺮﺑﻦ ﺟﻠﻮﮔﻴﺮﻱ ﻣﻲﻧﻤﺎﻳﺪ‪.‬‬

‫ﺭﻭﻳﺪﺍﺩﻫﺎﻱ ﺁﺗﻲ‪:‬‬ ‫>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>‬

‫ﻣﻬﺘﺎﺏ ﺻﺎﺩﻗﻲ ﺣﺮﻳﺮﻱ‬ ‫ﻣﺎﺭﺱ ‪2013‬‬ ‫‪-‬‬

‫ﻫﻔﺘﺎﺩﻭﺩﻭﻣﻴﻦ ﻧﺸﺴﺖ ﻫﻴﺄﺕ ﺍﺟﺮﺍﻳﻲ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ )‪ (EB 72‬ﺍﺯ ‪ 4‬ﺍﻟﻲ ‪ 8‬ﻣﺎﺭﺱ ‪ 2013‬ﺩﺭ ﺑﻦ ﺁﻟﻤﺎﻥ‬

‫ﺁﻭﺭﻳﻞ ‪2013‬‬ ‫‬‫‬‫‪-‬‬

‫ﭼﻬﻠﻤﻴﻦ ﺟﻠﺴﻪ ﮔﺮﻭﻩ ﻛﺎﺭﻱ ﭘﺮﻭژﻩ ﻫﺎﻱ ﻣﻘﻴﺎﺱ ﻛﻮﭼﻚ )‪ (SSC WG40‬ﺍﺯ ‪ 16‬ﺍﻟﻲ ‪ 19‬ﺩﺭ ﺑﻦ ﺁﻟﻤﺎﻥ‬ ‫ﺷﺼﺖ ﻭ ﭼﻬﺎﺭﻣﻴﻦ ﻧﺸﺴﺖ ﺍﻋﺘﺒﺎﺭﺩﻫﻲ ﭘﺮﻭژﻩ ﻫﺎﻱ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﺍﺯ ‪ 22‬ﺍﻟﻲ ‪ 25‬ﺩﺭ ﺑﻦ ﺁﻟﻤﺎﻥ‬ ‫ﭘﻨﺠﺎﻩ ﻭ ﻧﻬﻤﻴﻦ ﻣﺠﻤﻊ ﺗﺄﻳﻴﺪ ﻣﺘﺪﻭﻟﻮژﻱ ﭘﺮﻭژﻩ ﻫﺎﻱ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ )‪ (MP 59‬ﺍﺯ ‪ 22‬ﺍﻟﻲ ‪ 25‬ﺩﺭ ﺑﻦ ﺁﻟﻤﺎﻥ‬

‫‪17‬‬ ‫ﺧﺒﺮﻧﺎﻣﻪ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ‪ ،‬ﺳﺎﻝ ﭼﻬﺎﺭﻡ‪ ،‬ﺷﻤﺎﺭﻩ ‪ -22‬ﺩﻱ ﻭ ﺑﻬﻤﻦ ‪91‬‬


Summary Results of the CDM Meetings >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

CDM Executive Board seventy-first meeting (EB 71 Date of meeting: 30 January to 1 February 2013 Place of meeting: Bonn, Germany) The Secretary of the Executive Board of the clean development mechanism (CDM) (hereinafter referred to as the Board) opened the meeting and asserted that the quorum requirement was met, before proceeding to conduct the election of Chair and Vice-Chair of the Board covered under agenda item 2.1 “Membership issues”. The Board agreed to the provisional agenda for its seventy-second meeting, to be held in Bonn, Germany, from 4 to 8 March 2013, as contained in annex 4 to this report. Conclusion of the meeting The Chair summarized the main conclusions and closed the meeting. Any decisions taken by the Board shall be made publicly available in accordance with paragraph 17 of the CDM modalities and procedures and with rule 31 of the Rules of procedure of the Board. The proceedings of the open sessions of the meeting can be accessed via webcast at: http://cdm.unfccc.int/EB/Meetings

18 91 ‫ ﺩﻱ ﻭ ﺑﻬﻤﻦ ﻣﺎﻩ‬- 22 ‫ ﺷﻤﺎﺭﻩ‬،‫ ﺳﺎﻝ ﭼﻬﺎﺭﻡ‬،‫ﺧﺒﺮﻧﺎﻣﻪ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ‬


Other News: >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> -

New members needed for CDM panels, working groups 6T

6T

Bonn, 8 Feb. 2013 – The CDM Executive Board has launched a call for experts to serve as members of the CDM Accreditation Panel, the Methodologies Panel, the Small-Scale Working Group and the Afforestation and Reforestation Working Group. Interested experts should apply online after logging in via "My CDM/ login". Deadline is 3 March 2013 24:00 GMT.

