A review of g-c3n4 based catalysts for direct methanol fuel cells afdhal yuda & anand kumar - The la

Page 1


Areviewofg-C3N4basedcatalystsfordirect methanolfuelcellsAfdhalYuda&AnandKumar

https://ebookmass.com/product/a-review-of-g-c3n4-basedcatalysts-for-direct-methanol-fuel-cells-afdhal-yuda-anandkumar/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Supported bimetallic nanoparticles as anode catalysts for direct methanol fuel cells: A review Akaljot Kaur & Gagandeep Kaur & Prit Pal Singh & Sandeep Kaushal

https://ebookmass.com/product/supported-bimetallic-nanoparticles-asanode-catalysts-for-direct-methanol-fuel-cells-a-review-akaljot-kaurgagandeep-kaur-prit-pal-singh-sandeep-kaushal/ ebookmass.com

Direct liquid fuel cells : fundamentals, advances and technical roadmaps Ay■e Bayrakçeken Yurtcan

https://ebookmass.com/product/direct-liquid-fuel-cells-fundamentalsadvances-and-technical-roadmaps-ayse-bayrakceken-yurtcan/

ebookmass.com

PEM Fuel Cells Gurbinder Kaur

https://ebookmass.com/product/pem-fuel-cells-gurbinder-kaur/

ebookmass.com

Australian History For Dummies, 2nd Edition Alex Mcdermott

https://ebookmass.com/product/australian-history-for-dummies-2ndedition-alex-mcdermott/

ebookmass.com

Religion and Ecological Crisis: Christian and Muslim Perspectives from John B. Cobb and Seyyed Hossein Nasr S. M. Abu Sayem

https://ebookmass.com/product/religion-and-ecological-crisischristian-and-muslim-perspectives-from-john-b-cobb-and-seyyed-hosseinnasr-s-m-abu-sayem/

ebookmass.com

The Fossil-Fuelled Climate Crisis: Foresight or Discounting Danger? 1st ed. Edition Raymond Murphy

https://ebookmass.com/product/the-fossil-fuelled-climate-crisisforesight-or-discounting-danger-1st-ed-edition-raymond-murphy/

ebookmass.com

Indian Shield: Precambrian Evolution and Phanerozoic Reconstitution A B Roy

https://ebookmass.com/product/indian-shield-precambrian-evolution-andphanerozoic-reconstitution-a-b-roy/

ebookmass.com

Fundamentals of Nursing Patricia A. Potter

https://ebookmass.com/product/fundamentals-of-nursing-patricia-apotter/

ebookmass.com

Visions of British Culture from the Reformation to Romanticism: The Protestant Discovery of Tradition

Celestina Savonius-Wroth

https://ebookmass.com/product/visions-of-british-culture-from-thereformation-to-romanticism-the-protestant-discovery-of-traditioncelestina-savonius-wroth/

ebookmass.com

https://ebookmass.com/product/blazed-breakers-hockey-book-8-elisefaber/

ebookmass.com

Availableonlineat www.sciencedirect.com

ScienceDirect

journalhomepage: www.elsevier.com/locate/he

Areviewofg-C3N4 basedcatalystsfordirect methanolfuelcells

AfdhalYuda,AnandKumar*

DepartmentofChemicalEngineering,QatarUniversity,POBox2713,Doha,Qatar

highlights

g-C3N4 basedMORcatalystwithnoblemetalsandnon-noblemetalsarepresented. Synthesismethodsandphoto/electro-catalyticpropertiesofg-C3N4 aredescribed. Structuralmodificationsanddopingofg-C3N4 canleadtobetterperformance. COpoisoningisamajorchallenge,andcatalyststoleranttoCOarediscussed. ChallengesfacedinMORandcriticalpointsforfutureresearchareproposed.

articleinfo

Articlehistory:

Received2November2020

Receivedinrevisedform 26December2020

Accepted12January2021

Availableonlinexxx

Keywords: Directmethanolfuelcells

g-C3N4 catalysts

Carbonbasedelectrocatalysts

Introduction

abstract

Directmethanolfuelcells(DMFC)possessnumerousadvantagesforpoweringportable mobiledevices.However,therearestillmajorchallengesintheirdevelopmentand commercializationthatoriginatesfromtheanodecatalystresponsibleformethanol oxidationreaction.Thishasmotivatedresearcherstofindacosteffectiveanddurable catalystmaterialformethanoloxidation.Recently,carbon-based2-Dgraphiticcarbon nitride(g-C3N4)hasbeenfoundtohavegoodpotentialstocatalysealcoholoxidationreactionsinfuelcells.Thisreviewprovidesasummarizedinformationofpreviouslydevelopedg-C3N4-containing-electrocatalystsbasedontheactivesitespresent(e.g.,non-metals, noblemetals,andnon-noblemetals)formethanolelectro-oxidationtocomparetheir electrocatalyticperformance.Italsoconsistsofbriefexaminationoftheirstructure, descriptionofdifferentsynthesismethodsandpost-synthesistreatments,andevaluation oftheirpropertiesthatcontributestotheirresultingperformance.ThereviewthenconcludeswiththedetailsofchallengesandpossiblesolutionsthatenableDMFCtobea reliablesourceofenergyinthefuture.

© 2021HydrogenEnergyPublicationsLLC.PublishedbyElsevierLtd.Allrightsreserved.

Thegrowthofindustrializationhasresultedinanincreased demandforenergyglobally.Sinceenergygenerationismostly dependentonusingpollutant-producingfossilfuels,thereare seriousenvironmentalproblemsonaglobalscalewithits

* Correspondingauthor E-mailaddress: akumar@qu.edu.qa (A.Kumar).

continuoususage.Asaresult,significantattentionhasbeen giventowardsinvestigatingnovelsystemsforenergypreservationandtransformation,suchasDMFCs,inrecentyears duetoitbeinghighlyefficientandlowemitterofpollutants.In DMFCs,theelectrocatalystsystemisoneofitscrucial componentthatdeterminestheoperationofthefuelcell[1].

https://doi.org/10.1016/j.ijhydene.2021.01.080 0360-3199/© 2021HydrogenEnergyPublicationsLLC.PublishedbyElsevierLtd.Allrightsreserved.

Pleasecitethisarticleas:YudaA,KumarA,Areviewofg-C3N4 basedcatalystsfordirectmethanolfuelcells,InternationalJournalof HydrogenEnergy,https://doi.org/10.1016/j.ijhydene.2021.01.080

Commonly,nanoparticles(NPs)ofplatinum(Pt)and platinum-alloyscandemonstrategoodperformanceasan anodeelectrocatalystmaterial.However,duetoPtbeing expensive,limitedinsupply,andpoorpoisontoleranceitsuse forcommercialpurposeshasdeclined.Hence,thefocusof manyresearchershasrecentlybeentowardsminimizingthe useofPtandinsteadimplementothermetals,suchaspalladium,orsupportingplatinumoncarbonoralternativesupport materials[2 4].Palladiumhasbeenchosenasoneofthe alternativemetalsbecauseofitsrelativelylowercostand exceptionalactivityforelectrocatalyticoxidationandcarbon monoxideresistivityincomparisontocatalyststhatarebased onplatinum[5 7].Nonetheless,theelectrocatalyticactivityof palladiumisstilllowandthestabilityisnothighenoughtobe usedinthecommercializationofDMFCs[8,9].Carbonbased materialshaveshownexceptionalpromiseassupportmaterialsforelectrocatalyticapplications[10,11].Thetypesof carbonsupportmaterialsuitablefordispersingmetalnanoparticlesincludecarbonnanotubes(CNTs)[12],carbonblack [13],graphene[7,14],andcarbonnanofibers[15],andthey possessadvantageouspropertiessuchasgoodconductorof electricityandgreatstability[16].VulcanXC-72Rcarbonblack isamongstthemostextensivelyusedcarbonmaterialsto supportactivemetalsinvariouselectrocatalyticapplications. Thisisbecausethematerialiswidelyavailable,cheap,possesseslargesurfaceareaandthenecessaryporestructure, andhighelectricalconductivity[16].Therearestill,however, disadvantagespresentedbyVulcancarbonsupport,including insufficientresistivitytowardscorrosion[17].Various methodscouldbeundertakentoenhancethesurfaceof chemicallyinertcarbonmaterialsandtoaddmicrospores. Oneofthemisthroughperformingchemicalactivationthat utilizesactivatingagentsintheformofalkalihydroxidesto pullinmicrosporeswithsmalldistributionandenlargetheir surfaceareas.Surfacemodificationisalsoacommontechniquetominimizecorrosionandthiscouldbeattainedby functionalizingthesurfacewithcarboxylates,sulfonates, stericpolymer/oligomer,andtertiaryamines[18,19].Another approachistoalterpurecarbonbyheteroatom-dopingofthe respectivematerialsthatcanhelpachievesignificantlybetter performance[20].Studiesperformedrecentlyhaveshown thatitisconductivetomodifycarbonchemicalreactivityand electronicstructurestoachieveimprovedcatalyticperformance.Sofarthedevelopmentindopingofcarbonwith heteroatomsincludetheadditionofphosphorous,nitrogen,or boron-dopedcarbonblack[21 23],nitrogenandsulfurcodopedgraphene[24 26]etc.Examplesofstructuralmodificationorhybridstructuresincludecarbonnanotubes [27 29],orgraphene[30 32],andcarbonnitride-graphene hybrids[33 35]etc.Dopingofcarbonwithnitrogenatoms resultedinanimprovementofthechemicalactivityofthe surfaceandmodificationofthesurfacecharacteristicssuchas basicity,polarity,heterogeneity,andadsorptioncapability [36].Itisalsoimportanttonotethatintroducingheteroatoms intocarbonframeworkscanassistinremovingabsorbed poisoningintermediates,whichcouldfurtherensurethatthe activesitesarehighlyexposedtopromotecatalyticreactions [37,38].InastudyperformedbyBaglioetal.,ahighlyactive

catalystcontainingnitrogenandcarbonwasdevelopedusing anironprecursor(Fe-N-Ccatalyst)[39].Thepurposeofthe workwastonotonlyavoidtheusageofhighcostplatinum groupmetals,butalsotominimizetheinefficiencyofoxygen reductionreaction(ORR)oncathodecatalystwhenpermeated alcohols(e.g.,methanolandethanol)adsorbontheactive sitesofthecatalyst.BasedonDensityFunctionTheory(DFT) calculations,itwasobservedthatFe-N2C2 andFe-N4 active sitespresentonthesynthesizedcatalystpreferablyadsorb oxygenwithgreaterenergythantoadsorbethanol,methanol tocarryoutpartialethanoloxidationproducts(0.73 1.16eV strongeradsorption).Sitesrelatedtonitrogenandcarbonsuch aspyridinicandgraphiticnitrogenaremuchlessselective towardsORR.Graphiticcarbonnitride,org-C3N4,another carbonmaterialthatisrichinnitrogen,thatisanallotropeof carbonnitride,hasbeenreportedtohavehighstructural stabilitywithpotentialtobeuseinphotocatalysis,heterogeneouscatalysis,andfuelcells[40,41].Apartfromanultrahigh nitrogencontentitalsohasotherinterestingpropertiesthat includeideal2Dstructure,remarkablethermalandchemical stabilitythatcanbeutilizedinareasofwatersplittingwith metal-freecatalysts[42 47],organicpollutantdegradation [48 50],CO2 fixation[51,52],andsoon.Inaddition,ithasa matrixthatcouldoffercoordinationtovariousmetalsbecause ofthenitrogenrichpolymericsemiconductorsystem(C/ N ¼ 0.75,aheterocyclicmacrocyclestructurewithN-C-Nbondingpattern)[19-25],thatbehavesasLewisbasicsites (differentaminogroups).TheuniquecharacteristicsleavesgC3N4 withplentyofreactivesitesfortheformationofmetal/gC3N4 hybrids.Therefore,g-C3N4 mightnotonlyfunctionasa template,butalsoasasupporttoanchormetalnanostructures,whichisanadvantageousadditiontoitsphotoactiveabilitytoachieveimprovedperformance.Nevertheless, g-C3N4 performancetowardselectrochemicalreactionsisstill notsatisfactorybecauseofitspoorelectricalconductivity[53]. Hence,manyresearchstudieshaverecentlybeenconcentratedtowardscombiningg-C3N4 withothersuitableelectrocatalyticmaterialstoachieveexceptionalpropertiesleading tobetterelectrochemicalperformance.Itsusetogetherwith platinummetalasanelectrocatalystformethanoloxidation reactionhasalsoshownanenhancementinelectrocatalytic abilityrelativetobareplatinumnanoparticles[54].Further enhancementwasalsoobserveduponvisiblelightirradiation formethanolelectro-oxidationandcouldbeattributedtothe synergisticeffectsofphotocatalyticandelectrocatalyticabilityinadditiontoefficientinterfacialchargetransferinthe hybridsystem.

Therearesomerecentreviewsonthedevelopmentof methanolelectro-oxidationcatalysts[55],howeverafocused reviewong-C3N4 based2-dimensionalmaterialsislacking. Thisreviewpaperhasbeenmadetoprovidemoreinformation onthesubject,whereitwillfirstlookatthestructuresand propertiesofg-C3N4 thatmakesthemasuitableelectrocatalystmaterial.Itwillthenlookatthevarioussynthesis methodsthatcouldbeimplementedtodevelopg-C3N4,and theresultsofdifferentresearchstudiesinvolvingtheutilizationofg-C3N4 asanelectrocatalystmaterialformethanol oxidationreaction(MOR).

Understandingthestructuresofg-C3N4

Theterm, “graphiticcarbonnitride”,isusedtorefertoalarge groupofmaterialsthathasvariousstructuralandchemical properties.Muchoftherecentpublicationshavereferredto thesefamilyofmaterialsas “g-C3N4” compounds,however almostnoneofthematerialsinvolvedhavetheratioof3to4 forCtoN.Commonly,theyinsteadcontainconsiderable concentrationsofhydrogenandotherelements,thatinclude oxygen.Thelayersofgraphitearealsopossiblyincomplete andthesheet-likeregionsarelesslikelytobeplanar[56]. Thereareothercategoriesofgraphiticcarbonnitridematerialsthathavebeendiscoveredandthefirstgroupisrelatedto graphiticcarbon,graphene-likecarbonsorcarbonnanotubes (CNTs).Theyarethosethataresynthesizedbyinvolvingnitrogentoadegreethatreachesuptoafewatomicpercent [57,58]andhavemetalliccharacteristics[58,59].Thisgroupis bettertermedasN-dopedcarboninsteadofgraphiticcarbon nitridesandtheirimplementationassupportmaterialsfor electrocatalystsstartedinthe1980s[60,61].Thecarbonaceous materialswerepyrolyzedalongwithprecursorsthatcontain nitrogen.Sincethebeginningoftheiruse,differentproductiontechniqueshavebeendevelopedandthroughtheseapproachessupportmaterialswereproducedthatcould potentiallyenhancethecatalyticperformancebycombining bothtransitionmetalandsupport[38,62 65].

Compoundswitharangeofpolymericorgraphiticarrangementsmakeupthelargestcategoryoftruecarbon nitridecompounds.Thesecompoundsaregeneratedfrom condensationreactionsofeasilyavailableprecursors,that includemelamine,urea,ordicyandiamide,thattakesplace afterthermaltreatmentsinthetemperaturescaleof 500 700 C[66].Theycouldpreciselybecalledascompounds ofgCNHwhosestructuresaregenerallybuiltfromlinkedunits ofheptazine(tri-s-triazine,orC6N7).Whenlowtemperature rangesareusedforsynthesis,thesepolyheptazine(PHs) becomeimperfectlyassembledribbon-likeshapes,similarto thoseestablishedinLiebig’smelon[67].Theyareended laterallybygroupsof NH2-and-NH-(Fig.1a)[68].Withrising synthesistemperatures,thecondensationextentincreases withadropinammonia-containingcomponentsandunits withsheet-likeappearancestarttodevelopgraphiticarrangements.Theprocedure,intheory,canbeextendedtothe graphiticcarbonnitride(g-C3N4)composition(Fig.1b)[68], althoughthishasnotbeenperformed[56,66].Instead,the limitingstoichiometriesobtaineduntilnowamidstgCNH materialhavebeenneartotheconstitutionofC2N3H.Another categoryofcarbonnitridesystemtonoteisconstructedfrom independentringsoftriazine(C3N3)thatareconnectedby groupsof-NH-or N ¼ .Theselayersofpolytriazineimide (PTI)offeranalternativewayofgeneratinginfinitesheetsof graphitewiththeC3N4 compositions(Fig.1candd)[68]. Initiallytheyweresynthesizedintheformofnanocrystalvia chemicalvapourdeposition(CVD)method[69,70].Afterwards, graphiticcarbonnitridebasedontriazineofcrystallineform (TGCN, Fig.1c)wasfoundduringthesynthesisofmoltensalt thatwasdepositedonthesurfaceofthemeltphaseorthe reactionvesselwalls[68,71].Itwasalsoobservedthatthe layersinthismaterialcontainC6N6 voidsthatarestacked

withapatternofABorABC[68,71].Inaddition,itsbandgap wasdeterminedtobe2.7eV.Thepolytriazineimidegroupof crystallinegraphiticcarbonnitridematerialsgrowbythe involvementofheteroatomsthatincludeLi,H,ClandBr withinthesystem,thatareinsertedduringproductionprocessinamoltensalt(e.g.,LiCl:KBr)orviahightemperaturehighpressureapproaches[32,72 75].Larger(C12N12)ring voidsarepresentinthesematerialsinsidethelayers,with bromideorchlorideionsoccupyingthespacesbetweenthe layersorthevoidsites.-NH-groupslinktheunitsoftriazine thatdecoratethevoidsites’interior,andthehydrogenscanbe partiallyorcompletelysubstitutedbycationsofLiþ.MoreLiþ speciescanalsobepresentbetweenthelayers(Fig.1dande) [68,74,76].

Propertiesofg-C3N4

Chemicalstability

Likegraphite,thepresenceofstackingwithvanderWaals bondsthatareoptimizedinthemiddleofcarbonnitridesingle layersrendersitinsolubleinmanysolvents.Therewasalso nonoticeablereactivityorsolubilityofcarbonnitrideinregularsolventssuchasalcohols,H2O,THF,DMF,toluene,and diethylether[77].Thestabilityaswellasthedurabilityof graphiticcarbonnitrideinorganicsolventswaspreviously analysedbydispersingapowderofcarbonnitrideinacetone, H2O,C2H5OH,acetonitrile,pyridine,CH2Cl2,glacialaceticacid, DMF,andanaqueoussolutionofsodiumhydroxideof0.1M concentrationforadurationof30days.Thedispersedcarbon nitridesampleswerenextdriedatatemperatureof80 Cfor 10handthenmeasurementoftheirIRspectrawastakenfor comparisonwiththefreshmaterial.ResultsofIRspectraof thesamplesthatweresoakedwereobservedtobeunaltered. Therewere,however,twoexceptionsandoneofthemwas thatthetreatmentofg-C3N4 inmoltenalkalimetalhydroxides causedthehydrolysisofthestructure.Theotherobservation madewasthattreatmentinconcentratedacidsresultedina sheet-likedissolutiontogenerateacolloidaldistribution[78], thatisneverthelesscompletelyreversible.

