에너지[혁명] 한국판 보고서(영문)

Page 12

WORLD ENERGY [R]EVOLUTION A SUSTAINABLE WORLD ENERGY OUTLOOK

2. More electric drives are used in the transport sector and hydrogen produced by electrolysis from (excess) renewable electricity plays a much bigger role in the Advanced than in the basic scenario. After 2020, the final energy share of electric vehicles on the road increases to around 10% and by 2050 to over 65%. More public transport systems also use electricity, as well as there being a greater shift in transporting freight from road to rail. 3. The increased use of combined heat and power generation (CHP) also improves the supply system’s energy conversion efficiency, increasingly using natural gas and biomass. In the long term, the decreasing demand for heat and the large potential for producing heat directly from renewable energy sources limit the further expansion of CHP. 4. The electricity sector will be the pioneer of renewable energy utilisation. By 2050, around 90% of electricity will be produced from renewable sources. A capacity of around 198,000 MW will produce 475 TWh/a renewable electricity in 2050. A significant share of the fluctuating power generation from wind and solar photovoltaics will be used to supply electricity to vehicle batteries and produce hydrogen or “renewable-methane” as a secondary fuel in transport and industry. By using load management strategies, excess electricity generation will be reduced and more balancing power made available. 5. In the heat supply sector, the contribution of renewables will increase to 88% by 2050. Fossil fuels and especially inefficient electric heating systems will be increasingly replaced by more efficient modern technologies, in particular biomass, solar collectors and geothermal. Geothermal heat pumps will play a growing part in industrial heat production as well. 6. In the transport sector the existing large efficiency potentials will be exploited by a modal shift from road to rail and by using much lighter and smaller vehicles. As biomass is mainly committed to stationary applications, the production of biofuels is limited by the availability of sustainable raw materials. Electric vehicles, powered by renewable energy sources, will play an increasingly important role from 2020 onwards. 7. By 2050, 58% of primary energy demand will be covered by renewable energy sources. To achieve an economically attractive growth of renewable energy sources, a balanced and timely mobilisation of all technologies is of great importance. Such mobilisation depends on technical potentials, actual costs, cost reduction potentials and technical maturity. future costs The introduction of renewable technologies under the Energy [R]evolution scenario slightly increases the costs of electricity generation in the South Korea compared to the Reference scenario. This difference will be less than 1 cent/kWh up to 2020, however. Because of the lower CO2 intensity of electricity generation, electricity generation costs will become economically favourable under the Energy [R]evolution scenarios and by 2050 costs will be 2 resp. 4.2 cents/kWh below those in the Reference scenario. 12

Under the Reference scenario, by contrast, unchecked growth in demand, an increase in fossil fuel prices and the cost of CO2 emissions result in total electricity supply costs rising from today’s $34 billion per year to more than $117 bn in 2050. The Energy [R]evolution scenario not only complies with South Korea’s CO2 reduction targets but also helps to stabilise energy costs. Increasing energy efficiency and shifting energy supply to renewables lead to long term costs for electricity supply that are about 50% lower than in the Reference scenario future investment It would require US$ 457 billion in investment for the Advanced Energy [R]evolution scenario to become reality (including investments for replacement after the economic lifetime of the plants) - approximately US$ 160 billion annual or US$ 4 billion less than in the Reference scenario (US$ 617 billion). Under the Reference version, the levels of investment in nuclear power plants add up to almost 74% while approximately 20% would be invested in renewable energy and cogeneration until 2050. Under the Advanced scenario, however, South Korea would shift almost 90% of the entire investment towards renewables and cogeneration. Until 2030 the fossil fuel share of power sector investment would be focused mainly on combined heat and power plants. The average annual investment in the power sector under the Advanced Energy [R]evolution scenario between today and 2050 would be approximately US$ 11.4 billion. Because renewable energy has no fuel costs, however, the fuel cost savings in the basic Energy [R]evolution scenario reach a total of US$ 147 billion, or US$ 3.7 billion per year. The Advanced Energy [R]evolution has even higher fuel cost savings of US$ 191 billion, or US$ 4.8 billion per year. These renewable energy sources would then go on to produce electricity without any further fuel costs beyond 2050, while the costs for coal and gas will continue to be a burden on national economies. future employment Modelled energy sector jobs increase by 2015 under all scenarios. In 2010, there are 59,000 electricity sector jobs. These increase to 78,000 in the Reference scenario, 74,000 in the Energy [R]evolution scenario, and 104,000 in the Advanced scenario. • In the Reference case, jobs grow by 32% by 2015, and then a further 27% by 2020, to reach 94,000. There is a reduction between 2020 and 2030, but jobs in 2030 are still 67,000, 14% higher than jobs in 2010. • In the [R]evolution scenario, jobs increase by 25% by 2015, to 74,000. By 2020, jobs are nearly double 2010 levels at 116,000. There is a slight reduction between 2020 and 2030, but jobs are still 89% above 2010 levels at 112,000.


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.