-

Executive Board agrees plan to improve, position CDM 6T

6T

Bonn, 1 Feb. 2013 – In a week that saw the CDM register its 6000th project, the CDM Executive Board approved at its 71st meeting a two-year business plan aimed at building on the mechanism's success to date. At the meeting, which was devoted to strategic matters, the Board also began its work on the review of the CDM modalities and procedures, requested by Parties when they met last December at the UN Climate Change Conference in Doha, Qatar. http://cdm.unfccc.int/press/index_html

19 91 ‫ ﺩﻱ ﻭ ﺑﻬﻤﻦ ﻣﺎﻩ‬- 22 ‫ ﺷﻤﺎﺭﻩ‬،‫ ﺳﺎﻝ ﭼﻬﺎﺭﻡ‬،‫ﺧﺒﺮﻧﺎﻣﻪ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ‬


-

CDM Board elects Chair, Vice-Chair for 2013 6T

6T

6T

6T

Bonn, 30 January 2013 – The CDM Executive Board kicked off its 71st meeting today in Bonn, Germany, by electing Peer Stiansen of Norway and Hugh Sealy of Barbados as Chair and Vice Chair, respectively. They will serve until the first meeting of the Board in 2014.

-

New article recaps CDM benefits report 2012 6T

6T

Bonn, 16 January 2013 – In November, the UNFCCC secretariat released research showing the CDM has spurred billions of dollars of investment in projects that curb greenhouse gases and contribute to sustainable development. The following article on the report was written by Dr. Adam Bumpus, a specialist in international development and carbon markets. Read full article here : http://cdm.unfccc.int/about/dev_ben/CDM-Benefits-2012.pdf

20 91 ‫ ﺩﻱ ﻭ ﺑﻬﻤﻦ ﻣﺎﻩ‬- 22 ‫ ﺷﻤﺎﺭﻩ‬،‫ ﺳﺎﻝ ﭼﻬﺎﺭﻡ‬،‫ﺧﺒﺮﻧﺎﻣﻪ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ‬


-

Kyoto Protocol's CDM surpasses 6,000 projects 6T

6T

Bonn, 30 January 2013 – The CDM passed the 6,000 project milestone this week. The 6,000th registered project will install 21 megawatts of wind power capacity to feed the electric power grid in south central Viet Nam, displacing fossil-fuel-generated power and reducing emissions by 32,000 tonnes per year; the equivalent of removing the emissions of 6,058 cars each year. http://cdm.unfccc.int/press/index_html

-

CDM intelligence portal now available

Visitors to the CDM website will now be able to access a wealth of new and accurate analysis and data about the CDM on a revamped web page called "CDM insights". The portal will feature unique graphics, statistics, descriptions and downloadable data on CDM validation, CER issuance and methodologies each month, as well as archives of previous months and other valuable information. http://cdm.unfccc.int/Statistics/Public/CDMinsights/index.html

21 91 ‫ ﺩﻱ ﻭ ﺑﻬﻤﻦ ﻣﺎﻩ‬- 22 ‫ ﺷﻤﺎﺭﻩ‬،‫ ﺳﺎﻝ ﭼﻬﺎﺭﻡ‬،‫ﺧﺒﺮﻧﺎﻣﻪ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ‬


Financial Times November 11, 2012 Cement: Matching up companies is a move to a world without waste By Sara Murray With extremely high temperatures required to heat the limestone, cement is a product with a heavy carbon footprint. However, as companies start to use more industrial waste and renewable energy in cement production, some believe the sector could become a leader in "industrial symbiosis" (where one company's refuse becomes another's raw material), accelerating progress towards a zero-waste world. Manufacturing clinker – which traditionally makes up about 90 per cent of cement- is the most energy-intensive part of the product. This is partly because changing limestone to clinker needs temperatures of up to 1,500 C, which means burning large amounts of fuel. An important step in reducing cement's carbon footprint will be to increase the energy efficiency of cement plants and find alternative fuels to power furnaces. P

P

Heavy footprint: converting limestone to clinker needs temperature of up to 1,500C P