Thermalstability

Performingthermalgravimetricanalysis,orTGA,ongraphitic carbonnitridehasindicatedthatthissubstanceisremarkably robustandremainednon-volatileuptoatemperatureof 600 C,evenduringexposuretoair.Astrongendothermalpeak alsoappearedatatemperatureof630 Catwhichtherewas alsosuccessivecompletelossofweight.Thisrevealsthatthe fragments’thermaldecompositionandvaporizationbeganat thetemperaturevaluepreviouslymentioned.InastudyperformedbyGillan,carbonnitridewassealedinevacuatedsilica ampoulesandwasthenpositionedwithinatemperature gradient[77].Observationsfromthestudyshowedthatavery slowratesublimationofcarbonnitrideoccurredat450 Cand escalatedgreatlyat650 C.Carbonnitrideswerethen completelydecomposedat750 Candleftnoresidue.Fromthis analysis,thethermalstabilityobservedisamongstthehighest foranorganicmaterial(greaterthantheordinaryhigh-

Fig.1 Structuralmotifsobserveding-C3N4 (a)Liebig’smelonthatconsistsofchainswithzig-zagpatternofunitsof heptazine(tri-s-triazine)connectedbylinkingnitrogensandadornedontheiredgesbygroupsofN-H,(b)C3N4 layerthatis fullycondensedbasedonunitsofheptazine,(c)C3N4 layerthatistotallycondensedbuiltfromunitsoftriazine,(d) FoundationofPTIbasedonunitsoftriazinerings,connectedbybridgesofN-Hand(e)SideelevationofPTI.Liclthatisfully occupied[68].

temperaturepolymers,polyimides,andaromaticpolyamides).

Itisalsoimportanttoconsiderthatcarbonnitride’sstability ratherdiffersfromonepreparationtechniquetoanother,as foundintheliterature[72,73,77,79,80],andthiscouldbedueto differentdegreesofpolymerization.

Opticalandphoto-electrochemicalproperties

UV/Visabsorptionandphotoluminescenceexperimentshave previouslybeenusedtoinvestigatetheopticalcharacteristics ofcarbonnitride.Basedoncalculationsperformedtheoretically,carbonnitrideofpolymericformisanordinarysemiconductorthathasabandgapreaching5eV,whichdepends onthestructuralvariantsoradatoms[81].Infact,carbon nitridecommonlydemonstratesapatternofabsorptionofan organicsemiconductorthathasabandgapadsorptionthat appearsstronglyatapproximately420nm.Thisisinlinewith thepaleyellowcolouritpresentsthathasbeenreported earlierbyvariousauthors[82 84].

Animportantpointtonoteisthatsynthesisapproach, precursorsutilized,andthecondensationtemperature appliedcouldhaveaslightimpactoncarbonnitride’sabsorptionedge.Thismaybebecauseofthedistinctlocal structure,defects,andpackingthatareformedthroughout theproductionoralterationprocess[83,85].Differentalterationsofcarbonnitride,forinstance,maycauseablue-shift (byeitherprotonation[78]ordopingwithsulfur[86])orredshift(bycopolymerizationwithbarbituricacid[87]andby boronandfluorinedoping[88])oftheadsorptionedge.

Reportshavealsobeenmadeonseveralphotoluminescent speciesandsomewereabletodemonstrateblueregion emission.Itappearsthatthereisahighdependenceofphotoluminescencespectrumtowardsthecondensationdegree aswellasthepackinginthemiddleoflayers[79,84,89,90]. Conventionalpolymericcarbonnitridehas,inmanycases, exhibitedintensebluephotoluminescenceatambienttemperature.Itwasestablishedthattheluminescencespansover awiderangeof430 550nmandshowedamaximalvalueat around470nm.

Withanelectronicbandstructurethatissatisfactory, carbonnitridehasbecomeapotentialmaterialforusein systemsthatharvestandconvertsolarenergy(e.g.,photoelectrochemicalcells).Itisalsoknownthatphotocurrentwas determinedevenbybulkgraphiticcarbonnitridewhenradiatedwithvisiblelight(wavelengthofgreaterthan420nm) [87].Carbonnitride’shighlevelofchemicalandthermalstabilityimprovesthestabilityofphotoelectrochemicalcellsin presenceofoxygen.Inaddition,itispossibletotunegraphitic carbonnitride’selectronicbandstructurebynanomorphology alterationorbydopingandthishelpsintheenhancementof photocurrent.Forinstance,carbonnitridewithmesoporous structure(mpg-C3N4)canusuallyassistinboostingthecapacitytoharvestlightduetoitsmultiplescatteringeffectand largesurfacearea,andhencedemonstratedariseinphotocurrent[91].Othertypesofmodificationthatcanincreasethe photocurrentincludeprotonationanddoping[87].

Eventhoughcarbonnitridemodificationcanpartially enhancethephotocurrent,itisstillpresentlyconsideredtobe

ratherlow.Thisissupposedtobetheresultofthepresenceof grainboundarydefectsaswellasthelackofabilitytogenerate biggerdomainsizeswiththepresentsynthesisstrategy.

MechanismofmethanoloxidationreactionongC3N4 catalysts

Themechanismdescribedinthissectionisbasedonthat proposedbyZhuetal.inwhichtheyutilizedanultrathin2dimensionalg-C3N4 nanosheetasasupportforultrasmall platinumnanoclusters[54](Fig.2).Itwasobservedthatthe electrodemodifiedwiththeas-preparedPt/g-C3N4 demonstratedbetterelectrocatalyticperformanceformethanol oxidationreactionincomparisontobareplatinumnanoparticles.Muchhigherperformancewasalsoobservedwhen themodifiedelectrodewasirradiatedwithvisiblelight.

Inatraditionalelectrocatalyticmethanoloxidationprocess involvingplatinumnanoparticles,theparticleswouldserveas activesitesonwhichmethanolmoleculeswouldbeelectrooxidizedtocarbondioxide.Withtheintroductionofultrathing-C3N4 asasupport,theaggregationofplatinumduring thesynthesisprocesscouldbeavoidedtohelpinforming smallplatinumnanoparticles.Thisalsoimprovesthe adsorptionoftargetmoleculesduetothe2-dimensional structures.Furthermore,uponvisiblelightirradiation (>400nm),thegraphiticcarbonnitridecouldbeexcitedto generateelectrons(eCB)intheconductionband(CB)andholes (hVB þ )inthevalence(VB)[92 95].Therein,theholespossessan oxidativeabilityandcouldreactwithOH /H2Oadsorbedon thesurfacetoproducestrongoxidativehydroxylradicals (∙OHs)[96 99].Themethanolmoleculesbeingadsorbedon thecatalystsurfacecouldalsobeoxidizedinpresenceofthe hydroxylradicalsasinphotocatalyticmethanoloxidation reaction[96 99].Generally,thepairsofholeandelectronwill quicklyrecombineandonlysomeportionoftheholescould beutilized.Duringtheinterfacialchargetransfersbetween photoexcitedg-C3N4 nanosheetsandplatinumnanoclusters, thephotoexcitedelectronswillfirsttransfertoplatinumand thenflowtothecircuitunderexternalelectricfield.Thisis whatpreventsthechargesfromrecombining.

Fig.2 Representationofthesynergisticphotocatalytic (PC)andelectrocatalytic(EC)influenceofthePt/g-C3N4 modifiedelectrodeformethanoloxidationreaction(inthe presenceofvisiblelight)[54].

ThegroupalsoexaminedtheEISofthesynthesizedPt/gC3N4 nanosheetsmodifiedelectrodeindifferentrangeofpotentialsinboththepresenceandabsenceoflight.Theexaminationfurtherprovidedaproofofthesuggested synergisticeffectandthephoto-catalysisaspectofthe methanoloxidationreaction.Itwasestablishedthatfroma potentialof 0.60Vto 0.40Vthediametersoftheimpedance arcs(DIA)significantlyreducedwithincreasingpotential valueindarkness(Fig.3a).Thissignifiesthatatalowerpotentialtherearemoreactivesitesavailableformethanol oxidationreactionasaresultofCOintermediatespecies removalbyoxidation(COisgeneratedfrommethanoldehydrogenation[100,101]).Withincreasingpotentialvalue,from 0.40Vto 0.20V,theDIAalsoincreasedbecauseofcatalyst poisoningandoxidationatrelativelyhighervalueofpotentials(Fig.3b).However,thereisasuddenreversetrend observedinthearctothesecondquadrantatapotentialof 0.15V.ThispatternisduetoCOoxidativeremovalfromthe surfaceofthecatalystandregenerationoftheactivesites. Furtherincreaseinthepotentialfrom0Vto 0.15Vcaused thearcstoadjusttonormalpositivebehaviourgraduallywith alargeDIA(Fig.3c).Theobservedbehaviourisduetothe carbonmonoxideintermediatespeciesbeingabsentwhilethe platinummightbecoveredbyplatinumoxidesthatinhibits methanoloxidation[100].

UponlightilluminationonthePt/g-C3N4 electrode,smaller DIAsweregeneratedatthesamepotentialvalues(Fig.3d). Thisisanindicationthatthemethanoloxidationreaction charge-transferresistance(Rct)duringthephoto-assisted processisrelativelysmaller.Thearcreversingtothesecond quadrantpreviouslyobservedalsooccurredat 0.20V,a comparativelylowervaluethanthatobservedinabsenceof light,astheappliedpotentialiscontinuouslyincreased (Fig.3e).Amorenegativeonsetpotentialofnegativeimpedanceseenduringvisiblelightilluminationsuggestedthat removalofCOspeciesbyoxidationonthesurfaceofthe modifiedelectrodeismucheasier[102].Inaddition,froma potentialof0Vto 0.15V(Fig.3f),thearcsadjustedtonormal positivebehaviourgraduallywithalargeDIA,whilethetendencyofthearctoturnbacktowardsthefirstquadrantat 0.10Vwasmoreapparent.Furthermore,basedonthe Nyquistplotsobtainedbytheresearchteam,theDIAsatthe entirerangeofpotentialweresmallerthanthoseseeninthe absenceoflight.Thisindicatesthatinpresenceoflightthere islessercharge-transferresistance,duetotheeffective interfacialchargetransferonPt/g-C3N4,whichfurtherleadsto improvedphoto-electrocatalyticperformancetowardsmethanoloxidationreaction.

Variousg-C3N4 preparationandmodification techniques

Carbonnitridesarecommonlysynthesizedbydirect condensationorganicprecursorsthatcontainnitrogen.Examplesoftheseprecursorsincludethiourea,urea,dicyandiamide,melamine,cyanamide,andguanidine hydrochloride.Theyarebulkmaterialsthatarecharacterized bysmallsurfaceareasthatareoftenlessthan10m2 g 1 Providingwell-controlledporosityofnanoscalelevelinthe

Pleasecitethisarticleas:YudaA,KumarA,Areviewofg-C3N4 basedcatalystsfordirectmethanolfuelcells,InternationalJournalof HydrogenEnergy,https://doi.org/10.1016/j.ijhydene.2021.01.080

Fig.3 NyquistplotsoftheelectrodemodifiedwithPt/g-C3N4 inasolutionof1Mmethanoland1MKOHatelectrode potentialvaluesrangingfrom 0.6Vto0V(a c)intheabsenceoflightand(d f)undervisiblelightillumination[54].

bulkcarbonnitrideisnecessaryforpracticalapplicationsin areasofasinglecatalystorasupportsubstrateofco-catalysts (e.g.,heterojunctions)toimproveitsusetoalargescale.The creationofmesoporoussystemandtheenhancementof specificsurfaceareaarevitaltoproperlyadjustthephysicochemicalpropertiesandupgradethephotocatalyticperformance[103].Reportsfromanalysisinthepastindicatethat themesoporousg-C3N4 wasfirstattainedbytheperformance ofduplicationornanocastingonmatricesofmesoporoussilicathatarenotableforproducingthecorrespondingnanostructuresofcarbon[104 106].Severalexperimentswere performedaftergaininginspirationfromthishardtemplate methodtodiscovernewapproachesforg-C3N4 alteration. Thesenewtechniquesincludetheultrasonicdispersion technique[48],thesofttemplatemethod[107 109],the chemicalfunctionalizationtechnique[80,86,87,110],andthe acidicsolutionimpregnationmethod[78,111].Thestrategies mentionedarealsousefulinmodifyingtheelectronicpropertiesaswellasthetextureandsurfacechemicalproperties.

Nanoporousg-C3N4 synthesismethods

Materialswithporouscharacteristicsareparticularlyattractiveforuseasheterogeneouscatalystsorasacomponentfor catalyticreactionsthatconvertenergybecauseoftheirvast surfaceareasandaccessibleporosity[112 117].Graphitic carbonnitridewithmesoporousfeatures(meso-g-C3N4)isa potentialmaterialforproducingmetal-freecatalysts.Itis becauseitdisplaysdistinctivesemiconductorpropertiesin additiontolargesurfaceareaandavailablecrystallinepore wallstoassistwiththetransferofmass.Relativetothebulk graphiticcarbonnitride,thematerialcoulddemonstrate greaterporositythatcouldreach1.25cm3 g 1,largerspecific surfaceareathatcouldreachavalueof830m2 g 1,larger quantitiesofactivesitesaswellashighersize-orshapeselectivitythatoverallimprovethecatalyticperformance. Approachesthatarevitaltosynthesizegraphiticcarbon

nitridewithmesoporousarrangementincludethetemplating strategywhichcaneitherbethehard-templatingmethods(of nanocasting)orthesoft-templatingmethods(orselfassembly).Throughthesetechniques,acontinuousmesoporousg-C3N4 structurepossessingsphericalorcylindrical mesoporesandtheirinverseduplicatescouldbeachieved.

Mesoporousg-C3N4 soft-templatingsynthesismethod Formationofmesoporousarrayusingthistechniqueis attainablethroughcooperativeconstructionofmoleculesof amphiphilicsurfactantandguestspeciesthataredirectedby thelikelihoodofdecreasinginterfacialenergy.Thecomponentsoftheorganictemplates,aswellastheirpropertiesare essentialtoproducemesoporousstructures.Hence,theyare alsoidentifiedasstructure-directingagents(SDAs).This methodisusuallyperformedinhydrothermalenvironment thatisachievablethroughevaporationinducedself-assembly (EISA).

Tobeprecise,ionicliquids(ILS)orsurfactants(e.g.,P123, TritonX-100,F127,Brij76,Brij58,andBrij30)havealsobeen utilizedassofttemplatesforsynthesizingmeso-g-C3N4 by dicyandiamideself-polymerizationreaction[118]toobtain variousspecificsurfaceareasandporestructures.Itis important,however,tonotethatonlycertainpyrolysisdesign andtemplatepathwayscouldbeusedtoproducethedesired mesoporousarrangementsasthetemplatecomponentscould decomposebeforegraphiticcarbonnitridecouldbeformed. Moreover,somecarbonresiduecouldstillbeleftoverinthe finalproductsfromthetemplatingpolymersthatcouldseriouslyminimizethenitrogencontentoftheresultingmaterials furtheraffectingtheircatalyticperformance.Astudyreported byShenandteamdescribedthegenerationofbimodalmesoporousg-C3N4 thatpossessesporesof3.8nmandadiameter ofbetween10and40nmwhenTritonX-100templateand precursorsofglutaraldehydeandmelaminewereused[119]. Theresultingmeso-g-C3N4 surfacehasapolarnaturethat couldenhancetheimmobilizationof Candidarugosa lipase,

Pleasecitethisarticleas:YudaA,KumarA,Areviewofg-C3N4 basedcatalystsfordirectmethanolfuelcells,InternationalJournalof HydrogenEnergy,https://doi.org/10.1016/j.ijhydene.2021.01.080

andfurtherassistinmaintainingitsthermalstabilityand catalyticactivity.

Mesoporousg-C3N4 hard-templatingsynthesismethod Withthistechniquenanostructuredgraphiticcarbonnitride withnanowiresornanospheresfeaturescanbeduplicatedby makinguseofprimarynanoporesinthetemplateofsilicato synthesizeareplicaarrangementthatisstable.ThefinalgC3N4 ofnanoporousform,thatisaninverseduplicateofthe templateofsilica,isextractedafterextractingthetemplate withaqueousHForNH4HF2.However,thismethodisnot environmentallyfriendlyandisunsafe.WhenSBA-15was usedasahardtemplateandcarbontetrachloride(CCl4)and ethylenediamine((CH2-NH2)2)wereusedasprecursorsina nanocastingmethod,thegeneratedfinalproductwasanorderedmesoporouscarbonnitride(meso-CN)[120,121].Featuresoftheproductincluded140m2 g 1 specificsurfacearea, 2-dimensionalhexagonalorderedmesostructureswith approximately2.9nmpores,and0.16cm3 g 1 porevolume. Furthermore,theratioofcarbontonitrogencouldbemodified fromavalueof4.5to3.5bysteppinguptheweightratioof (CH2-NH2)2 toCCl4 from0.3to0.9.Thesametechniquecould alsobeappliedtosynthesize3-dimensionalcubicmesocarbonnitridestructureswhenahardtemplateofSBA-16 silicaisused[122].Duplicationusingahardtemplateof mesoporoussilicaIBN-4couldhelpinproducingmeso-carbon nitridenanoparticlesofabout150nm.TheproductsynthesizedinthiswaycoulddemonstrategreaterC/Natomicratio of2.3thanthosesynthesizedwithKIT-6andSBA-15templates.ThereasoncouldbeduetotheIBN-4template magnifiedporesizethatassistsitsimpregnationwithethylenediamine[123].

ExamplesofotherC-andN-richorganiccompoundsthat couldbeutilizedtoproducehighlycondensedmeso-g-C3N4 includemelem(C6N7(NH2)3),melamine(C3N3(NH2)3),dicyandiamide((CN-NH2)2),cyanamide(CN-NH2),andammonium dicyanamide(NH4(N(CN)2))[82,106,124 126].Antoniettietal. fabricatedadisorderedformofmeso-g-C3N4 usingahard templateofsilicananospheresandaprecursorofcyanamide. Thefinalproduct’scharacteristicswereporesof12nmand surfaceareasofbetweenvaluesof86and439m2 g 1 , dependingontheweightratioofprecursortosilicautilized. Regardingthecarbontonitrogenatomicratioameanvalueof 0.71wasestablishedandthisisnearto0.75,whichisthe theoreticalvalue.ImprovementofthisapproachwasperformedbyJunandco-workersbyimplementingahardtemplateoforderedmesoporoussilicaSBA-15togeneratean orderedmesoporousgraphiticcarbonnitride[127].Themesog-C3N4 producedwerewith0.59cm3 g 1 porevolume,4.89nm meanporesize,and239m2 g 1 surfacearea.Parkand researchteamutilizedthesameprecursorandperformeda faciletechniquetoformnitrogenrichmesoporousg-C3N4 withvarious2-and3-dimensionalstructuresthroughthe incipientwetnessmethodintheabsenceofsolvents[128]. Replicaswithnitrogentocarbonratioof1.13wassynthesized aftercarbonizationfor3hat550 C.The2-and3-dimensional mesoporousgraphiticcarbonnitrideswerecharacterizedby bigporevolumesof0.50and0.67cm3 g 1 andhighsurface areasof361and343m2 g 1

Thetemplateofchoicetosynthesizemeso-g-C3N4 couldbe mesoporoussilicaorcolloidalsilicaspheres.Usingatemplate ofsilicananoparticlesof12nmsize,forexample,couldcause theproductionofmesoporousg-C3N4 replicathatpossesses 12nmsphericalporesand450m2 g 1 surfaceareaorganized inanirregularmanner[129].Withhardtemplatesofcolloidal crystalsofsilicawithbiggerparticles(20 80nm),meso-or macroporousgraphiticcarbonnitridecouldbesuccessfully fabricated[130].Otherthansilicaspheres,highlyordered meso-g-C3N4 couldbesynthesizedwith2-dimensionalhexagonalSBA-15and3-dimensionalcubicKIT-6mesoporous silicathatcanfurtheractasareactivetemplateforproducing metalnitrideofmesoporousform[72,104,126,131].