However, a second substantial source of emissions comes from the chemical conversion process itself, during which calcium carbonate is extracted from the limestone, generating large amounts of carbon dioxide. "From a chemical standpoint, the process generates CO2 in addition to the of fuel," explains Howard Klee, former director of and adviser to the Cement Sustainability Initiative at the World Business Council for Sustainable Development (WBCSD). Increased plant and fuel efficiency cannot address these emissions, which means cement makers also have to find alternatives to clinker. This has a dual benefit. First, cement made with less clinker reduces the fuel needed to power the kilns. Meanwhile, cement that has a lower proportion of clinker has generated fewer emissions related to the chemical decomposition of limestone. A range of materials can be used to replace clinker. These include active minerals derived from industrial waste-such as slag from steel mills and fly ash, a by-product of power plant coal combustion-as well as naturally active materials such volcanic ash. The potential for cement production to use industrial waste is substantial. For example, slag can be used both to power the kilns and as a replacement for clinker. And as well as powering their kilns with reneable energy, cement plants can turn anything from waste wood and sewage sludge to old tyres and plastics into fuel. 22 91 ‫ ﺩﻱ ﻭ ﺑﻬﻤﻦ ﻣﺎﻩ‬- 22 ‫ ﺷﻤﺎﺭﻩ‬،‫ ﺳﺎﻝ ﭼﻬﺎﺭﻡ‬،‫ﺧﺒﺮﻧﺎﻣﻪ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ‬


"Our process allows us to use waste as fuel and integrate that into the product without any risk to health," says Raul Quintal, director of operations planning and performance, at Cemex, one of the world's largest cement producers. For those in the waste management sector, cement kilns-with their high temperatures- provide a safe way of destroying unwanted and often hazardous materials, helping solve public health and safety challenges. In 1999, when the Belgian government needed to dispose of thousands of tonnes of meal and fat from potentially contaminated animal products, it requisitioned cement plants, which could quarantee the complete destruction of the contaminants in the kiln, while also reducing their emissions through the fuel substitution. Philippe Fonta, director of the WBCSD's Cement Sustainability Initiative, cites the example of discarded tyres, which in some places are left in dumps where they collect water and become breeding grounds for malaria-carrying mosquitoes. "If these used tyres are no longer abandoned but eliminated by a cement plant, you also have societal benefits," he says. The technology behind this kind of matchmaking, or co-processing, is relatively well established. The bigger challenge, however, lies in creating the kinds of infrastructure and industry collaborations that facilitate the trading of waste between waste producers and cement producers. "[Co-processing] is a pretty elegant piece of industrial ecology," say Raj Sapru, director of advisory services at Business for Social Responsibility, a US-based business association and advisory group. "But since it involves steel making and cement making, it means a market has to exist." As new facilities are planned, the inherent efficiency in using waste materials in cement could influence location selection when deciding where to build a cement plant. "We still have to supply a market," says Mr Quintal. But when choosing between locations, one of the factors to consider is the availability of and access to other industry clusters and take advantage of those and whatever those clusters produce." Of course, with a legacy of existing cement plants, it will take time before the industry can become fully integraed with the waste management sector. And some materials are not suitable for processing by the cement industry, including nuclear waste, infectious medical waste, batteries and untreated mixed municipal waste. Moreover, for the cement sector to become a key partner in the management of waste, governments need to formulate the right incentives. "To hit fast forward, there needs to be more collaboration between business, government and civil society," says Mr Sapru. "Cement is an ancient technology-it's not about the technology. It's about the political will."

23 91 ‫ ﺩﻱ ﻭ ﺑﻬﻤﻦ ﻣﺎﻩ‬- 22 ‫ ﺷﻤﺎﺭﻩ‬،‫ ﺳﺎﻝ ﭼﻬﺎﺭﻡ‬،‫ﺧﺒﺮﻧﺎﻣﻪ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ‬


tce SUSTAINABILITY Franco Berruti, Ondej Masek and Raffaella Ocone explain a new project to understand continuous biochar production