Chemicalmodificationofcarbonnitride

Modifyingthroughchemicalapproachisaneffectivewayof alteringthephysicochemicalpropertiesoftheprecursorsso thattheirrangeofapplicationscanbeextended[132].This couldbeachievedbyelementaldopingofsolidmaterials.Itis astrategythatisoftenappliedtotailorthetextureandsurface chemicalcharacteristics,inadditiontotheelectronicpropertiesofmaterialssuchasTiO2 [133],carbon[134,135],and silicon[136].Applicationsofthisheteroatomdopingmethod havepreviouslybeenusedtomodifycarbonnitridematerials, andstudiesonthedopingeffectswithfluorine[88],boron [110],sulfur[86],andotherelementshavealsobeenreported.

Post-treatmentmodification

Thistechnique,alsoknownaspost-functionalization,involves introducingfunctionalgroupsontocarbonnitrides’surface.It hasbeenusedinthepasttomodifyfullerenes[137]andcarbon nanotubes[138]thatenabledthemtobesuitablefordifferent applications.Duetothenitrogen-richfeatureofcarbonnitride materials,directprotonationduringcounterionadditionisan appropriatemodificationapproach.Infact,itispossibleto reversiblyprotonatecarbonnitridebydissolvingin37%hydrochloricacidatroomtemperaturefor3h[78].XRDpatterns obtainedafterprotonationhaveshownalmostunchanged characteristics(2characteristicdiffractionpeaksatapproximately27 and13 )andthisdemonstratesthattheoriginal carbontonitrogenmatrixhasbeenpreserved(Fig.4a d).

Throughprotonation,theelectronicbandgapsofcarbon nitridecanbetunedtoimprovetheionicconductivityofthe material.Theadditionofprotonsalsoassistedindispersing thematerialinaqueoussolutionsthateasedbothcharacterizationandprocessing.Inaddition,furthermodificationofthe techniquecouldbeattainedbyasimplecounteranion exchange.

Chengetal.performedthepost-functionalizationtechniquebydopingcarbonnitridewithsulfur[86].Theresulting material,g-C3N4-xSx,wasattainedbyexposingpristineg-C3N4 toagaseoushydrogensulfideatmosphereat450 C.EnergyfilteredTEMimageshowedahomogeneoussulfurdoping displayingastrongScontrast(Fig.4e).AnalysiswithXPSand XANESspectroscopyrevealedthestructuraldetailsofdoping withsulfurintothecarbon-nitrogenframeworkandtheresultsreportedthatC-Sbondsgenerateding-C3N4-sSx through substitutionofsulfurbylatticenitrogen(Fig.4f).Inasimilar waytoprotonation,dopingwithsulfurcouldalsoalterthe

Fig.4 (a)Imagesofas-preparedg-C3N4 and(b)regeneratedg-C3N4 obtainedusingscanningelectronmicroscope(with 200nmscalebars).(c)Thephotocurrent-appliedpotentialdependenceatregeneratedC3N4/ITOelectrodeinasolutionofKCl of0.1Mconcentrationinthepresenceofvisiblelight(insetimageisthephotocurrentbiasedat 0.2V).(d)Theplotsof Nyquistimpedance(asscatter)ofg-C3N4-HþCl andg-C3N4 andsimulation(aslines).Therangeoffrequencyisfromavalue of106 to103 Hz,andtheperturbationsignalisofthevalueof100mV.Theinsetimageshowsthedottedareainlarge magnificationandtheequivalentcircuitmold.Thevalueofthecalculatedresistances(Rb)pre-andpost-protonationwere approximately28and1.5MU,respectively.(e)Imagesofenergy-filteredtransmissionelectronmicroscopyofcarbon, nitrogen,andsulfurinC3N4 (toprow)andC3N4-xSx (bottomrow).(f)Themodelofatomicstructureofaperfectg-C3N4 sheet thatcomprisesofmelemunits,and2melemunitswithasubstitutionalNatomatvariousperiodicsitesbySatom.Carbon, nitrogen,andsulfurinsites1and2aredisplayedbyspheresinyellow,red,green,andbluecolour[78,86].(For interpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtotheWebversionofthisarticle.)

Pleasecitethisarticleas:YudaA,KumarA,Areviewofg-C3N4 basedcatalystsfordirectmethanolfuelcells,InternationalJournalof HydrogenEnergy,https://doi.org/10.1016/j.ijhydene.2021.01.080

morphologyandsurfaceareaofgraphiticcarbonnitrideto makeitsuitableforcatalyticapplications.

Modifiedcarbonnitride in-situ synthesisstrategy Throughthismethodadditiveisaddedinsitubeforetheformationoflattice,andheteroatomsofboron,fluorineorothers areintroducedintothematrix.Anexamplethatimplements thistechniqueisthefabricationofmesoporouscarbonnitride polymersthatcontainsfluorineandboron[139].Themethod involvesionicliquidswithananionofBF4 fromarangeof variousionicliquids.BF4 anionisintroducedintheC-N condensationprocessduringorganicprecursor(e.g.,dicyandiamide)self-condensation.1-butyl-3-methyl-imidazolium hexafluorophosphate,orBmimPF6,isanionicliquidthatwas usedinanotherstudyasamildsourceofphosphoroustodope carbonnitride.Theimprovementachievedthroughphosphorousdopingofferedbetterphotocurrentproductionbya factorofupto5inadditiontoenhancedelectricalconductivitythatreachedfourordersofmagnitude.Thismethod utilizingionicliquidcouldbefurthermodifiedtoincludeother typesofheteroatomsbyreplacingtheionicliquids’cationor anionintomaterialsbasedoncarbonandnitrogenforother specificapplications.

Anotherexperimentdemonstratedthedopingofcarbon nitridematerialswithfluorineandboronseparatelyinvolved co-monomersofammoniumfluorideandaminoborane.Fluorinationwasperformedonthenewlythermallyinduced condensationofdicyandiamide[88].Analysisusingsolid-state MASNMRspectroscopyandX-rayphotoelectronspectroscopy showedfluorineatomsbeingintroducedintothematrixof carbonnitrideasC-Fbondsthatcausedthesp2 carbonto convertpartiallytosp3 carboninthematrixofcarbonnitride thatmayproducealowerplaneorderofthematerials.Relative tog-C3N4 thathasnotbeenmodified,XRDrevealedthatafter fluorinationhasoccurredthegraphiticstackingismuch weakened.Carbonatomsreplacementinthesystemwith boronproducesaminoborane-modifiedg-C3N4 thatformsa planarlayeredconfigurationinasimilarmannertomelon.The planarheterocyclicmacrocyclearrangementstillexistsinthe material,whiletheboronsitespresentonthesurfacemight behaveassitesofstrongLewisacid,thatthereforecomplementsthebasicsitesofnitrogeninbifunctionalcatalysis[110]. Informationofthestructureduetoboroninclusionintothe carbontonitrogenmatrixwereachievedthroughXPSand 11B solid-stateMASNMRanalysis.The 11BNMRspectrumdisplayedtwopeaksthatdesignatestwodistinctpositionsinthe structure(forbayboronandcornerboron).

Othermodificationtechniquesincludenitrogenprecursor (e.g.,dicyandiamide)copolymerizationwithotherorganic additives(e.g.,barbituricacid(BA))[87].Whencomparedto theinorganicmodificationapproaches,thecarbonnitride obtainedfromtheorganiccopolymerization-basedmethod displayedsignificantopticalabsorptionredshiftfromavalue of470nmto750nmwithescalatingamountofBA.Thiswould enablephotochemicalapplicationofwavelengthsthatcould leadtoamaximumsolarphotonflux.

Itisalsopossibletodissolvemetalsaltsintothecavitiesof nitrogeninthematrixofgraphiticcarbonnitride.Such strategywasreportedbyKawaguchietal.in1995tofabricate

metal-modifiedcarbonnitride[80].Theteamreportedthatthe proposedcarbonnitridestructureconsistsofaholebeing boundedbythreeradicalsofaminoinaunitcell.Thehole mentionedwasexpectedtopermittheintroductionofspecific speciesofchemicalsthatcouldbemetalatoms.Whenthe powderof[(C3N3)2(NH)3]n washeatedwithmetalchloride(e.g., ZnCl2 orAlCl3)foranhourat500 Cayellowishmaterialwas produced.ThefinalproducthadanIRspectrumthatwasakin tothatoftheinitialcarbonnitridematerial,whichfurther provedtheconservationoftheoriginalframework.Even thoughthewideningandweakeningof(002)diffractionwas detectedinthefinalmaterial,itspositionremainedunchangedandthisindicatedagraphiticstackingarrangement likethatofthehostmaterial.Thenitrogen “pots” contained largequantitiesofmetalthatcouldbepartiallyincluded(upto 59wt%).Furthermore,theXRDpatternsshowednometal(Zn orAl)ormetalsalt(ZnCl2 orAlCl3)diffractionthatsignifiedthe homogeneousincorporationofthemetalinthehostmaterial matrix.Besides,onlyminutequantitiesofcounterionswere foundinthematrixandthisindicatesthattheCNframework musthavetakenupthenegativecharges.

Similarly,theironionsinclusionintothematrixofcarbon nitridehavealsobeenobservedwithoutdamagingthehost’s graphiticsystem[140].Opticalabsorptionspectrastudiesand XRDpatternssuggestedthatironinsertionintothecarbon nitridematrixcouldstronglyalterthematerial’selectronic propertiesandgeneratesystemswithnovelcapabilities.

Typesofelectrocatalystthatusesg-C3N4 forMOR

Electrocatalystsofgraphiticcarbonnitridewithnon-metals

Graphiticcarbonnitrideitselfisastoichiometricmaterial whichconsistssitesofLewisacidandbase(terminaland bridginggroupofNH-andlonepairsofnitrogeninringsof triazine/heptazine,respectively)thatcouldpotentiallyactas platinumanchoringsitesandCOadsorptionsites.Itsfirst knownapplicationasasupportmaterialforacatalystwas performedbyYuandco-workersin2007foruseinDMFC[141]. Fromtheirstudy,itwasobservedthatanelectrocatalystof PtRubeingsupportedbygraphiticcarbonnitridecould demonstrate78 83%greaterpowerdensitythanwhen VulcanXC-72wasusedasthesupport.

AresearchstudyperformedbyMeenuetal.implementedgC3N4 todevelop,forthefirsttime,morphologicallyengineered metal-freeg-C3N4 fortheoxidationofmethanol(Fig.5)[142].gC3N4 of2-dimensionalnanosheets,1-dimensionalnanorods, and0-dimensionalquantumdotsweresuccessfullysynthesizedfrombulkbyaprocessthatinvolvedthermo-chemical etching.TheteamstudiedthebehaviourofthedifferentgC3N4 materialsforMORinbasicmediumusingcyclicvoltammetry(CV)andfoundthatthematerialinquantumdotsform showedgreatermethanoloxidationactivityincomparisonto theothertypesofgraphiticcarbonnitridedeveloped.Thisis becauseoftheexistenceofabundantedgesinnanomorphologyandmaximumactivesiteatomicpercentagesof pyridinicnitrogen.However,thequantumdotsg-C3N4 itself hasunstableelectrocatalyticactivityasitexhibitedamarked

Fig.5 (a)CVresultsobtainedforCNQDandCNQD-PANIinasolutionofNaOHwith0.5Mconcentration(with50mV/sscan speed).(b)CyclicvoltammogramtracesofmethanoloxidationreactionofglassycarbonelectrodemodifiedwithCNQDand CNQD-PANIinasolutionofmethanolandNaOH,eachwithaconcentrationof0.5M.(c)CurvesofCVof1st(linedinblack) and150th(linedinred)cycleinasolutionofmethanolandNaOH,eachwithaconcentrationof0.5M.(d)Curvesofcyclic voltammogramofmethanoloxidationreactionofCNQD-PANIindifferentconcentrationsofmethanolsolutions[142].(For interpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtotheWebversionofthisarticle.)

reductioninthefirstcyclefrom13Ag 1 to10.8Ag 1 inthe hundredthcycle.Suchphenomenoncouldbebecauseofthe slowcatalystdissolutioninbasicsolutionandmaterial’spoor electricalconductivity.Theproblemwassubjugatedwhenthe 0-dimensionalg-C3N4 wassupportedonconductingpolyaniline(CNQD-PANI).Theresultingmaterialdidnotonlydisplay bettermethanoloxidationelectrocatalyticactivitythanthePt/ Ccommerciallyavailable,butalsobettercarbonmonoxide resistivity.Thenanocompositewasabletodisplayhighcurrent densityinthefirstcyclewithavalueof28.4Ag 1 andmanaged tomaintainupto92%ofthevalueevenafter1000electrocatalyticcycles.Thereasonforthisdevelopmentcouldbe assignedtotheelectrostaticinteractionthatexistsbetween conductingpolyaniline(PANI)and0-dimensionalg-C3N4, whichcouldfurtherenhancethemethanoladsorptionand electricalconductivityofCNQD-PANIandoxidationofadsorbedCOtominimizeCOpoisoning.

g-C3N4 asasupportformetalnanoparticles

Containingnoblemetals

Platinum:Withregardstonoblemetals,platinumisapopular catalystmaterialforuseinmethanoloxidationreaction [143 146].TheelectrooxidationproducesCO-basedby-productsthatreducestheelectrocatalyst’sperformance.Theissue ofCOpoisoningandslowoxidationkineticsarethemain disadvantagesfacedwithusingplatinumcatalyst.Furthermore,platinumisalsoanexpensivematerialthatmakesit

economicallyunsuitableforfuelcellscommercialization. Hence,properutilizationofplatinumisnecessaryfortheir implementationinfuelcells.Platinumnanoparticlesoffew nanometersdimensionandnarrowsizedistributioncould offerappropriateuseofnoblemetalsbyenhancingtheelectrocatalyticactivity.Anumberofresearchteamsreported thatthesizeandshapeofplatinumnanoparticlescouldinfluencetherateofelectrooxidation[147].Thereisalsothe problemoflong-termdurabilityofanodeplatinumcatalysts beingsupportedbycarbonformethanoloxidation.ThecarbonsupportthatisoftenusedcouldalsobeeffortlesslyelectrochemicallyoxidizedtoCO2 duringfuelcelloperation, whichcouldresultinstructuraldegradationofthesupport. Platinumnanoparticlescould,inaddition,beelectricallydisengagedfromthesupportingmaterial.Platinumnanoparticles’migration,aggregation,andOstwaldripening[148] coulddegradetheelectrochemicalcharacteristics.Thereare twostrategiesoftenimplementedtoupgradethedurability andcatalyticactivityofplatinumelectrocatalysts.Thefirstis bysynthesizingaplatinumalloywithothermetalsandthe secondisbyutilizinggoodsupportmaterials.

ThedesignandfabricationofacatalystcomprisingofAgPtbimetalwasperformedbyLiuandco-workersthatdisplayedenhancedperformancetowardsmethanoloxidation byminimizingCOchemisorptionaffinity[149].Theinclusion ofrutheniumintoelectrocatalystcontainingplatinumcould assistintheoxidationofcarbonmonoxidebeingproduced duringmethanolelectrooxidation.Inthiswaytheissueof

carbonmonoxidepoisoningcouldbeavoidedduringthe oxidationofmethanol[150].However,theissuebeingfaced withutilizingbimetalliccatalystisinitssynthesisbecause maintainingspecificratiooftwometalsisvitalinadditionto itsshapetoacquirethedesiredeffectivecatalytic performance.

A2-dimensionalsupportmaterialknownasgraphenehas beendeterminedtobeasuitablematerialtoactasasupport fornanoparticledispersiondueitsphysicalandchemical properties[151]thatincludehighelectricalconductivity,surfacearea,andthermalstability[152 154].Nonetheless,graphenealsohasitslimitationforelectrocatalyticpurposes suchashighhydrophobicityandlowpolarity.Grapheneaggregationinaqueoussolutionandthechallengeinachieving metalNPsuniformloadingongraphenesurfacelimitsfurther enhancementintheelectrocatalyticactivities[155].Furthermore,theuseofacidicmediacanleadtocarbonsupport corrosionthatgenerallytakesplaceattheinterfacewiththe novelmetalNPsthatfurtherdegradesupportedcatalysts’ performance.Toupgradeboththestabilityanddispersionof theNPsonthesurfaceofgraphene,sheetsofgrapheneneed tobefunctionalized.ThisstrategyhelpsenhancethesolubilityandtheNPsdispersionabilityonthegraphenesurface. Grapheneattachmentwithsurfactantmoleculesorpolymer, andgrapheneoxidationtogenerategrapheneoxide(GO) reducegrapheneaggregationandimprovemetalNPsdispersionresultinginanenhancementoftheelectrocatalyticactivities[156,157].

Ontheotherhand,graphenedopingwithheteroatom(e.g., nitrogen,boron,etc.)canbeperformedtoaltergraphene’s characteristics.Dopingwithnitrogen,forinstance,can improvetheelectrocatalyticactivityinadditiontobetter durabilitybecauseofthestronginteractionthatexistsbetweenthecatalystandthesupport[158,159].Acarbon-based materialofg-C3N4,similarinstructurewithgraphene,could alsobeutilizedasasupportbecauseoftheexistenceofsitesof Lewisacid/baseintothemoiety[160 166].Metal/semiconductorNPsbeingsupportedbyg-C3N4 havebeenproven tobeaneffectivecompositefororgano-catalysis[167],photocatalysis[168],biosensors[169],andelectrochemicalapplications[170].Recently,variousresearchstudieshavealsobeen performedtosynthesizemonometallicplatinumcatalysts thataresupportedbyporousgraphenecomposites[171 173] andbynitrogen-dopedgraphene[159]toelectrochemically oxidizemethanol.

Sadhukhanetal.utilizedg-C3N4 toproduceacompositeof Pt/CNx byinvolvingsodiumborohydridereductionthat involveultrasoundtechnique(Fig.6)[174].Theresulting compositeofPt/CNx possessedalargeelectrochemicalsurface area(ECSA)duetobetterplatinumnanoparticlesdistribution onsheetsofCNx.AnalysisusingXPSandFT-IRperformedby theteamhavereportedtheexistenceofgreatinteractions betweenthemetalandsupportmaterialinthecomposite.To observetheelectrocatalyticperformanceofthematerialson methanoloxidationtheteamperformedtheexperimentsin anaqueousH2SO4 solutionof1Mconcentrationconsistingof 1Mmethanolusingcyclicvoltammogram(CV).Comparison wasalsomadewithaPt/Cmodifiedglassycarbon(GC)electrodeusingCVatascanrateof50mV/sinanacidicsolution. TheCVcurvesgeneratedbyboththesamplesdisplayedtwo

peaks(intheforwardscanandthebackwardscan).Theforwardscanpeakisthepeakcharacterizingmethanoloxidation whilethepeakinthebackwardscanindicatestheefficiencyto removecarbonaceousspecies.ThePt/CNx (310mA/mgPt)displayedaforwardpeakcurrentdensitythatwas2.7times greaterthanthatofPt/Ccatalystthatdisplayed114mA/mgPt TheonsetpotentialsofPt/CNx andPt/Ctowardsmethanol oxidationare0.193Vand0.28V,respectively.Thelowonset potentialandthehighmassactivitysignifythatPt/CNx isa superiorcatalystforMORrelativetocommercialPt/C.The forwardtothebackwardcurrentdensityratio(If/Ib),anindicatorofthecatalyst’spoisonresistancetowardscarbonaceousspecies,wasalsodetermined.Theteamfoundoutthat theIf toIb ratioofPt/CNx was2.68andthisisgreaterthanPt/C commerciallyavailable(If/Ib ¼ 1.9)by1.41times.Thisshows thatMORtakingplaceonthePt/CNx catalystsurfaceismuch easierintheforwardscantoformsmallerquantitiesof carbonaceouscomponents.Inaddition,thePt/CNx catalyst coulddemonstrateanexcellentlong-termstability.This abilitywasanalysedthroughchronoamperometric(CA)experimentsataconstant0.7Vpotentialinasimilarsolution saturatedwithnitrogen.Duringthestudy,Pt/CNx continuouslydisplayedgreatercurrentdensitythanthatofPt/C duringthewholescanduration.When5000sofamperometric scanhadpassed,thecurrentdensityofPt/CNx (57.3mA/mgPt) was17timeslargerthanthevalueobtainedforPt/C(3.3mA/ mgPt).

Mansoretal.developedthreedistinctmaterialsof graphiticcarbonnitrideintheformofpolymericcarbon nitride(gCNM),poly(triazine)imidecarbonnitride(PTI/ LiþCl ),andboron-dopedgraphiticcarbonnitride(B-gCNM) [175].Whentheresearchgroupperformedtheaccelerated corrosionexperiment,allthedevelopedmaterialswere observedtobeelectrochemicallystableincomparisonto conventionalcarbonblack(CB)withboron-dopedgraphitic carbonnitridedisplayingthesuperiorstability.Analysisof performancewasalsoconductedwithplatinumnanoparticles depositiononeachmaterialanditwasdeterminedthatPt/ PTI-LiþCl electrocatalystexhibitedgreaterdurabilitywith ECSAlossofonly19%relativeto36%obtainedforPt/Vulcan after2000scans.

Huangandco-workersdevelopedanefficienttechniqueto produceplatinum-decorated3-dimensionalarchitectures constructedfromgraphiticcarbonnitridenanosheetsand graphene(Pt/G-CN)asananodeelectrocatalystsforthe oxidationofMeOH[173].Thefinalproductpossessedlarge, accessible,multi-sizeporesthatcouldenablereactantstobe swiftlytransferredtotheelectroactivesitesandfavourable conditionstopreservethecatalyst’selectricalconductivity.In comparisontoPt-VulcanXC-72andPt-graphenehybrids(Pt/C andPt/G,respectively),the3-dimensionalPt/G-CNelectrocatalystcoulddemonstratebetterpropertiessuchasgood activity,satisfactorystability,andunusualpoisoningspecies toleranceduringMOR.TheresearchteamalsovariedtheG/CN ratiosoftheelectrocatalyst’sarchitectureandinvestigationof itsactivityusingCVinH2SO4 solutionof1Mconcentration showedthatPt/G3-(CN)7 possessthegreatestelectrochemicallyactivesurfaceareavalueof69m2 g 1.Whencomparedto Pt/C,Pt/G,andPt/CN,theydisplayedlowerECSAvaluesofless than40.8m2 g 1.Methanoloxidationmeasurements

Fig.6 (a)CVofMORofthecatalystsPt/CandPt/CNx inasolutionofMeOHandH2SO4,eachwithaconcentrationof1M(at 50mV/sscanrate).(b)Pt/CNx andPt/CcatalystsonsetpotentialsbeingcomparedforMOR.(c)Massactivityandspecific activitycomparisonbetweenthecatalystsofPt/CandPt/CNx atapotentialof0.65VinforwardscanforMOR.(d)Pt/CNx cyclicvoltammogramcurvesinasolutionofmethanolandH2SO4,eachwithaconcentrationof1M,atvariousscanrates (from10mV/sto200mV/s).(e)Aplotofforwardpeakcurrentdensitiesagainstscanratessquareroot.(f)Curvesobtained fromchronoamperometryanalysisofthecatalystsPt/CandPt/CNx forMORinasolutionofmethanolandH2SO4,eachwith aconcentrationof1M(at0.7Vconstantpotential).(g)Thevariationofforwardpeakcurrentdensitywithnumbercyclefor MORofthePt/CandPt/CNx catalystsinasolutionofmethanolandH2SO4,eachwithaconcentrationof1M[174].

conductedinH2SO4 andmethanolsolutionof1Mand2M concentration,respectively,showedthattheforwardanodic peakcurrentdensityofthecatalystsofPt/G-CNdeclinesinthe followingpattern:Pt/G3-(CN)7 (15.7mAcm 2) > Pt/G5-(CN)5 (12.2mAcm 2) > Pt/G7-(CN)3 (10.8mAcm 2) > Pt/G1-(CN)9 (1.3mAcm 2).Aninterestingdiscoveryreportedbythegroup wasthatwhenthecontentofnanosheetsofg-C3N4 increase from30%to90%,thecatalystpoisonresistanceimproved.The If/Ib ratioofPt/G3-(CN)7 is1.82and1.3timesgreaterthanthe ratioobtainedforPt/CandPt/Gcatalysts,respectively.In addition,Pt/G3-(CN)7 hasamassactivityvalueof 612.8mAmg 1 anditsresistivitytowardspoisoningspecies arebetterthanthoseoftherecentlydiscoverednanostructuresthatarebasedonplatinumthatincludePt/graphene[176,177],Pt/CNTs[178],Pt/N-dopedcarbons[159,179], Pt/porouscarbons[180],andPt-basedbimetalliccatalysts [37,181].

Zhangetal.previouslypublishedtheirworkonthe developmentof3-dimensioalhierarchicallyporouscarbon nanocompositesthatconsistedofg-C3N4 thatwaschemically combinedwithrGOthroughC-NcovalentbondstosupportPt NPs(3DPt-g-C3N4-rGO)[182].Thesynthesizednanocomposite possessedhighnitrogencontent,largesurfacearea,fine electricalconductivity,andinterconnectedporousnetworks. TowardsMOR,thecatalystcoulddisplayhighactivity,good

poisonresistivity,andexcellentstabilityinthelongrun.It alsopossessedhighvalueofelectrochemicallyactivespecific surfaceareaof80.3m2 g 1 thatisfargreaterthanotherrecent state-of-the-artplatinum-basedelectrocatalysts.The enhancedfeaturescouldbeduetotheexistenceofgood conductivityandlargespecificsurfaceareaofg-C3N4-rGO, superlativestructuralstabilityasaresultofcovalentinteractionsthatexistbetweenrGOandgraphiticcarbon nitride,aswellasthelargetriple-phaseboundariesgenerated bythePtNPsthatarefinelydistributed.

Zhuandresearchteampreparedasupportforultrasmall platinumnanoclustersintheformofultrathin2-dimensional g-C3N4 nanosheet[54].Theplatinumnanoclustershadamean sizeofapproximately3.2nm.Inadditiontodemonstrating betterelectrocatalyticabilitytowardsMORrelativetobarePt NPs,duringtheirradiationofvisiblelighthigherMORperformancewasdiscoveredrelativetotraditionalambient electrocatalyticoxidation.Thereasoncouldbeduetothe synergisticinfluencesofbothphoto-andelectro-catalytic oxidationofMeOHalongwithefficienttransferofinterfacial chargeinPt/g-C3N4.Linearsweepvoltammetric(LSV)behavioursofPt/g-C3N4 andpureplatinumNPswereperformed underlightanddarkilluminationinasolutionofCH3OHand KOH,eachhavingaconcentrationof1M.ThePt/g-C3N4 electrodewhenilluminatedbylightshowedavalueofonset

potentialthatwasmorenegativethanintheabsenceoflight. Inaddition,Pt/g-C3N4 electrodedisplayedavalue 132mAmg 1 asthecurrentdensityundervisiblelightirradiationandthisisapproximately2.4and3.1timeshigherthan thevalueobtainedforPt/g-C3N4 withoutlightirradiation (56mAmg 1)andofpureplatinumNPselectrode (42.3mAmg 1),respectively.

Lietal.supportedanalloyofplatinumandruthenium (PtRu)onag-C3N4 nanosheetcoveredVulcanXC-72carbon black(C@g-C3N4 NS)toproduceanelectrocatalystthatis synthesizedthroughamicrowave-assistedpolyolprocess (MAPP)[183].AnexcellentactivitywasobservedduringelectrochemicalmeasurementsofPtRu/C@g-C3N4 NSbecauseof evendistributionandminutesizeofNPsofPtRu,andgreater stabilityowingtorobustinteractionbetweenthecomposite supportandthePtRuNPs.AnalysisusingX-raydiffraction (XRD),X-rayphotoelectronspectroscopy(XPS),andtransmissionelectronmicroscopy(TEM)determinedthattheshell ofthebulkgraphiticcarbonnitrideontheexteriorofthe producedbulkgraphiticcarbonnitridecoatedVulcanXC-72 carbonblack(C@bulkg-C3N4)infactexfoliatedtog-C3N4 of layerednanosheetsandresultedinacompositematerialof VulcanXC-72coatedwithnanosheetsofg-C3N4.Furthermore, themasscatalyticactivityofsynthesizedcatalystsignificantly improvedby2.1timesgreaterthanthemasscatalyticactivity observedforPtRu/Ccatalystproducedbysimilarmethod. Acceleratedpotentialcyclingtests(APCTs)showedthatthe catalystcandisplay14%greaterstabilityinadditiontohigher poisonresistivitywhencomparedtotheas-synthesizedPtRu/ C.Theenhancementinperformanceobservedcouldbedueto afewreasons.Thefirstonecouldbeduetothesupport’s upgradedelectronconductivitybygeneratingC@g-C3N4 NS core-shellstructure.Secondly,thereisalsothepresenceof excellentmechanicalresistanceandstabilityofthenanosheetsofg-C3N4 inoxidativeandacidicconditions.Thirdly,a strongerinteractionispresentbetweenthemetalandsupport (SMSI)thatexistsbetweenthecompositesupportandthe metalnanoparticles.

Liandteamalsoimplementeda p-p stackingtechniqueto synthesizeasupportforultrafinePtRunanoparticlesinthe formofgraphene/ultrathing-C3N4 nanosheetcompositematerialformethanolelectrooxidation[160].Graphiticcarbon nitrideelectricalconductivityisduetotheelectron-hole puddlethatdevelopedonthesheetinterfacesbetweengrapheneandg-C3N4.Duetotheremarkabletexturalproperties thatincludelargesurfacearea,layeredstructure,highnitrogencontent,homogeneousultrafinePtRuNPsdispersion,and thestronginteractionbetweenthenanosheetofg-C3N4 and metalnanoparticles,thefinalmaterialcouldperformwellas anelectrocatalyst.Theenhancedpropertiesincludegreater stability,betterpoisontolerance,andexcellentelectrocatalyticactivity.Theexistenceof25%g-C3N4 contentinthe mixedsupportenabledthecatalyst(PtRu/G75-(CN)25)to performwithbestactivityandstability.Theforwardpeak currentdensitiesof0.91AmgPt1 wasdeterminedforthis catalyst,whichis1.4timesgreaterthanthevalueachievedby PtRu/rGO.Increasingthecontentofg-C3N4 wouldleadto graphiticcarbonnitridenanosheetagglomerationontherGO surfacethatcouldreducethecatalyticactivitybecauseofpoor conductivityofelectron.However,increasingtheg-C3N4 NS

contentfrom0%to30%causedthecatalysts’poisonresistanceabilitytobecomemuchbetter.Hence,PtRu/G70-(CN)30 hashigherIf/Ib ration(4.06)thanthatofPtRu/G75-(CN)25 (2.34). Suchphenomenoncouldbeduetothemarginalnitrogen compositioninthesupportsthatwouldactivateahuge quantityofneighbouringatomsofcarbonandfurtherspeed upthegenerationofOHbyH2Odissociation.Therefore,promotionoftheoxidativeremovaloftheintermediatepoisoning speciesthatwereabsorbedtakesplace.

Wangetal.depositedatraditionalelectrocatalystofPt andAuona2-dimensionalvisible-light-activatednanosheetsofgraphiticcarbonnitridethroughafacileone-pot hydrothermaltechnique[184].Alteringthequantitiesof goldandplatinumallowedtheconstructionof3dimensionalplatinumisland-on-goldarchitectureson graphiticcarbonnitridenanosheetssurface(Pt-Au/CN).The performanceoftheresultingPt-Au/CNcompositetowards MORwasanalysedbytheresearchteam.Incomparisontoa graphiticcarbonnitride-supportedplatinum(Pt/CN)modifiedelectrode,thepreparedcatalystcoulddemonstratean enhancedelectrocatalyticactivityforMORby13.8times. Visiblelightilluminationalsocontinuouslyenhancedthe currentdensityandstabilityofthecomposite.Factorsthat contributetotheimprovedstabilityandelectrocatalyticactivityincludethebimetallicelectroniceffectsofplatinum andgold,3-dimensionalPtislands-on-Auarchitectures,2dimensionalsupportnanosheetofgraphiticcarbonnitride, andthesynergisticinfluenceofelectro-andphoto-catalytic processes.

Palladium:Manyresearchershavestudiedtheinclusionof palladiumasanoblemetaltosubstituteplatinumtoproduce non-Ptbasedanodecatalysts.ForexampleQianetal.reported thedevelopmentofhigh-performancePd/g-C3N4/carbonblack fortheelectrooxidationofbothMeOHandformicacid[185]. Theproductionwasachievedbyafacile2-steptechniquethat involvedg-C3N4 coatingonthecarbonblacksurfacebyheating treatmentatlowtemperaturefollowedbyuniformdeposition ofpalladiumNPsthroughwetchemistryapproach.Promoted bytheindividualcomponents’synergisticinfluences,the resultingcatalystcouldexhibitexcellentforwardpeakcurrent densitiesofthevalue1720mAmg 1 Pd forMORinalkalinesolutions.Thisperformanceissignificantlybetterthanthat shownbythecommercialPd-Ccatalyst.

InanotherstudyperformedbyFangandco-workers,gC3N4 andrGOwascombinedtofabricateahybridsupportto anchorultrafinePdNPsthroughasimpletechniqueinvolving aone-stepelectrodeposition[186].Characterizationstudyof themorphologyandstructurebyimplementingXRD,scanning/transmissionelectronmicroscopy(SEM/TEM),XPS,and RamanspectroscopyconfirmedtheuniformdispersionofPd NPsong-C3N4@rGOsupportwithparticlesof5.87nmmean size,originatingfromtheNingraphiticcarbonnitridethat contributetotheelectrontransporthighwayonthereduced grapheneoxidenanosheetlayersurface.Inaddition,reports fromelectrochemicalexperimentsindicatedthatthesynthesizedcatalystdisplayedahighefficiencyofelectrocatalytic activityforMORwithavalueofcurrentdensityof 0.131mAcm 2 Zhangandteamdevelopedacovalentlycoupledg-C3N4 andrGOhybridtoloadPdNPsusinganinsituchemical

synthesistechnique[33].PdNPswitha3.83nmmeandiameterweredepositedevenlyontheg-C3N4-rGOsurface.When comparedtocatalystsofcommercialPd-activatedcarbon(PdAC)andPd-rGO,thenanocompositeofternaryPd-g-C3N4-rGO possessesgreatelectrocatalyticcharacteristicsfortheoxidationofbothformicacidandMeOH.Theseremarkablepropertiesincludenotablyhighforwardpeakcurrentdensities, largeelectrochemicallyactivesurfacearea(ECSA),andfine long-termstability.Reasonsfortheimprovedactivitycouldbe duetothespecificpropertiesofthecatalyst’sspecialnanostructureandthesynergisticinfluenceoftheindividualspecies.Theseincludethelargespecificsurfaceareaofthe mesoporousstructure,finerrGOconductivity,well-dispersed PdNPsduetotheinfluenceofplanargroupsintroducedby g-C3N4,andsatisfactorystabilityofthestructureduetothe covalentinteractionsthatexistsbetweenrGOandgraphitic carbonnitride.

Zhangetal.alsodevelopedanovelsupportmaterialrich innitrogen,consistingofrGOandg-C3N4 intheformof nanoflakelets(CNNF)toloadPdNPs[35].TheCNNFwas formedbysplittingdecompositionofthepolymerofgraphitic carbonnitrideonreducedgrapheneoxideathighertemperaturevalues.TheCNNFproducedwasalsointimatelycombinedwiththereducedgrapheneoxidenanosheets.Itwas observedthattheCNNFcouldhelpinofferingedgesitesthat aremoreexposedandspeciescontainingactivenitrogenfor thegreatdistributionofpalladiumNPs.Itwasalsodeterminedthatthenanoparticlesofpalladiumhadamean diameterofthevalue3.92nmthatwereevenlydistributedon sheetsofCNNF-G.DFTcomputationsreportedthattheCNNF couldtrapthepalladiumadatom,andthereforebehaveasa nucleationsiteforpalladiumatwhichatomsofpalladium aremorelikelytogathertogeneratepalladiumclusters.The excellentpropertiespossessedbythefinalPd-CNNF-G nanocatalystweresatisfactoryforbothMORandformic acidoxidationandtheyincludelargeECSAvalues (91.2m2 g 1),finestabilityanddurability,andremarkably highforwardpeakcurrentdensities.Theseproperties enabledPd-CNNF-GnanocatalysttosurpassPd-graphene, commercialpalladiumcatalystsupportedbyactivatedcarbonorPd-carbonnanotubes.Pd-CNNF-Ghadtheabilityto displayapeakcurrentdensityasgreatas1770mAmg 1 for MORinNaOHandmethanolsolution,eachwithaconcentrationof1M.Thisvalueismuchgreaterthanthevalue foundforPd-g-C3N4-rGO(1550mAmg 1),Pd-rGO (835mAmg 1),Pd-CNT(725mAmg 1),Pd-AC (535mAmg 1),Pd-g-C3N4 (67mAmg 1).Inaddition,the recordedvalueisevengreaterthanthoserecentlyreported fornanostructuresbasedonpalladiumthatincludePd-SnO2/ MWNTs(778.8mAmg 1)[187],Pd/graphenehydrogelona foamofnickel(788mAmg 1)[188],Pd1Ag1 nanoparticles/ graphene(630mAmg 1)[189],Pd-Cubimetallicnanoparticles/graphene(392.6mAmg 1)[190],Pd1Pt3/nanoplateletsofgraphite(385.22mAmg 1)[191],Pd/CuO-TiO2 (381mAmg 1)[192],Pd-Ni-PNPs/carbonblack (~360mAmg 1)[193],andporousPt-Pdnanospheres/graphene(180mAmg 1)[194].

Eswaranandteampreviouslyreportedasimpleone-step approachofproducinganewg-C3N4/polyaniline/palladium NPs(g-C3N4/PANI/PdNPs)basednanohybridcompositealtered

screen-printedelectrode(SPE)toachieveefficientMOR[195]. Thestructureofthenanohybridwasattainedbyasingle-step simultaneouselectro-depositiontechniquethatinvolvedan electrolytesolutionofaniline,palladiumchloride,andnanosheetsofgraphiticcarbonnitride.Thefinalproductalso featuredneedle-shapedpolyanilineandsphericalnanoparticlesofpalladiumbeingpositionedbetweennanomatrix ofg-C3N4.Analysisoftheas-preparedcompositealteredSPE usingCVandCAhaveshownthatagreatelectro-oxidation andexcellentcatalyticperformanceforMORcouldbe exhibitedbythematerialincomparisontocommercial10%Pd depositedcarbonblackandothertypeofcatalystspreviously studied.