Understanding biochar Whilst biochar alone cannot provide the solution to increasing greenhouse gas (GHG) concentrations and climate change, it can make a significant contribution. For 800,000 years atmospheric CO2 on Earth has fluctuated between 180–280 ppm. However, over the past century, the CO2 concentration has been rapidly increasing to the current level of 396 ppm, and it is projected to further increase to over 450 ppm. Without human intervention, CO2 would take thousands of years to return to the level required for sustainable human civilisation. How to reduce the CO2 concentration to a more sustainable level? Whilst biochar alone cannot provide the solution to increasing greenhouse gas (GHG) concentrations and climate change, it can make a significant contribution. It has been estimated that on a global scale, sustainable biochar could reduce net emissions of GHGs by as much as 1.8 Gt CO2–C equivalent per year (ie 12% of current anthropogenic emissions). how biochar works When organic materials are thermally decomposed in the absence of oxygen, one of the resulting products is biochar, a solid compound rich in carbon and inorganic elements. Incorporated into the ground by one of any number of means (trench and fill, manure spreader, deep banding etc), biochar is a porous soil enhancer that can lock up carbon, supply minerals, prevent nutrients leaching and water contamination and retain soil moisture – a use it was first put to over 2,000 years ago. In this way, a portion of the carbon removed from the atmosphere by plants via photosynthesis is locked in the biochar and stored in soil. Extensive studies of biochar-rich dark earths in the Amazonia region (terra preta) have led to a wider appreciation for biochar’s soil enhancement properties. There is no one ‘perfect’ biomass to use for biochar – what’s best largely depends on geographical location. In general , agricultural (and other biomass processing) residues are the most likely feedstock, so on global scale it is likely to be rice husk and rice straw, sugar cane trash and bagasse, and other material available in large quantities and at low cost. Other promising feedstocks include organic residues, such as sewage sludge, AD digestate, and woody biomass. 24 91 ‫ ﺩﻱ ﻭ ﺑﻬﻤﻦ ﻣﺎﻩ‬- 22 ‫ ﺷﻤﺎﺭﻩ‬،‫ ﺳﺎﻝ ﭼﻬﺎﺭﻡ‬،‫ﺧﺒﺮﻧﺎﻣﻪ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ‬


unanswered questions Multidisciplinary research in the sustainable production and use of biochar as a long-term storage for CO2 is still in its infancy. Some of the fundamental questions that remain unresolved are, for instance, how to select suitable biomass sources, the best processing conditions for producing biochar, its chemical and physical characterisation, its long-term stability as well as effects on the soil properties and on plants and microbial species. The parameters affecting the production and use of biochar and their interaction is complex, so to answer the most pressing questions and to translate the latest findings into practical applications, one has to bring together multidisciplinary expertise. pooling expertise The recent creation of the UK-Canadian network, sponsored by the Leverhulme Trust, will allow researchers to investigate the potential of biochar as a technically-and economically-effective method of capturing carbon in a stabilised form while increasing soil quality and thus adaptability of agriculture to climate change. Engineers and scientists from Canada and the UK will exchange methods and know-how for biochar production with the aim of developing better modelling methods to complement existing experimental data and to position the UK and Canada as leaders in biochar production, utilisation and standardisation. The University of Edinburgh will be involved through the UK Biochar Research Centre which covers areas ranging from soil science and social science to biochar engineering. In Canada, the Institute for Chemicals and Fuels from Alternative Resources (ICFAR) at Western University contributes its expertise in thermochemical conversion technologies, while the University of Saskatchewan, a hub for agricultural research, adds know-how on application of biochar as soil amendment/ fertilisers, adsorption agents, and activated carbon. Lastly, the Department of Plant Science at McGill University will investigate the interactions between biochar and plants and microbial species in the soil, as well as biochar utilisation. towards a characterisation standard Currently, there are no peer-reviewed, internationally-accepted standards for characterising biochar used for carbon storage despite considerable efforts by the International Biochar Initiative (IBI), especially in the field of biochar for agricultural applications. This project will bring new data on production and process conditions which can be incorporated into models at Heriot-Watt. In contrast to existing work on biochar, this new network brings together expertise in processes for continuous production of biochar, both for fast and slow pyrolysis and the modelling aspect of it. the UK Biochar Research Centre The UK Biochar Research Centre houses a set of continuous slow pyrolysis facilities dedicated to biochar research, comprising a pilot-scale rotary kiln that can process 50 kg/h of biomass at up to 850°C with a residence time from a few minutes to over an hour, under carefully-controlled and monitored operating conditions. 25 91 ‫ ﺩﻱ ﻭ ﺑﻬﻤﻦ ﻣﺎﻩ‬- 22 ‫ ﺷﻤﺎﺭﻩ‬،‫ ﺳﺎﻝ ﭼﻬﺎﺭﻡ‬،‫ﺧﺒﺮﻧﺎﻣﻪ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ‬


The main function of the unit is to research the effects of feedstock and production conditions on the yield and properties of biochar, as well as liquid and gaseous co-products. A second, lab-scale auger-driven pyrolysis unit with a capacity of 2 kg/h of biomass isused to screen feedstock. It is just as flexible and controllable as the pilot unit, and allows determination of mass and energy balances of the whole pyrolysis process, which provides important data for modelling, LCA and technoeconomic assessment.