Qianetal.have,inthepast,utilizedbimetallicNPsofPt-Pd tofabricateacompositecatalystwithg-C3N4 modifiedcarbon blackthroughafacile2-stepapproach[196].Anextraordinarilyfinecatalyticactivityaswellasstabilityinthelongtermcouldbedemonstratedbytheresultingmaterialsfor oxidizingMeOH,C2H5OH,glycerolandethyleneglycolinbasic solutions.Theenhancedpropertiescouldbeduetotheplanar aminogroupofgraphiticcarbonnitridepromotingatemplate effectforthedistributeddecorationofplatinum-palladium nanoparticles,withcomplementaryrolesofplatinum(site fordehydrogenation)andpalladium(siteforremovalofCOlikespecies).Otherfactorscouldincludethepresenceofcarbonblackhavinglargespecificsurfaceareatopromoteafast diffusionofelectrolyte,quickeliminationofcarbonaceous species,andthesupport’sstructuralstabilityestablishedon thecovalentlinkthatexistsbetweenCBandg-C3N4 forpreservingthecatalyticsystemdurability.Thegroupstudiedthe behaviouroftheas-preparedcatalysttowardsMORinalkaline mediumusingCV.ItwasdeterminedthatPt-Pd-gCN-CBdisplayedthegreatestvalueofanodicpeakcurrentdensityof 4420mAmg 1metal.Thisvalueisthenfollowedbytheresultingcurrentdensitiesinthefollowingorder:Pt-Pd-CB(2017mA mg 1metal) > Pt-gCN-CB(2000mAmg 1Pt) > Pd-gCN-CB (955mAmg 1Pd).ThevalueobtainedforPt-Pd-gCN-CBiseven remarkablyhigherthanthevalueattainedforPt/Ccommerciallyavailable(1410mAmg 1Pt)[197],Pt-Pd/graphene (636mAmg 1metal)[198],Pt@Pd/RGO(588mAmg 1metal) [199],andcommercialPd/C(459mAmg 1Pd)[185].

Containingnon-noblemetals

JunlanLvandco-workersutilizedalow-costtransitionmetal ofironandg-C3N4 tofabricateanoveltypeofanodecatalyst [200].Ironwaschosenbecausethed-orbitalofitsatomsis likelytoobtainorloseelectrons,andtheresultingcatalyst couldpossessstrongredoxproperties.Catalystscontaining ironhavealsobeenshowntohavegreatperformancetowards methanoldecompositionandoxidation[201,202].Adsorption resultshavealsoreportedthatmethanolmoleculescouldget adsorbedontheironatomsthroughtheOatoms,thatthey couldeasilydissociateintoHandCH3O,andthenC-Hbond couldbegraduallybrokentogeneratethefinalproducts. Usingg-C3N4 asacatalystsubstratethatpossessessix-fold cavitieshashigherpotentialofcapturingmetalatoms.The energyrequiredforO-Hbondcleavageinmethanolis0.99eV, whichsignifiesthatthereactioncouldproceedeasily. Furthermore,theadsorptionenergyofCO2 ( 3.44eV)is smallerinvaluethanthatofCO( 4.65eV),suitablefor

Fig.7 CurvesobtainedfromCVanalysisofglassycarbonelectrodesmodifiedwith(a)Ni/CN,(b)(Ni-Cu)/CN,andCu/CNina solutionof1Msodiumhydroxideanddifferentconcentrationsofmethanol(at50mV/spotentialscanrate).(d)Curves attainedfromCVstudyofglassycarbonelectrodemodifiedwithcatalystsofCu/CN(inblack),Cu-Ni/CN(inred),andNi/CN (inblue)inasolutionof1Msodiumhydroxideand3MMeOH(at50mV/sscanrate).Insetimagedisplaysthemagnified versionoftheCVcurvestoshowtheonsetofMOR.(e)Aplotofcurrentdensitiesagainsttimeforaglassycarbonelectrode modifiedwithfilmsofNi/CN(inblue),Ni-Cu/CN(inred),andCu/CN(inblack)catalystsinasolutionof1Msodiumhydroxide and3MMeOH(atE ¼ 0.5VvsAg/AgCl).(f)AgraphofcurrentdensitiesofelectrodesmodifiedwithNi/CN,Ni-Cu/CN,andCu/ CNinthepresenceandabsenceofvisiblelight[203].(Forinterpretationofthereferencestocolourinthisfigurelegend,the readerisreferredtotheWebversionofthisarticle.)

minimizingthetoxicityofCOtoironandenhancingthe efficiency.

Pietaetal.synthesizednanostructuresofCu,Ni,andCu-Ni thatwerehomogeneouslyembeddedonultrathin2dimensionalg-C3N4 (Fig.7)[203].Theresearchteamdropcastedthenovelhierarchicalhetero-structuresonglassy carbonanodes.Thebehaviourofthenovelelectrocatalyst towardMORwasalsoexaminedunderbasicconditions. Nanosizednickelparticles,finelydispersedong-C3N4,were veryactivetowardsMORandexhibitedavalueof0.35Vasthe onsetpotentialandachargetransferresistanceof0.12kU ThemodifiedglassycarbonelectrodestabilitywasalsostudiedusingCAandaconsistentcurrentdensityofaround 36Ag 1 (12Acm2)wasattainedduringthedurationofthe entireexperiment(upto160min)when4wt%ofnickeloxide wasloadedontheelectrode.Inaddition,illuminationbyUV lightwithwavelengthof~400nmassistedinenhancingthe currentdensityofallthecatalystsstudied.Itwasdetermined that4wt%Ni/CNcatalystexhibitedthehighestcurrentdensityvalueof127Ag 1 (22Acm2).Theinclusionofcopperinto thehybridmaterialhelpedreducetheactivitylossesdueto Cuþ undergoingirreversiblereduction/oxidationtoCu0 and Cu2þ,segregationofcopperoxide,andaffectingtheprocessof electrontransferthatleadtoincreasedredoxpotential.

Table1 presentsalistofselectedC3N4 basedelectrocatalysts alongwithkeyexperimentalobservationsforaquick reference.

Keychallengesandfutureprospects

Withthemanystudiesperformedonelectrocatalystsconsistingofgraphiticcarbonnitride,significantprogresscouldbe observedinthisfield.However,furthersystematicexaminationsarerequiredasthestudiesarestillintheearlystages. Implementingrationaldesignofcomplexheterostructures couldenablethesimultaneousachievementofefficientcarrier formation,separation,transfer,andutilizationinadditionto efficientopticalabsorptionthatisfundamentaltothedevelopmentofnewgenerationofexcellentperformingphotocatalysts.Challengesstillexistinthedevelopmentofsuch complexstructurethatneedstobeconsideredasfollows:

-Itisnecessarytounderstandthebasicsofchargetransport processtakingplaceinphotocatalystswithmultiheterostructuretooptimizethechargecascadingprocess toensurethemaximumusageofphotogeneratedcharge carrierstoachievethesatisfactoryreduction-oxidation chemistry.Althoughelectron-holeseparationandtransportationina2-componentheterostructurecaneasilybe understood,theunderstandingbecomesmuchmore complexinmulti-componentheterostructurestocontrol chargetransport,especiallyinthescaleofnanometers. Thephotocatalystsinterfacepropertiesdeterminethe resultingefficiencyofthephotocatalyst.Furthermore,itis

Table1 Listofvariouselectrocatalystscontaininggraphiticcarbonnitrideandtheirelectrocatalyticpropertiestoward methanoloxidationreaction.

CatalystsMethodMass/Specificactivity/ Currentdensity

CNQD-PANIThermo-chemicaletching28.4Ag 1 (massspec.peakforward) 3.580.5MMeOH þ 0.5MNaOH[142]

StellatedPtNPs þ AgcoreOne-potapproach72mAcm 2 (peakcurrent density forward) 1.1251MMeOH þ 0.1MHClO4 [149]

Pt-CNx Ultrasoundmediated sodiumborohydride reductionofH2PtCl6 (CNx nanosheetspresent) 310mAmgPt1 (massactivity forwardscan)

Pt/gCNMThermolysisand condensationreactions, ethyleneglycolreduction

Pt/PTI-LiþCl

Pt/B-gCNM 209mAcm 2 ECSA

[174]

[175]

[175]

þ 0.1MHClO4 [175]

Pt/G3-(CN)7 ModifiedHummersmethod, liquid-phaseexfoliation 15.7mAcm 2 (peakcurrent density forward) 1.642MMeOH þ 1MH2SO4 [173]

3DPt-g-C3N4-rGO

1 (peakcurrent density forward)

þ 0.5MH2SO4 [182]

Pt/g-C3N4 nanosheetsSimplerefluxmethod158.9mAmg 1 (in darkness), 520.4mAmg 1 (visiblelight irradiation) 1MMeOH þ 1MKOH[54]

PtRu/C@g-C3N4 NSMicrowave-assistedpolyol process 1.14AmgPt1 (peakcurrent density forward) 1.730.5MMeOH þ 0.5MH2SO4 [183]

PtRu/G75-(CN)25 Microwave-assistedpolyol process 0.91AmgPt1 (peakcurrent density forward) 2.340.5MMeOH þ 0.5MH2SO4 [160]

Pt10-Au1/CNOne-pothydrothermal approach 1.52mAcm 2 (indarkness), 2.58mAcm 2 (visiblelight irradiation)(peakcurrent density forward)

1MMeOH þ 1MKOH[184]

Pd/g-C3N4/carbonblack-30Facileultrasonicprocess, wetchemistrymethod 1.66mAcmPd2 (peakcurrent density forward) 1MMeOH þ 1MNaOH[185]

Pd/g-C3N4@rGOOne-stepelectrodeposition technique 0.131Acm 2 (peakcurrent density forward)

TernaryPd-g-C3N4-rGO-2 nanocomposite Insitu chemicalsynthesis method,modified Hummers’method

1550mAmg 1 (peakcurrent density forward)

Pd-CNNF-GModifiedHummers’method1770mAmg 1 (peakcurrent density forward)

ASPE-g-C3N4/PANI/PdNPs

Pt-Pd-gCN-CBSurfactant-freesoft chemistryprocess

3.42mAcm 2 (peakcurrent density forward)

4420mAmgmetal 1 (peak currentdensity forward)

Ni/CNOne-pothydrothermal synthesis 57Ag 1 (indarkness), 127Ag 1 (visiblelight irradiation)

criticaltohaveagoodunderstandingofthenanoscaleinterfacesofchargegeneration,separation,andtransportation.Studiesperformedsofarhavemostlyfocusedon thephotocatalyticsystem’soverallapparentefficiency.In ordertofurtheradvanceinthefield,detailedstudyonthe mechanismofchargetransfershouldbeperformedfor photocatalyststhatconsiststhreeormorecomponents.

-Alessaddressedpropertyofg-C3N4-basednanocomposites isthestability,whichcouldbecomethemainobstaclein thedevelopmentofphotocatalysts.Evenifaphotocatalyst withveryhighefficiencyisdevelopeditsapplicationcould belimitedifitslifetimeisshort.Inmanycases,aphotocatalyst’schemicalcorrosionand/orphoto-degradation

1MMeOH þ 1MKOH[186]

1MMeOH þ 1MNaOH[33]

1MMeOH þ 1MNaOH[35]

2.7361MMeOH þ 0.5MKOH[195]

1MMeOH þ 1MNaOH[196]

3MMeOH þ 1MNaOH[203]

cannotbeprevented.Sofar,satisfactorystabilityhas onlybeenachievedbyfewphotocatalystswhichwas possiblethroughverysophisticatedsynthesistechniques. Oneofthefocusoffutureresearchcouldbetodevelopa stablephotocatalystpossessinggreatefficiencyatarelativelycheapercostthatcouldbesuitableforpracticalapplicationsandcommercialization.

-Itisstillnecessarytounderstandthemechanismsinvolved inthephotocatalyticenhancementbysemiconductor compositesbasedongraphiticcarbonnitride.Inaddition, itisimportanttocomeupwithauniformtechniqueto evaluatethephotocatalyticperformanceascurrentlythere aremultipleassessmentmethodsavailable.

-Effortsshouldbemadetoexploretheenhancementin propertiesfromthecombinationofg-C3N4 andnovel photocatalysts.Goodunderstandingofthephotocatalytic mechanismofthecombinationinadditiontorapidnovel nanomaterialsdevelopmentcouldhelpovercomethe bottleneckthatarisesfromglobalenergyandenvironmentalissues.

Conclusionsandoutlook

Manyresearchstudieshaveutilizedg-C3N4 invariousforms andassupportstodesignandconstructsuitableelectrocatalystsformethanoloxidationreaction.Graphiticcarbon nitrideinclusionasasupportcomponenthasbeenprovento improvetheproperties,andhencetheperformanceofthe finalmaterialowingtoitsideal2-dimensionalstructure, remarkablechemicalandthermalstability.

Basedonthestudiesthathaveusedg-C3N4 asanadditional electrocatalystmaterialforMORthereareseveralfabrication techniquesthatcouldbefollowedtoensurethatasatisfactory performanceisachievedduringmethanoloxidationprocess. Incorporatingmesoporousstructuresandmodifyingthespecificsurfaceareacouldassistinobtainingappropriatephysicochemicalpropertiessuitableforbetterphoto/electrocatalyticperformance.Suchimprovementsareachievable byperformingnanocasting,ormesoporoussilicamatrices duplication.Mesoporousfeaturesongraphiticcarbonnitride allowstheenhancementofsemiconductorpropertiesand introducesmoreporewallsofcrystallineformsuitablefor enhancingmasstransfer.Utilizingsofttemplatesofsome ionicliquidsorsurfactantsformeso-g-C3N4 synthesis(via self-polymerizationreactionofdicyandiamide)isanoptionto achievevariousformsofporestructuresaswellasspecific surfacearea.Withthehard-templatingmethodthatinvolve usingprimarynanoporespresentinthesilicatemplate,a stablereplicastructurecouldbefabricated.Utilizationof ethylenediamineprecursors,carbontetrachlorideandahardtemplateofSBA-15innanocastingmethodproducesanorderedmeso-CN.TheratioofCtoNofthefinalmaterialcould alsobeadjustedfromavalueof4.5to3.5byescalatingthe weightratioofethylenediaminetoCCl4 fromavalueof0.3to 0.9.Thehardtemplatethatcouldalsobeutilizedtosynthesize ameso-carbonnitrideNPswithrelativelygreaterCtoN atomicratioof2.3isthemesoporoussilicaIBN-4.Thiscould bearesultoftheenlargedporesizeofthetemplatehelping withtheethylenediamineimpregnation.Implementinga precursorofcyanamideandahardtemplateofsilicananospherescanhelpdevelopmesoporousgraphiticcarbonnitride withanaverageatomicratioofCtoNof0.71,neartothe theoreticalvalueof0.75.

Modificationofcarbonnitridebyelementaldopingofsolid materialscanhelpinadjustingthephysicochemicalproperties.Withthisstrategy,onecanchangethetexture,surface chemicalcharacteristics,andtheelectronicpropertiesof carbon-basedmaterials.Directprotonationmethodduring counter-ionadditionisasuitablemodificationtechniqueas thecharacteristicsofthecarbonnitridecouldbemaintained

(originalC/Nmatrixisunchanged).Furthermore,protonation cantunetheelectronicbandgapstoenhancetheionicconductivityofthematerial.Protonationcouldalsohelpin achievingfinedispersionofthematerialsthatcanthenmake characterizationandprocessingsimpler.Sulfurdopinghas emergedasanalternativetoprotonationthatcouldalso modifythesurfaceareaandmorphologyofg-C3N4 allowingit tobeusedincatalyticprocesses.

Involvinganionicliquidof1-butyl-3-methyl-imidazolium hexafluorophosphate(BmimPF6)asamildphosphorous sourceforcarbonnitridedopingcouldhelpobtainenhanced generationofphotocurrentbyafactorthatcouldreachavalue offive.Improvedelectricalconductivitycouldalsobeachieveduptofourordersofmagnitude.

RelatedtothepossibilityofdissolvingmetalsaltsintogC3N4 matrix’snitrogencavities,theincorporationofironions intothecarbonnitridematrixcouldhelpavoiddamagingthe hostgraphiticstructure.Inaddition,ironintroductioncould stronglymodifythefinalproduct’selectronicproperties.

Graphiticcarbonnitrideof0-dimensionalquantumdots couldshowbetterperformancetowardsMORincomparison tothosewith1-dimensionalnanorodsor2-dimensional nanosheetsstructure.Factorsthatcontributetothe enhancementincludemaximumactivesiteatomicpercentagesofpyridinicNandabundantedgesinnano morphology.Furtherimprovementofthecarbon-based materialspropertycouldbeattainedbysupportingiton conductingpolyaniline.Inthisway,bettercatalyticperformanceintheformofbetterelectricalconductivityandCO poisoningresistivitycouldbeobservedintheresulting combinationforMORbecauseoftheelectrostaticinteraction betweenthetwocomponents.

UsingPtbyitselfasanelectrocatalystisachallengeasit hasslowoxidationkineticsanditispronetopoisoningbyCO speciesproducedduringthemethanoloxidationreactions.In addition,anodeplatinumcatalystsalsohaveanissueof maintainingstabilityinthelongrun.Nanoparticlesofplatinumcouldmigrate,aggregate,andundergoOstwald ripeningleadingtopoorelectrochemicalperformance.Approachessuchasalloyingofplatinumwithothermetalsand supportingplatinumongoodsupportmaterialswithhigh conductivity,durabilityandsuitableporestructurecould leadtoenhancedmasstransfertotheactivesites.For instance,preparingaPt/CNx compositecanhelpachieve largeelectrochemicalsurfaceareaasPtNPsarewidely dispersedonCNx sheets.Asaresult,lowonsetpotentials, highmassactivity,betterpoisontolerancetowardscarbonaceousspecies,andreliablelong-termstabilitycouldbe demonstratedbyPt/CNx incomparisontocommercially availablePt/C.Synthesizingg-C3N4 materialsintheformof poly(triazine)imidecarbonnitride(PTI/LiþCl )andusingitto supportplatinumcanenhancethedurabilitybymaintaining 81%oftheECSAduringMOR.SupportingPtong-C3N4 nanosheetsandgraphenecouldhelpbuildlargeporesofdifferent sizestopromotethereactantstransportationtotheelectroactivesitesaswellassuitableenvironmentformaintaining goodelectricalconductivity.Inaddition,Pt/G3-(CN)7 displayedthehighestforwardanodicpeakcurrentdensity

relativetootherPt/G-CNelectrocatalystwithdifferentG/CN ratiosforMOR.Increasingtheg-C3N4 nanosheetscontentto 90%alsoimprovedthecatalystabilitytoresistpoisoning species.

Alloyingplatinumwithrutheniumandsupportingthem onaVulcanXC-72carbonblackcoatedwithgraphiticcarbon nitridenanosheetcouldhelpestablishanevendispersionof smallnanoparticlesofPtRuandfabricateacatalystthatis highlystableasaresultofastronglinkthatispresentbetweenthecompositesupportandthebimetallicnanoparticles.AlloyingPtwithgold,ontheotherhand,and depositingthetwometalsonthegraphiticcarbonnitride nanosheetssurfacecoulddemonstrategreateractivityrelativetoPt/CN.Illuminatingtheelectrocatalystwithvisiblelight furtherimprovedboththecurrentdensityandstabilityofthe composite.Replacingplatinumwithpalladiumandsupportingthemetalonreducedgrapheneoxideandgraphiticcarbon nitridehybridsupportenabledtheachievementofremarkablyhighvalueofforwardpeakcurrentdensities,largeECSA, andstableMORperformanceforlongduration.Thefactors thatcontributetothesatisfactorypropertiesarebecauseof theexistenceofgoodrGOconductivity,mesoporousstructure withhighvalueofspecificsurfacearea,finepalladiumNPs dispersion,andgreatstabilitybecauseofthecovalentlinks thatarepresentbetweenreducedgrapheneoxideand graphiticcarbonnitride.Formingbimetallicnanoparticlesof platinumandpalladiumandfabricatingcarbonblackmodifiedwithg-C3N4 couldalsohelpindevelopingextraordinary catalystswithlong-termstabilityandsatisfactoryactivity. Theimprovementistheresultofacombinationofthetemplateeffect,complementaryrolesofplatinumandpalladium, highspecificsurfaceareaofcarbonblack,andthecovalent interactionbetweeng-C3N4 andcarbonblack.Thetemplate effectispromotedbythegraphiticcarbonnitrideplanar aminogroupresultinginhighlydisperseddecorationof nanoparticlesofPt-Pd.

Regardingtheuseofnon-noblemetals,supportingironon g-C3N4 allowsthemetalatomstobeeasilycapturedbythe carbon-basedsupport.Theresultisanelectrocatalystthat couldefficientlybreaktheO-HbondinCH3OHshowingagreat potentialfornon-noblemetalMORcatalysis.Thecombination alsominimizedtheadsorptionenergyofCO2 tolessthanthat forCOthatfurthersignifiestheabilitytoreduceCOtoxicityto iron.

Eventhoughsignificantadvancementshavebeenestablishedrelatedtotheutilizationofg-C3N4 withanarrayof materialsbasedonthepropertiesandimprovements mentionedabove,furtherinvestigationsarestillnecessaryto designcomplexstructuresachievingasatisfactoryperformanceformethanoloxidationreaction.Itisimportantto undertakedetailedmechanismanalysisofthechargetransfer processandthereactionpathwaystakentoprogressfurther inthefield.Asabetterunderstandingofthereactionmechanismandmolecularlevelinteractionsatthecatalystsurface aredeveloped,itwouldbepossibletoenvisionthedevelopmentofasuitablecatalystinthefuturethatisactiveand stableforMORreactionleadingtolargescalecommercial applications.

Declarationofcompetinginterest

Theauthorsdeclarethattheyhavenoknowncompeting financialinterestsorpersonalrelationshipsthatcouldhave appearedtoinfluencetheworkreportedinthispaper.

Acknowledgements

Theauthor(s)wouldliketoacknowledgethesupportfrom QatarUniversityinternalgrantQUCG-CENG-19/20-7.

references

[1]DebeMK.Electrocatalystapproachesandchallengesfor automotivefuelcells.Nature2012. https://doi.org/10.1038/ nature11115

[2]MatinMA,KumarA,BhosaleRR,SalehSaadMAH, AlmomaniFA,Al-MarriMJ.PdZnnanoparticle electrocatalystssynthesizedbysolutioncombustionfor methanoloxidationreactioninanalkalinemedium.RSC Adv2017. https://doi.org/10.1039/c7ra07013f.

[3]MatinMA,SaadMAHS,KumarA,Al-MarriMJ,MansourSA. Effectoffuelcontentontheelectrocatalyticmethanol oxidationperformanceofPt/ZnOnanoparticlessynthesized bysolutioncombustion.ApplSurfSci2019. https://doi.org/ 10.1016/j.apsusc.2019.06.213

[4]NazirR,KhalfaniA,AbdelfattahO,KumarA,AliM,SaadS, AliS.NanosheetsynthesisofmixedCo3O4/CuOvia combustionmethodformethanoloxidationandcarbon dioxidereduction.2020. https://doi.org/10.1021/ acs.langmuir.0c02554

[5]HoshiN,KidaK,NakamuraM,NakadaM,OsadaK. Structuraleffectsofelectrochemicaloxidationofformic acidonsinglecrystalelectrodesofpalladium.JPhysChem B2006. https://doi.org/10.1021/jp0608372

[6]CaoJ,SongL,TangJ,XuJ,WangW,ChenZ.Enhanced activityofPdnanoparticlessupportedonVulcanXC72R carbonpretreatedviaamodifiedHummersmethodfor formicacidelectrooxidation.ApplSurfSci2013. https:// doi.org/10.1016/j.apsusc.2013.02.133

[7]HuangH,WangX.Pdnanoparticlessupportedonlowdefectgraphenesheets:foruseashigh-performance electrocatalystsforformicacidandmethanoloxidation.J MaterChem2012. https://doi.org/10.1039/c2jm33727d

[8]JinM,ZhangH,XieZ,XiaY.Palladiumconcavenanocubes withhigh-indexfacetsandtheirenhancedcatalytic properties.AngewChemIntEd2011. https://doi.org/ 10.1002/anie.201103002

[9]WangX,YangJ,YinH,SongR,TangZ. “raisinbun”-like nanocompositesofpalladiumclustersandporphyrinfor superiorformicacidoxidation.AdvMater2013. https:// doi.org/10.1002/adma.201205168

[10]NazirR,KumarA,SalehSaadMA,AshokA.Synthesisof hydroxidenanoparticlesofCo/Cuoncarbonnitridesurface viagalvanicexchangemethodforelectrocatalyticCO2 reductionintoformate.ColloidsSurfacesAPhysicochem EngAsp2020. https://doi.org/10.1016/j.colsurfa.2020.124835

[11]NazirR,KumarA,AliSalehSaadM,AliS.Developmentof CuAg/Cu2Onanoparticlesoncarbonnitridesurfacefor methanoloxidationandselectiveconversionofcarbon

Pleasecitethisarticleas:YudaA,KumarA,Areviewofg-C3N4 basedcatalystsfordirectmethanolfuelcells,InternationalJournalof HydrogenEnergy,https://doi.org/10.1016/j.ijhydene.2021.01.080

dioxideintoformate.JColloidInterfaceSci2020. https:// doi.org/10.1016/j.jcis.2020.06.033

[12]GuoS,DongS,WangE.Constructingcarbonnanotube/Pt nanoparticlehybridsusinganimidazolium-salt-basedionic liquidasalinker.AdvMater2010. https://doi.org/10.1002/ adma.200903379

[13]AntoliniE,PassosRR,TicianelliEA.Effectsofthecarbon powdercharacteristicsinthecathodegasdiffusionlayeron theperformanceofpolymerelectrolytefuelcells.JPower Sources2002. https://doi.org/10.1016/S0378-7753(02)00112X

[14]WangS,ManthiramA.Grapheneribbon-supportedPd nanoparticlesashighlydurable,efficientelectrocatalysts forformicacidoxidation.ElectrochimActa2013. https:// doi.org/10.1016/j.electacta.2012.10.125

[15]DeMiguelSR,VilellaJI,JablonskiEL,ScelzaOA,SalinasMartinezdeLeceaC,Linares-SolanoA.PreparationofPt catalystssupportedonactivatedcarbonfelts(ACF).Appl CatalAGen2002. https://doi.org/10.1016/S0926-860X(02) 00112-6

[16]AntoliniE.Carbonsupportsforlow-temperaturefuelcell catalysts.ApplCatalBEnviron2009. https://doi.org/10.1016/ j.apcatb.2008.09.030

[17]YuanX,DingXL,WangCY,MaZF.Useofpolypyrrolein catalystsforlowtemperaturefuelcells.EnergyEnvironSci 2013. https://doi.org/10.1039/c3ee23520c

[18]ToupinM,B elangerD.Thermalstabilitystudyofaryl modifiedcarbonblackbyinsitugenerateddiazonium salt.JPhysChemC2007. https://doi.org/10.1021/ jp066868e

[19]ShaoD,JiangZ,WangX.SDBSmodifiedXC-72carbonfor theremovalofPb(II)fromaqueoussolutions.Plasma ProcessPolym2010. https://doi.org/10.1002/ ppap.201000005

[20]ParaknowitschJP,ThomasA.Dopingcarbonsbeyond nitrogen:anoverviewofadvancedheteroatomdoped carbonswithboron,sulphurandphosphorusforenergy applications.EnergyEnvironSci2013. https://doi.org/ 10.1039/c3ee41444b

[21]LiangHW,WeiW,WuZS,FengX,Mu ¨ llenK.Mesoporous metal-nitrogen-dopedcarbonelectrocatalystsforhighly efficientoxygenreductionreaction.JAmChemSoc2013. https://doi.org/10.1021/ja407552k

[22]FuL,TangK,SongK,VanAkenPA,YuY,MaierJ.Nitrogen dopedporouscarbonfibresasanodematerialsforsodium ionbatterieswithexcellentrateperformance.Nanoscale 2014. https://doi.org/10.1039/c3nr05374a

[23]YangDS,BhattacharjyaD,InamdarS,ParkJ,YuJS. Phosphorus-dopedorderedmesoporouscarbonswith differentlengthsasefficientmetal-freeelectrocatalystsfor oxygenreductionreactioninalkalinemedia.JAmChem Soc2012. https://doi.org/10.1021/ja306376s

[24]LiangJ,JiaoY,JaroniecM,QiaoSZ.Sulfurandnitrogendualdopedmesoporousgrapheneelectrocatalystforoxygen reductionwithsynergisticallyenhancedperformance. AngewChemIntEd2012. https://doi.org/10.1002/ anie.201206720.

[25]YangS,ZhiL,TangK,FengX,MaierJ,MullenK.Efficient synthesisofheteroatom(NorS)-dopedgraphenebasedon ultrathingrapheneoxide-poroussilicasheetsforoxygen reductionreactions.AdvFunctMater2012. https://doi.org/ 10.1002/adfm.201200186

[26]HuangH,ZhuJ,ZhangW,TiwaryCS,ZhangJ,ZhangX, JiangQ,HeH,WuY,HuangW,AjayanPM,YanQ. Controllablecodopingofnitrogenandsulfuringraphene forhighlyefficientLi-oxygenbatteriesanddirectmethanol fuelcells.ChemMater2016. https://doi.org/10.1021/ acs.chemmater.5b04654

[27]GongK,DuF,XiaZ,DurstockM,DaiL.Nitrogen-doped carbonnanotubearrayswithhighelectrocatalyticactivity foroxygenreduction.Science2009;80. https://doi.org/ 10.1126/science.1168049

[28]YangL,JiangS,ZhaoY,ZhuL,ChenS,WangX,WuQ,MaJ, MaY,HuZ.Boron-dopedcarbonnanotubesasmetal-free electrocatalystsfortheoxygenreductionreaction.Angew ChemIntEd2011. https://doi.org/10.1002/anie.201101287.

[29]PatinoJ,Lopez-SalasN,GutierrezMC,CarriazoD,FerrerML, DelMonteF.Phosphorus-dopedcarbon-carbonnanotube hierarchicalmonolithsastruethree-dimensional electrodesinsupercapacitorcells.JMaterChemA2016. https://doi.org/10.1039/c5ta09210h

[30]QuL,LiuY,BaekJB,DaiL.Nitrogen-dopedgrapheneas efficientmetal-freeelectrocatalystforoxygenreductionin fuelcells.ACSNano2010. https://doi.org/10.1021/ nn901850u.

[31]ShengZH,GaoHL,BaoWJ,BinWangF,XiaXH.Synthesisof borondopedgrapheneforoxygenreductionreactioninfuel cells.JMaterChem2012. https://doi.org/10.1039/ c1jm14694g

[32]DouC,SaitoS,MatsuoK,HisakiI,YamaguchiS.AboroncontainingPAHasasubstructureofboron-dopedgraphene. AngewChemIntEd2012. https://doi.org/10.1002/ anie.201206699

[33]ZhangW,HuangH,LiF,DengK,WangX.Palladium nanoparticlessupportedongraphiticcarbonnitridemodifiedreducedgrapheneoxideashighlyefficient catalystsforformicacidandmethanolelectrooxidation.J MaterChemA2014. https://doi.org/10.1039/c4ta03326d

[34]FuY,ZhuJ,HuC,WuX,WangX.Covalentlycoupledhybrid ofgraphiticcarbonnitridewithreducedgrapheneoxideas asuperiorperformancelithium-ionbatteryanode. Nanoscale2014. https://doi.org/10.1039/c4nr03145h

[35]ZhangW,YaoQ,WuX,FuY,DengK,WangX.Intimately coupledhybridofgraphiticcarbonnitridenanoflakelets withreducedgrapheneoxideforsupportingPd nanoparticles:astablenanocatalystwithhighcatalytic activitytowardsformicacidandmethanolelectrooxidation. ElectrochimActa2016. https://doi.org/10.1016/ j.electacta.2016.03.169

[36]MabenaLF,SinhaRayS,MhlangaSD,CovilleNJ.Nitrogendopedcarbonnanotubesasametalcatalystsupport.Appl Nanosci2011. https://doi.org/10.1007/s13204-011-0013-4

[37]YangG,LiY,RanaRK,ZhuJJ.Pt-Au/nitrogen-doped graphenenanocompositesforenhancedelectrochemical activities.JMaterChemA2013. https://doi.org/10.1039/ c2ta00776b.

[38]ZhouY,NeyerlinK,OlsonTS,PylypenkoS,BultJ,DinhHN, GennettT,ShaoZ,O’HayreR.EnhancementofPtandPtalloyfuelcellcatalystactivityanddurabilityvianitrogenmodifiedcarbonsupports.EnergyEnvironSci2010. https:// doi.org/10.1039/c003710a

[39]SebastianD,SerovA,MatanovicI,ArtyushkovaK, AtanassovP,AricoAS,BaglioV.Insightsonthe extraordinarytolerancetoalcoholsofFe-N-Ccathode catalystsinhighlyperformingdirectalcoholfuelcells. NanomaterEnergy2017. https://doi.org/10.1016/ j.nanoen.2017.02.039

[40]ZhengY,LiuJ,LiangJ,JaroniecM,QiaoSZ.Graphiticcarbon nitridematerials:controllablesynthesisandapplicationsin fuelcellsandphotocatalysis.EnergyEnvironSci2012. https://doi.org/10.1039/c2ee03479d

[41]WangY,WangX,AntoniettiM.Polymericgraphiticcarbon nitrideasaheterogeneousorganocatalyst:from photochemistrytomultipurposecatalysistosustainable chemistry.AngewChemIntEd2012. https://doi.org/ 10.1002/anie.201101182

[42]ZhangG,LanZA,WangX.Conjugatedpolymers:catalysts forphotocatalytichydrogenevolution.Angew.Chemie-Int. Ed.;2016. https://doi.org/10.1002/anie.201607375

[43]ShalomM,GuttentagM,FettkenhauerC,InalS,NeherD, LlobetA,AntoniettiM.Insituformationofheterojunctions inmodifiedgraphiticcarbonnitride:synthesisandnoble metalfreephotocatalysis.ChemMater2014. https://doi.org/ 10.1021/cm503258z.

[44]ZhengD,CaoXN,WangX.Preciseformationofahollow carbonnitridestructurewithajanussurfacetopromote watersplittingbyphotoredoxcatalysis.AngewChemIntEd 2016. https://doi.org/10.1002/anie.201606102

[45]MartinDJ,QiuK,ShevlinSA,HandokoAD,ChenX,GuoZ, TangJ.HighlyefficientphotocatalyticH2 evolutionfrom waterusingvisiblelightandstructure-controlledgraphitic carbonnitride.AngewChemIntEd2014. https://doi.org/ 10.1002/anie.201403375.

[46]ZhangG,LanZA,LinL,LinS,WangX.Overallwater splittingbyPt/g-C3N4 photocatalystswithoutusing sacrificialagents.ChemSci2016. https://doi.org/10.1039/ c5sc04572j

[47]ZhangG,ZhangM,YeX,QiuX,LinS,WangX.Iodine modifiedcarbonnitridesemiconductorsasvisiblelight photocatalystsforhydrogenevolution.AdvMater2014. https://doi.org/10.1002/adma.201303611

[48]ChengN,TianJ,LiuQ,GeC,QustiAH,AsiriAM,AlYoubiAO,SunX.Au-nanoparticle-loadedgraphiticcarbon nitridenanosheets:greenphotocatalyticsynthesisand applicationtowardthedegradationoforganicpollutants. ACSApplMaterInterfaces2013. https://doi.org/10.1021/ am401802r

[49]FuY,HuangT,JiaB,ZhuJ,WangX.Reductionof nitrophenolstoaminophenolsunderconcertedcatalysisby Au/g-C3N4 contactsystem.ApplCatalBEnviron2017. https://doi.org/10.1016/j.apcatb.2016.09.051

[50]FuY,HuangT,ZhangL,ZhuJ,WangX.Ag/g-C3N4catalyst withsuperiorcatalyticperformanceforthedegradationof dyes:aborohydride-generatedsuperoxideradicalapproach. Nanoscale2015. https://doi.org/10.1039/c5nr03260a

[51]GoettmannF,ThomasA,AntoniettiM.Metal-free activationofCO2 bymesoporousgraphiticcarbonnitride. AngewChemIntEd2007. https://doi.org/10.1002/ anie.200603478

[52]KurikiR,SekizawaK,IshitaniO,MaedaK.Visible-lightdrivenCO2 reductionwithcarbonnitride:enhancingthe activityofrutheniumcatalysts.AngewChemIntEd2015. https://doi.org/10.1002/anie.201411170

[53]YangS,FengX,WangX,MullenK.Graphene-basedcarbon nitridenanosheetsasefficientmetal-freeelectrocatalysts foroxygenreductionreactions.AngewChemIntEd2011. https://doi.org/10.1002/anie.201100170

[54]ZhuM,ZhaiC,SunM,HuY,YanB,DuY.Ultrathingraphitic C3N4 nanosheetasapromisingvisible-light-activated supportforboostingphotoelectrocatalyticmethanol oxidation.ApplCatalBEnviron2017. https://doi.org/ 10.1016/j.apcatb.2016.10.012

[55]YudaA,AshokA,KumarA.Acomprehensiveandcritical reviewonrecentprogressinanodecatalystformethanol oxidationreaction.CatalRev-SciEng2020. https://doi.org/ 10.1080/01614940.2020.1802811

[56]KrokeE,SchwarzM.Novelgroup14nitrides.CoordChem Rev2004. https://doi.org/10.1016/j.ccr.2004.02.001

[57]DuHY,WangCH,HsuHC,ChangST,ChenUS,YenSC, ChenLC,ShihHC,ChenKH.Controlledplatinum nanoparticlesuniformlydispersedonnitrogen-doped carbonnanotubesformethanoloxidation.DiamRelat Mater2008. https://doi.org/10.1016/ j.diamond.2008.01.116

[58]ShuiJ,WangM,DuF,DaiL.N-dopedcarbonnanomaterials aredurablecatalystsforoxygenreductionreactioninacidic fuelcells.SciAdv2015. https://doi.org/10.1126/ sciadv.1400129

[59]DiNotoV,NegroE,Vezzu´K,BertasiF,NawnG.Origins, developments,andperspectivesofcarbonnitride-based electrocatalystsforapplicationinlow-temperatureFCs. ElectrochemSocInterface2015. https://doi.org/10.1149/ 2.F05152if

[60]GuptaS,TrykD,BaeI,AldredW,YeagerE.Heat-treated polyacrylonitrile-basedcatalystsforoxygen electroreduction.JApplElectrochem1989. https://doi.org/ 10.1007/BF01039385

[61]VanVeenJAR,VanBaarJF,KroeseKJ.Effectofheat treatmentontheperformanceofcarbon-supported transition-metalchelatesintheelectrochemicalreduction ofoxygen.JChemSocFaradayTrans1PhysChem CondensPhases1981. https://doi.org/10.1039/ F19817702827.

[62]PylypenkoS,BorisevichA,MoreKL,CorpuzAR,HolmeT, DameronAA,OlsonTS,DinhHN,GennettT,O’HayreR. Nitrogen:unravelingthesecrettostablecarbon-supported Pt-alloyelectrocatalysts.EnergyEnvironSci2013. https:// doi.org/10.1039/c3ee40189h

[63]WangH,MaiyalaganT,WangX.Reviewonrecentprogress innitrogen-dopedgraphene:synthesis,characterization, anditspotentialapplications.ACSCatal2012. https:// doi.org/10.1021/cs200652y.