This set of continuous pyrolysis units is accompanied by a suite of analytical facilities (eg TGA/DSC-MS, MS) for characterising feedstock and products. The UK Biochar Research Centre has also developed the capacity for the functional characterisation of biochar (related to soil functions) and developed a novel characterisation toolkit that allows relatively rapid screening of biochar for five key soil functions. The facilities are regularly used by a network of industrial partners, including multinational organisations and water management companies, who are interested in biochar either as a means of carbon capture, soil improvement, fossil fuel substitute or a combination of several of these and other factors. ICFAR’s contribution At ICFAR, two technologies for the production of biochar have been developed. The first one is a pilot-scale mechanically-fluidised reactor that can process 35 kg/h of biomass, producing biochar with a yield of 25–45% depending upon the operating conditions and the type of the biomass (the complement being bio-oil and gas). This is an experimental unit which allows careful control of the operating conditions and, as such, to characterise the potential of a variety of feedstocks. The second is an experimental bubbling fluidised bed pilot plant equipped with a special biomass feeder that can handle even very cohesive and sticky materials, with a capacity of 1 kg/h. The experimental facilities are complemented by a mobile pyrolysis unit, currently at the precommercial scale, which will be commercialised by the IFCAR spin-off Agri-Therm. The extensively-tested prototype can transform 5–10 t/d of biomass into 1.5– 4.5 t/d of biochar, depending upon operating conditions and feedstock. The unit is mobile and can be moved on a small pickup truck to wherever the biomass is generated. ICFAR and its many industrial partners are working on several mostly experimental technologies for the production of biochar, both new processes and improvements on existing ones. A number of industry partners are aiming at technologies with processing capacities ranging between 40–160 t/d. A big challenge will be dealing with the availability and cost of the raw biomass (and its seasonality), and minimising shipping costs, since such production capacities can only be handled by stationary plants. modelling at Heriot-Watt Biochar production depends on the feedstock and on the temperature and residence time at which the production is carried out. If continuous biochar production and application are to be scaled up to industrial scale, it is vital to develop suitable fundamental models that are based on the underlying physics and chemistry and can be used as predictive tools. Such a model would help the understanding, design and control of the process and save money and reduce the environmental impact by reducing the number of experiments. 26 91 ‫ ﺩﻱ ﻭ ﺑﻬﻤﻦ ﻣﺎﻩ‬- 22 ‫ ﺷﻤﺎﺭﻩ‬،‫ ﺳﺎﻝ ﭼﻬﺎﺭﻡ‬،‫ﺧﺒﺮﻧﺎﻣﻪ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ‬


This project will bring together a pool of experimental experts whose work will help make a step change in our ability to produce biochar. The modelling experience at Heriot-Watt University will be key to developing appropriate pyrolysis models: previous work includes modelling the catalytic and thermal cracking of large molecular weight compounds, which will be essential for modelling the pyrolysis processes which are at the basis of the biochar production. Finally, the network aims to raise awareness among the public and policy makers about biochar as a sustainable option for climate change mitigation and adaptation.

27 91 ‫ ﺩﻱ ﻭ ﺑﻬﻤﻦ ﻣﺎﻩ‬- 22 ‫ ﺷﻤﺎﺭﻩ‬،‫ ﺳﺎﻝ ﭼﻬﺎﺭﻡ‬،‫ﺧﺒﺮﻧﺎﻣﻪ ﻣﻜﺎﻧﻴﺴﻢ ﺗﻮﺳﻌﻪ ﭘﺎﻙ ﻭ ﺑﺎﺯﺍﺭ ﻛﺮﺑﻦ‬


Prepared by: Mehr Renewable Energy Co

Colleagues: Adel Partovi Mohammad Sadegh Ahadi Mahtab Sadeghi Hariri Mina Kolagar Nasrin Almasi Elham Shirdel

Address : Unit 11, No. 4, 24 Metri Blvd, Sa'adat Abad, Tehran, Iran. Tel: +98 21 88584125 & 22136142 Fax:+98 21 88584126 & 22136271 Email: info@mehrenergy.com Website: www.mehrenergy.com 0T

0T


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.