[64]CzerwR,TerronesM,CharlierJC,BlaseX,FoleyB, KamalakaranR,GrobertN,TerronesH,TekleabD, AjayanPM,BlauW,Ru ¨ hleM,CarrollDL.Identificationof electrondonorstatesinN-dopedcarbonnanotubes.Nano Lett2001. https://doi.org/10.1021/nl015549q

[65]WoodKN,O’HayreR,PylypenkoS.Recentprogresson nitrogen/carbonstructuresdesignedforuseinenergyand sustainabilityapplications.EnergyEnvironSci2014. https:// doi.org/10.1039/c3ee44078h.

[66]SchwarzerA,SaplinovaT,KrokeE.Tri-s-triazines(sheptazines)-Froma “mysterymolecule” toindustrially relevantcarbonnitridematerials.CoordChemRev2013. https://doi.org/10.1016/j.ccr.2012.12.006

[67]LotschBV,DoblingerM,SehnertJ,SeyfarthL,SenkerJ, OecklerO,SchnickW.Unmaskingmelonbya complementaryapproachemployingelectrondiffraction, solid-stateNMRspectroscopy,andtheoreticalcalculationsstructuralcharacterizationofacarbonnitridepolymer. Chem-AEurJ2007. https://doi.org/10.1002/ chem.200601759.

[68]MansorN,MillerTS,DedigamaI,JorgeAB,JiaJ,BrazdovaV, MatteviC,GibbsC,HodgsonD,ShearingPR,HowardCA, CoraF,ShafferM,BrettDJL,McMillanPF.Graphiticcarbon nitrideasacatalystsupportinfuelcellsandelectrolyzers. ElectrochimActa2016. https://doi.org/10.1016/ j.electacta.2016.11.008

[69]KouvetakisJ,BandariA,ToddM,WilkensB,CaveN.Novel syntheticroutestocarbon-nitrogenthinfilms.ChemMater 1994. https://doi.org/10.1021/cm00042a018.

[70]ToddM,KouvetakisJ,GroyTL,ChandrasekharD,SmithDJ, DealPW.Novelsyntheticroutestocarbonnitride.Chem Mater1995. https://doi.org/10.1021/cm00055a023

[71]Algara-SillerG,SeverinN,ChongSY,BjorkmanT, PalgraveRG,LaybournA,AntoniettiM,KhimyakYZ, KrasheninnikovAV,RabeJP,KaiserU,CooperAI,ThomasA, BojdysMJ.Triazine-basedgraphiticcarbonnitride:atwodimensionalsemiconductor.AngewChemIntEd2014. https://doi.org/10.1002/anie.201402191.

[72]TongY,ChenP,ZhouT,XuK,ChuW,WuC,XieY.A bifunctionalhybridelectrocatalystforoxygenreduction

Pleasecitethisarticleas:YudaA,KumarA,Areviewofg-C3N4 basedcatalystsfordirectmethanolfuelcells,InternationalJournalof HydrogenEnergy,https://doi.org/10.1016/j.ijhydene.2021.01.080

andevolution:cobaltoxidenanoparticlesstronglycoupled toB,N-decoratedgraphene.AngewChemIntEd2017. https://doi.org/10.1002/anie.201702430

[73]CaoDH,StoumposCC,FarhaOK,HuppJT,KanatzidisMG. 2Dhomologousperovskitesaslight-absorbingmaterialsfor solarcellapplications.JAmChemSoc2015. https://doi.org/ 10.1021/jacs.5b03796

[74]ChongSY,JonesJTA,KhimyakYZ,CooperAI,ThomasA, AntoniettiM,BojdysMJ.Tuningofgalleryheightsina crystalline2Dcarbonnitridenetwork.JMaterChemA2013. https://doi.org/10.1039/c2ta01068b

[75]ZhangZ,LeinenweberK,BauerM,GarvieLAJ,McMillanPF, WolfGH.High-pressurebulksynthesisofcrystalline C6N9H3 HCl:anovelC3N4 graphiticderivative.JAmChem Soc2001. https://doi.org/10.1021/ja0103849

[76]GludovatzB,HohenwarterA,CatoorD,ChangEH, GeorgeEP,RitchieRO.Afracture-resistanthigh-entropy alloyforcryogenicapplications.Science2014;80. https:// doi.org/10.1126/science.1254581.

[77]GillanEG.Synthesisofnitrogen-richcarbonnitride networksfromanenergeticmolecularazideprecursor. ChemMater2000. https://doi.org/10.1021/cm000570y

[78]ZhangY,ThomasA,AntoniettiM,WangX.Activationof carbonnitridesolidsbyprotonation:morphologychanges, enhancedionicconductivity,andphotoconduction experiments.JAmChemSoc2009. https://doi.org/10.1021/ ja808329f

[79]MillerDR,WangJ,GillanEG.Rapid,facilesynthesisof nitrogen-richcarbonnitridepowders.JMaterChem2002. https://doi.org/10.1039/b109700h

[80]KawaguchiM,NozakiK.Synthesis,structure,and characteristicsofthenewhostmaterial[(C3N3)2(NH)3]n ChemMater1995. https://doi.org/10.1021/cm00050a005

[81]DeifallahM,McMillanPF,CoraF.Electronicandstructural propertiesoftwo-dimensionalcarbonnitridegraphenes.J PhysChemC2008. https://doi.org/10.1021/jp711483t

[82]ThomasA,FischerA,GoettmannF,AntoniettiM,MullerJO, SchloglR,CarlssonJM.Graphiticcarbonnitridematerials: variationofstructureandmorphologyandtheiruseas metal-freecatalysts.JMaterChem2008. https://doi.org/ 10.1039/b800274f

[83]WangX,MaedaK,ThomasA,TakanabeK,XinG, CarlssonJM,DomenK,AntoniettiM.Ametal-free polymericphotocatalystforhydrogenproductionfrom waterundervisiblelight.NatMater2009. https://doi.org/ 10.1038/nmat2317.

[84]WangJ,MillerDR,GillanEG.Photoluminescentcarbon nitridefilmsgrownbyvaportransportofcarbonnitride powders.ChemCommun2002. https://doi.org/10.1039/ b207041c

[85]YanSC,LiZS,ZouZG.PhotodegradationperformanceofgC3N4 fabricatedbydirectlyheatingmelamine.Langmuir 2009. https://doi.org/10.1021/la900923z

[86]LiuG,NiuP,SunC,SmithSC,ChenZ,LuGQ,ChengHM. Uniqueelectronicstructureinducedhighphotoreactivityof sulfur-dopedgraphiticC3N4.JAmChemSoc2010. https:// doi.org/10.1021/ja103798k.

[87]ZhangJ,ChenX,TakanabeK,MaedaK,DomenK,EppingJD, FuX,AntonietaM,WangX.Synthesisofacarbonnitride structureforvisible-lightcatalysisbycopolymerization. AngewChemIntEd2010. https://doi.org/10.1002/ anie.200903886

[88]WangY,DiY,AntoniettiM,LiH,ChenX,WangX.Excellent visible-lightphotocatalysisoffluorinatedpolymericcarbon nitridesolids.ChemMater2010. https://doi.org/10.1021/ cm1019102.

[89]LiuT,LiuQ,AsiriAM,LuoY,SunX.AnamorphousCoSe filmbehavesasanactiveandstablefullwater-splitting

electrocatalystunderstronglyalkalineconditions.Chem Commun2015. https://doi.org/10.1039/c5cc06892d

[90]ZhangM,NakayamaY,HaradaS.Photoluminescenceof hydrogenatedamorphouscarbonnitridefilmsafter ultravioletlightirradiationandthermalannealing.JAppl Phys1999. https://doi.org/10.1063/1.371468

[91]WangX,MaedaK,ChenX,TakanabeK,DomenK,HouY, FuX,AntoniettiM.Polymersemiconductorsforartificial photosynthesis:hydrogenevolutionbymesoporous graphiticcarbonnitridewithvisiblelight.JAmChemSoc 2009. https://doi.org/10.1021/ja809307s

[92]ZhangY,MoriT,YeJ.Polymericcarbonnitrides: semiconductingpropertiesandemergingapplicationsin photocatalysisandphotoelectrochemicalenergy conversion.SciAdvMater2012. https://doi.org/10.1166/ sam.2012.1283

[93]WangX,BlechertS,AntoniettiM.Polymericgraphitic carbonnitrideforheterogeneousphotocatalysis.ACSCatal 2012. https://doi.org/10.1021/cs300240x.

[94]LiXH,AntoniettiM.MetalnanoparticlesatmesoporousNdopedcarbonsandcarbonnitrides:functional mott Schottkyheterojunctionsforcatalysis.ChemSocRev 2013. https://doi.org/10.1039/c3cs60067j

[95]CaoS,LowJ,YuJ,JaroniecM.Polymericphotocatalysts basedongraphiticcarbonnitride.AdvMater2015. https:// doi.org/10.1002/adma.201500033

[96]ZhaiC,ZhuM,BinD,WangH,DuY,WangC,YangP. Visible-light-assistedelectrocatalyticoxidationofmethanol usingreducedgrapheneoxidemodifiedPtnanoflowersTiO2 nanotubearrays.ACSApplMaterInterfaces2014. https://doi.org/10.1021/am504263e

[97]MojumderN,SarkerS,AbbasSA,TianZ,SubramanianV. Photoassistedenhancementoftheelectrocatalyticoxidation offormicacidonplatinizedTiO2 nanotubes.ACSApplMater Interfaces2014. https://doi.org/10.1021/am406040v

[98]WangT,TangJ,WuS,FanX,HeJ.Preparationofordered mesoporousWO3-TiO2 filmsandtheirperformanceas functionalPtsupportsforsynergisticphotoelectrocatalyticmethanoloxidation.JPowerSources2014. https://doi.org/10.1016/j.jpowsour.2013.09.109

[99]SuCY,HsuehYC,KeiCC,LinCT,PerngTP.Fabricationof high-activityhybridpt@znocatalystoncarbonclothby atomiclayerdepositionforphotoassistedelectro-oxidation ofmethanol.JPhysChemC2013. https://doi.org/10.1021/ jp400830y

[100]YueR,ZhangQ,WangC,DuY,YangP,XuJ.Graphenepoly(5-aminoindole)compositefilmasPtcatalyst supportformethanolelectrooxidationinalkalinemedium. ElectrochimActa2013. https://doi.org/10.1016/ j.electacta.2013.06.021

[101]WangC,WangH,ZhaiC,RenF,ZhuM,YangP,DuY.ThreedimensionalAu0.5/reducedgrapheneoxide/Au0.5/reduced grapheneoxide/carbonfiberelectrodeanditshighcatalytic performancetowardethanolelectrooxidationinalkaline media.JMaterChemA2015. https://doi.org/10.1039/ c4ta05193a

[102]ZhaiC,ZhuM,PangF,BinD,LuC,GohMC,YangP,DuY. Highefficiencyphotoelectrocatalyticmethanoloxidation onCdSquantumdotssensitizedPtelectrode.ACSAppl MaterInterfaces2016. https://doi.org/10.1021/ acsami.5b10234

[103]PolarzS,AntoniettiM.Porousmaterialsviananocasting procedures:innovativematerialsandlearningaboutsoftmatterorganization.ChemCommun2002. https://doi.org/ 10.1039/b205708p

[104]GroenewoltM,AntoniettiM.Synthesisofg-C3N4 nanoparticlesinmesoporoussilicahostmatrices.Adv Mater2005. https://doi.org/10.1002/adma.200401756

Pleasecitethisarticleas:YudaA,KumarA,Areviewofg-C3N4 basedcatalystsfordirectmethanolfuelcells,InternationalJournalof HydrogenEnergy,https://doi.org/10.1016/j.ijhydene.2021.01.080

[105]LiangC,HongK,GuiochonGA,MaysJW,DaiS.Synthesisof alarge-scalehighlyorderedporouscarbonfilmbyselfassemblyofblockcopolymers.AngewChemIntEd2004. https://doi.org/10.1002/anie.200461051

[106]ThomasA,GoettmannF,AntoniettiM.Hardtemplatesfor softmaterials:creatingnanostructuredorganicmaterial. ChemMater2008. https://doi.org/10.1021/cm702126j

[107]AntoniettiM.Surfactantsfornoveltemplatingapplications. CurrOpinColloidInterfaceSci2001. https://doi.org/10.1016/ S1359-0294(01)00089-9.

[108]ChenD,LiZ,WanY,TuX,ShiY,ChenZ,ShenW,YuC, TuB,ZhaoD.Anionicsurfactantinducedmesophase transformationtosynthesizehighlyorderedlarge-pore mesoporoussilicastructures.JMaterChem2006. https:// doi.org/10.1039/b517975k

[109]LiangC,LiZ,DaiS.Mesoporouscarbonmaterials:synthesis andmodification.AngewChemIntEd2008. https://doi.org/ 10.1002/anie.200702046

[110]WangY,LiH,YaoJ,WangX,AntoniettiM.Synthesisof borondopedpolymericcarbonnitridesolidsandtheir useasmetal-free catalystsforaliphaticC-Hbond oxidation.ChemSci2011. https://doi.org/10.1039/ c0sc00475h

[111]XuY,XuH,WangL,YanJ,LiH,SongY,HuangL,CaiG. TheCNTmodifiedwhiteC3N4 compositephotocatalyst withenhancedvisible-lightresponsephotoactivity.J ChemSocDaltonTrans2013. https://doi.org/10.1039/ c3dt32871f.

[112]CormaA.Frommicroporoustomesoporousmolecular sievematerialsandtheiruseincatalysis.ChemRev1997. https://doi.org/10.1021/cr960406n

[113]DavisME.Orderedporousmaterialsforemerging applications.Nature2002. https://doi.org/10.1038/ nature00785

[114]TaguchiA,SchuthF.Orderedmesoporousmaterialsin catalysis.MicroporousMesoporousMater2005. https:// doi.org/10.1016/j.micromeso.2004.06.030.

[115]WanY,ZhaoD.Onthecontrollablesoft-templating approachtomesoporoussilicates.ChemRev2007. https:// doi.org/10.1021/cr068020s

[116]HartmannM.Orderedmesoporousmaterialsfor bioadsorptionandbiocatalysis.ChemMater2005. https:// doi.org/10.1021/cm0485658

[117]YingJY,MehnertCP,WongMS.Synthesisandapplications ofsupramolecular-templatedmesoporousmaterials. AngewChemIntEd1999. https://doi.org/10.1002/(sici)15213773(19990115)38:1/2<56::aid-anie56>3.0.co;2-e

[118]WangY,WangX,AntoniettiM,ZhangY.Facileone-pot synthesisofnanoporouscarbonnitridesolidsbyusingsoft templates.ChemSusChem2010. https://doi.org/10.1002/ cssc.200900284

[119]ShenW,RenL,ZhouH,ZhangS,FanW.Facileone-pot synthesisofbimodalmesoporouscarbonnitrideandits functionasalipaseimmobilizationsupport.JMaterChem 2011. https://doi.org/10.1039/c0jm03666h

[120]VinuA.Two-dimensionalhexagonally-ordered mesoporouscarbonnitrideswithtunableporediameter, surfaceareaandnitrogencontent.AdvFunctMater2008. https://doi.org/10.1002/adfm.200700783

[121]VinuA,ArigaK,MoriT,NakanishiT,HishitaS,GolbergD, BandoY.Preparationandcharacterizationofwell-ordered hexagonalmesoporouscarbonnitride.AdvMater2005. https://doi.org/10.1002/adma.200401643

[122]VinuA,SrinivasuP,SawantDP,MoriT,ArigaK,ChangJS, JhungSH,BalasubramanianVV,HwangYK.ThreedimensionalcagetypemesoporousCN-basedhybrid materialwithveryhighsurfaceareaandporevolume. ChemMater2007. https://doi.org/10.1021/cm070657k

[123]JinX,BalasubramanianVV,SelvanST,SawantDP, ChariMA,LuGQ,VinuA.Highlyorderedmesoporous carbonnitridenanoparticleswithhighnitrogencontent:a metal-freebasiccatalyst.AngewChemIntEd2009. https:// doi.org/10.1002/anie.200903674

[124]ShiY,WanY,ZhaoD.Orderedmesoporousnon-oxide materials.ChemSocRev2011. https://doi.org/10.1039/ c0cs00186d.

[125]HuynhMHV,HiskeyMA,ArchuletaJG,RoemerEL. Preparationofnitrogen-richnanolayered,nanoclustered, andnanodendriticcarbonnitrides.AngewChemIntEd 2005. https://doi.org/10.1002/anie.200461758

[126]HuynhMHV,HiskeyMA,ArchuletaJG,RoemerEL,GilardiR. 3,6-Di(azido)-1,2,4,5-tetrazine:aprecursorforthe preparationofcarbonnanospheresandnitrogen-rich carbonnitrides.AngewChemIntEd2004. https://doi.org/ 10.1002/anie.200460708.

[127]JunYS,HongWH,AntoniettiM,ThomasA.Mesoporous,2D hexagonalcarbonnitrideandtitaniumnitride/carbon composites.AdvMater2009. https://doi.org/10.1002/ adma.200803500

[128]ParkSS,ChuSW,XueC,ZhaoD,HaCS.Facilesynthesisof mesoporouscarbonnitridesusingtheincipientwetness methodandtheapplicationashydrogenadsorbent.JMater Chem2011. https://doi.org/10.1039/c1jm10849b

[129]GoettmannF,FischerA,AntoniettiM,ThomasA.Chemical synthesisofmesoporouscarbonnitridesusinghard templatesandtheiruseasametal-freecatalystforFriedelCraftsreactionofbenzene.AngewChemIntEd2006. https://doi.org/10.1002/anie.200600412

[130]FukasawaY,TakanabeK,ShimojimaA,AntoniettiM, DomenK,OkuboT.SynthesisoforderedporousgraphiticC3N4 andregularlyarrangedTa3N5 nanoparticlesbyusing self-assembledsilicananospheresasaprimarytemplate. Chem-AnAsianJ2011. https://doi.org/10.1002/ asia.201000523

[131]ZhengD,PangC,LiuY,WangX.Shell-engineeringofhollow g-C3N4 nanospheresviacopolymerizationfor photocatalytichydrogenevolution.ChemCommun2015. https://doi.org/10.1039/c5cc03143e

[132]PanchakarlaLS,GovindarajA,RaoCNR.Boron-and nitrogen-dopedcarbonnanotubesandgraphene.Inorg ChimActa2010. https://doi.org/10.1016/j.ica.2010.07.057

[133]WangQ,ChenC,MaW,ZhuH,ZhaoJ.Pivotalroleof fluorineintuningbandstructureandvisible-light photocatalyticactivityofnitrogen-dopedTiO2.Chem-A EurJ2009. https://doi.org/10.1002/chem.200900221

[134]WangX,LiX,ZhangL,YoonY,WeberPK,WangH,GuoJ, DaiH.N-dopingofgraphenethroughelectrothermal reactionswithammonia.Science2009;80. https://doi.org/ 10.1126/science.1170335

[135]ZhaoL,BaccileN,GrossS,ZhangY,WeiW,SunY, AntoniettiM,TitiriciMM.Sustainablenitrogen-doped carbonaceousmaterialsfrombiomassderivatives.Carbon NY2010. https://doi.org/10.1016/j.carbon.2010.06.040

[136]FukataN.Impuritydopinginsiliconnanowires.AdvMater 2009. https://doi.org/10.1002/adma.200900376.

[137]OuyangT,LohKP,QiD,WeeATS,NesladekM.Chemical bondingoffullereneandfluorinatedfullereneonbareand hydrogenateddiamond.ChemPhysChem2008. https:// doi.org/10.1002/cphc.200800054

[138]KarousisN,TagmatarchisN,TasisD.Currentprogresson thechemicalmodificationofcarbonnanotubes.ChemRev 2010. https://doi.org/10.1021/cr100018g

[139]WangY,ZhangJ,WangX,AntoniettiM,LiH.Boron-and fluorine-containingmesoporouscarbonnitridepolymers: metal-freecatalystsforcyclohexaneoxidation.Angew ChemIntEd2010. https://doi.org/10.1002/anie.201000120

Pleasecitethisarticleas:YudaA,KumarA,Areviewofg-C3N4 basedcatalystsfordirectmethanolfuelcells,InternationalJournalof HydrogenEnergy,https://doi.org/10.1016/j.ijhydene.2021.01.080

[140]WangX,ChenX,ThomasA,FuX,AntoniettiM.Metalcontainingcarbonnitridecompounds:anewfunctional organic-metalhybridmaterial.AdvMater2009. https:// doi.org/10.1002/adma.200802627

[141]KimM,HwangS,YuJS.Novelorderednanoporousgraphitic C3N4 asasupportforPt-Ruanodecatalystindirect methanolfuelcell.JMaterChem2007. https://doi.org/ 10.1039/b702213a.

[142]ChandrasekharanMeenuP,DattaSP,SinghSA, DindaS,ChakrabortyC,RoyS.Polyanilinesupported g-C3N4 quantumdotssurpassbenchmarkPt/C: developmentofmorphologicallyengineeredg-C 3N4 catalyststowards “metal-free” methanolelectrooxidation.JPowerSources2020. https://doi.org/10.1016/ j.jpowsour.2020.228150

[143]YangZ,LuoF.Ptnanoparticlesdepositedondihydroxypolybenzimidazolewrappedcarbonnanotubesshowsa remarkabledurabilityinmethanolelectro-oxidation.IntJ HydrogenEnergy2017. https://doi.org/10.1016/ j.ijhydene.2016.10.148

[144]ZhangJJ,SuiXL,ZhaoL,ZhangLM,GuDM,WangZB.Hybrid ofmolybdenumtrioxideandcarbonashighperformance platinumcatalystsupportformethanolelectrooxidation. IntJHydrogenEnergy2017. https://doi.org/10.1016/ j.ijhydene.2016.10.086

[145]ZhuZ,BukowskiB,DeskinsNA,ZhouHS.Bambooshaped carbonnanotubesupportedplatinumelectrocatalyst synthesizedbyhighpowerultrasonic-assisted impregnationmethodformethanolelectrooxidationand relateddensityfunctionaltheorycalculations.IntJ HydrogenEnergy2015. https://doi.org/10.1016/ j.ijhydene.2014.12.039

[146]CaoJ,YinX,WangL,GuoM,XuJ,ChenZ.Enhanced electrocatalyticactivityofplatinumnanoparticles supportedonnitrogen-modifiedmesoporouscarbonsfor methanolelectrooxidation.IntJHydrogenEnergy2015. https://doi.org/10.1016/j.ijhydene.2015.01.014.

[147]LiY,JiangY,ChenM,LiaoH,HuangR,ZhouZ,TianN, ChenS,SunS.Electrochemicallyshape-controlled synthesisoftrapezohedralplatinumnanocrystalswithhigh electrocatalyticactivity.ChemCommun2012. https:// doi.org/10.1039/c2cc34322c

[148]Shao-HornY,ShengWC,ChenS,FerreiraPJ,HolbyEF, MorganD.Instabilityofsupportedplatinumnanoparticles inlow-temperaturefuelcells.TopCatal2007. https:// doi.org/10.1007/s11244-007-9000-0.

[149]LiuH,YeF,YaoQ,CaoH,XieJ,LeeJY,YangJ.StellatedAgPtbimetallicnanoparticles:aneffectiveplatformfor catalyticactivitytuning.SciRep2014. https://doi.org/ 10.1038/srep03969

[150]SalgadoJRC,FernandesJCS,BotelhoDoRegoAM, FerrariaAM,DuarteRG,FerreiraMGS.Pt-Runanoparticles supportedonfunctionalizedcarbonaselectrocatalystsfor themethanoloxidation.ElectrochimActa2011. https:// doi.org/10.1016/j.electacta.2011.07.039

[151]GeimAK.Graphene:statusandprospects.Science2009;80. https://doi.org/10.1126/science.1158877.

[152]GuoS,DongS,WangE.Three-dimensionalPt-on-Pd bimetallicnanodendritessupportedongraphene nanosheet:facilesynthesisandusedasanadvanced nanoelectrocatalystformethanoloxidation.ACSNano 2010. https://doi.org/10.1021/nn9014483

[153]ShangN,PapakonstantinouP,WangP,SilvaSRP.Platinum integratedgrapheneformethanolfuelcells.JPhysChemC 2010. https://doi.org/10.1021/jp105470s

[154]KarimiShervedaniR,AminiA,MoetamediSedehN. Preparationofgraphene/Nilebluenanostructureonglassy carbonelectrode:decorationwithplatinumnanoparticles

andapplicationforelectro-oxidationofmethanol.IntJ HydrogenEnergy2016. https://doi.org/10.1016/ j.ijhydene.2016.06.142

[155]XuC,WangX,ZhuJ.Graphene-metalparticle nanocomposites.JPhysChemC2008. https://doi.org/ 10.1021/jp807989b

[156]WangH,XiaB,YanY,LiN,WangJY,WangX.Water-soluble polymerexfoliatedgraphene:ascatalystsupportand sensor.JPhysChemB2013. https://doi.org/10.1021/ jp401418z.

[157]ChenX,WuG,ChenJ,ChenX,XieZ,WangX.Synthesisof “clean” andwell-dispersivepdnanoparticleswithexcellent electrocatalyticpropertyongrapheneoxide.JAmChemSoc 2011. https://doi.org/10.1021/ja110313d

[158]HuangH,YeG,YangS,FeiH,TiwaryCS,GongY,VajtaiR, TourJM,WangX,AjayanPM.NanosizedPtanchoredonto 3Dnitrogen-dopedgraphenenanoribbonstowardsefficient methanolelectrooxidation.JMaterChemA2015. https:// doi.org/10.1039/c5ta05372b.

[159]XiongB,ZhouY,ZhaoY,WangJ,ChenX,O’HayreR,ShaoZ. Theuseofnitrogen-dopedgraphenesupportingPt nanoparticlesasacatalystformethanolelectrocatalytic oxidation.CarbonNY2013. https://doi.org/10.1016/ j.carbon.2012.09.019

[160]LiCZ,WangZB,SuiXL,ZhangLM,GuDM.Ultrathin graphiticcarbonnitridenanosheetsandgraphene compositematerialashigh-performancePtRucatalyst supportformethanolelectro-oxidation.CarbonNY2015. https://doi.org/10.1016/j.carbon.2015.05.034

[161]NegroE,PolizziS,Vezzu`K,TonioloL,CavinatoG,DiNotoV. Interplaybetweenmorphologyandelectrochemical performanceof “core-shell” electrocatalystsforoxygen reductionreactionbasedonaPtNix carbonnitride “shell” andapyrolyzedpolyketonenanoball “core.IntJHydrogen Energy2014. https://doi.org/10.1016/j.ijhydene.2013.08.053

[162]DiNotoV,NegroE,PolizziS,Vezzu`K,TonioloL,CavinatoG. Synthesis,studiesandfuelcellperformanceof “core-shell” electrocatalystsforoxygenreductionreactionbasedona PtNix carbonnitride “shell” andapyrolyzedpolyketone nanoball “core.In:Int.J.HydrogenEnergy;2014. https:// doi.org/10.1016/j.ijhydene.2013.08.054

[163]DiNotoV,NegroE.AnewPt-Rhcarbonnitride electrocatalystfortheoxygenreductionreactioninpolymer electrolytemembranefuelcells:synthesis,characterization andsingle-cellperformance.JPowerSources2010. https:// doi.org/10.1016/j.jpowsour.2009.08.005.

[164]NegroE,Vezzu`K,BertasiF,SchiavutaP,TonioloL,PolizziS, DiNotoV.Interplaybetweennitrogenconcentration, structure,morphology,andelectrochemicalperformanceof PdCoNi “core-shell” carbonnitrideelectrocatalystsforthe oxygenreductionreaction.ChemElectroChem2014. https:// doi.org/10.1002/celc.201402041

[165]NegroE,DiNotoV.Polymerelectrolytefuelcellsbasedon bimetalliccarbonnitrideelectrocatalysts.JPowerSources 2008. https://doi.org/10.1016/j.jpowsour.2007.08.029

[166]BhowmikT,KunduMK,BarmanS.Highlyefficient electrocatalyticoxidationofformicacidonpalladium nanoparticles-graphiticcarbonnitridecomposite.IntJ HydrogenEnergy2017. https://doi.org/10.1016/ j.ijhydene.2016.11.095

[167]PolshettiwarV,VarmaRS.Greenchemistrybynanocatalysis.GreenChem2010. https://doi.org/10.1039/ b921171c

[168]BhowmikT,KunduMK,BarmanS.Ultrasmallgold nanoparticles-graphiticcarbonnitridecomposite:an efficientcatalystforultrafastreductionof4-nitrophenol andremovaloforganicdyesfromwater.RSCAdv2015. https://doi.org/10.1039/c5ra04913j

[169]KunduMK,SadhukhanM,BarmanS.Orderedassembliesof silvernanoparticlesoncarbonnitridesheetsandtheir applicationinthenon-enzymaticsensingofhydrogen peroxideandglucose.JMaterChemB2015. https://doi.org/ 10.1039/c4tb01740d

[170]KunduMK,BhowmikT,BarmanS.Goldaerogelsupported ongraphiticcarbonnitride:anefficientelectrocatalystfor oxygenreductionreactionandhydrogenevolution reaction.JMaterChemA2015. https://doi.org/10.1039/ c5ta06740e.

[171]QiuH,DongX,SanaB,PengT,ParamelleD,ChenP,LimS. Ferritin-templatedsynthesisandself-assemblyofPt nanoparticlesonamonolithicporousgraphenenetworkfor electrocatalysisinfuelcells.ACSApplMaterInterfaces 2013. https://doi.org/10.1021/am3022366

[172]QinY,ChaoL,YuanJ,LiuY,ChuF,KongY,TaoY,LiuM. UltrafinePtnanoparticle-decoratedrobust3DN-doped porousgrapheneasanenhancedelectrocatalystfor methanoloxidation.ChemCommun2016. https://doi.org/ 10.1039/c5cc07482g

[173]HuangH,YangS,VajtaiR,WangX,AjayanPM.Pt-decorated 3Darchitecturesbuiltfromgrapheneandgraphiticcarbon nitridenanosheetsasefficientmethanoloxidationcatalysts. AdvMater2014. https://doi.org/10.1002/adma.201401877

[174]SadhukhanM,KunduMK,BhowmikT,BarmanS.Highly dispersedplatinumnanoparticlesongraphiticcarbon nitride:ahighlyactiveanddurableelectrocatalystfor oxidationofmethanol,formicacidandformaldehyde.IntJ HydrogenEnergy2017. https://doi.org/10.1016/ j.ijhydene.2017.03.097

[175]MansorN,JorgeAB,CoraF,GibbsC,JervisR,McMillanPF, WangX,BrettDJL.Graphiticcarbonnitridesupported catalystsforpolymerelectrolytefuelcells.JPhysChemC 2014. https://doi.org/10.1021/jp412501j

[176]HuangH,ChenH,SunD,WangX.Graphenenanoplate-Pt compositeasahighperformanceelectrocatalystfordirect methanolfuelcells.JPowerSources2012. https://doi.org/ 10.1016/j.jpowsour.2012.01.023

[177]LiY,TangL,LiJ.Preparationandelectrochemical performanceformethanoloxidationofpt/graphene nanocomposites.ElectrochemCommun2009. https:// doi.org/10.1016/j.elecom.2009.02.009

[178]ChuH,ShenY,LinL,QinX,FengG,LinZ,WangJ,LiuH, LiY.Ionic-liquid-assistedpreparationofcarbonnanotubesupporteduniformnoblemetalnanoparticlesandtheir enhancedcatalyticperformance.AdvFunctMater2010. https://doi.org/10.1002/adfm.201001240

[179]SuF,TianZ,PohCK,WangZ,LimSH,LiuZ,LinJ.Pt nanoparticlessupportedonnitrogen-dopedporouscarbon nanospheresasanelectrocatalystforfuelcells.Chem Mater2010. https://doi.org/10.1021/cm901542w

[180]JiangH,ZhaoT,LiC,MaJ.Functionalmesoporouscarbon nanotubesandtheirintegrationinsituwithmetal nanocrystalsforenhancedelectrochemicalperformances. ChemCommun2011. https://doi.org/10.1039/c1cc12942b

[181]WangL,NemotoY,YamauchiY.Directsynthesisof spatially-controlledPt-on-Pdbimetallicnanodendriteswith superiorelectrocatalyticActivity.JAmChemSoc2011. https://doi.org/10.1021/ja202655j

[182]ZhangW,FuY,WangJ,WangX.3Dhierarchicallyporous graphiticcarbonnitridemodifiedgraphene-Pthybridas efficientmethanoloxidationcatalysts.AdvMaterInterfaces 2017. https://doi.org/10.1002/admi.201601219

[183]LiCZ,WangZB,SuiXL,ZhangLM,GuDM,GuS.Graphitic carbonnitridenanosheetcoatedcarbonblackasahighperformancePtRucatalystsupportmaterialformethanol electrooxidation.JMaterChemA2014. https://doi.org/ 10.1039/c4ta04594g

[184]WangX,SunM,GuoY,HuJ,ZhuM.ThreedimensionalPt island-on-Auarchitecturescoupledwithgraphitecarbon nitridenanosheetsforeffectivephoto-accelerated methanolelectro-oxidation.JColloidInterfaceSci2019. https://doi.org/10.1016/j.jcis.2019.09.085

[185]QianH,HuangH,WangX.Designandsynthesisof palladium/graphiticcarbonnitride/carbonblackhybridsas high-performancecatalystsforformicacidandmethanol electrooxidation.JPowerSources2015. https://doi.org/ 10.1016/j.jpowsour.2014.10.109.

[186]FangD,YangL,YangG,YiG,FengY,ShaoP,ShiH,YuK, YouD,LuoX.Electrodepositedgraphenehybridized graphiticcarbonnitrideanchoringultrafinepalladium nanoparticlesforremarkablemethanolelectrooxidation. IntJHydrogenEnergy2020. https://doi.org/10.1016/ j.ijhydene.2020.05.273

[187]RenY,ZhangS,LiH.Electro-oxidationofmethanolon SnO2-promotedPd/MWCNTscatalystsinalkalinesolution. IntJHydrogenEnergy2014. https://doi.org/10.1016/ j.ijhydene.2013.10.012

[188]TsangCHA,HuiKN,HuiKS,RenL.DepositionofPd/ grapheneaerogelonnickelfoamasabinder-free electrodefordirectelectro-oxidationofmethanoland ethanol.JMaterChemA2014. https://doi.org/10.1039/ c4ta03138e

[189]LiL,ChenM,HuangG,YangN,ZhangL,WangH,LiuY, WangW,GaoJ.AgreenmethodtopreparePd-Ag nanoparticlessupportedonreducedgrapheneoxideand theirelectrochemicalcatalysisofmethanolandethanol oxidation.JPowerSources2014. https://doi.org/10.1016/ j.jpowsour.2014.04.021

[190]DongQ,ZhaoY,HanX,WangY,LiuM,LiY.Pd/Cu bimetallicnanoparticlessupportedongraphene nanosheets:facilesynthesisandapplicationasnovel electrocatalystforethanoloxidationinalkalinemedia.IntJ HydrogenEnergy2014. https://doi.org/10.1016/ j.ijhydene.2014.06.139.

[191]ZhangG,HuangC,QinR,ShaoZ,AnD,ZhangW,WangY. UniformPd-Ptalloynanoparticlessupportedongraphite nanoplateletswithhighelectrocatalyticactivitytowards methanoloxidation.JMaterChemA2015. https://doi.org/ 10.1039/c4ta06076h

[192]XuW,ZhuS,LiZ,CuiZ,YangX.Evolutionofpalladium/ copperoxide-titaniumdioxidenanostructuresby dealloyingandtheircatalyticperformanceformethanol electro-oxidation.JPowerSources2015. https://doi.org/ 10.1016/j.jpowsour.2014.10.147

[193]ZhaoM,AbeK,YamauraSI,YamamotoY,AsaoN. FabricationofPd-Ni-Pmetallicglassnanoparticlesandtheir applicationashighlydurablecatalystsinmethanolelectrooxidation.ChemMater2014. https://doi.org/10.1021/ cm403185h

[194]LiSS,LvJJ,HuYY,ZhengJN,ChenJR,WangAJ,FengJJ. FacilesynthesisofporousPt-Pdnanospheressupportedon reducedgrapheneoxidenanosheetsforenhanced methanolelectrooxidation.JPowerSources2014. https:// doi.org/10.1016/j.jpowsour.2013.08.088.

[195]EswaranM,DhanusuramanR,TsaiPC,PonnusamyVK. One-steppreparationofgraphiticcarbonnitride/ Polyaniline/Palladiumnanoparticlesbasednanohybrid compositemodifiedelectrodeforefficientmethanol electro-oxidation.Fuel2019. https://doi.org/10.1016/ j.fuel.2019.04.040

[196]QianH,ChenS,FuY,WangX.Platinum-palladium bimetallicnanoparticlesongraphiticcarbonnitride modifiedcarbonblack:ahighlyelectroactiveanddurable catalystforelectrooxidationofalcohols.JPowerSources 2015. https://doi.org/10.1016/j.jpowsour.2015.09.051

Pleasecitethisarticleas:YudaA,KumarA,Areviewofg-C3N4 basedcatalystsfordirectmethanolfuelcells,InternationalJournalof HydrogenEnergy,https://doi.org/10.1016/j.ijhydene.2021.01.080

[197]YuanW,ChengY,ShenPK,LiCM,JiangSP.Significanceof wallnumberonthecarbonnanotubesupport-promoted electrocatalyticactivityofPtNPstowardsmethanol/formic acidoxidationreactionsindirectalcoholfuelcells.JMater ChemA2015. https://doi.org/10.1039/c4ta04613g

[198]ZhangY,ChangG,ShuH,OyamaM,LiuX,HeY.Synthesis ofPt-Pdbimetallicnanoparticlesanchoredongraphenefor highlyactivemethanolelectro-oxidation.JPowerSources 2014. https://doi.org/10.1016/j.jpowsour.2014.03.127

[199]FengJX,ZhangQL,WangAJ,WeiJ,ChenJR,FengJJ. Caffeine-assistedfacilesynthesisofplatinum@palladium core-shellnanoparticlessupportedonreducedgraphene oxidewithenhancedelectrocatalyticactivityformethanol oxidation.ElectrochimActa2014. https://doi.org/10.1016/ j.electacta.2014.07.152

[200]LvJ,FengW,YangS,LiuH,HuangX.Methanoldissociation andoxidationonsingleFeatomsupportedongraphitic

carbonnitride.ApplOrganometChem2019. https://doi.org/ 10.1002/aoc.4930

[201]YanagisawaS,TsunedaT,HiraoK,MatsuzakiY.Theoretical investigationofadsorptionoforganicmoleculesonto Fe(110)surface.JMolStructTHEOCHEM2005. https:// doi.org/10.1016/j.theochem.2004.10.043

[202]ZhouH,TamuraH,TakamiS,KuboM,ZhanpeisovN, MiyamotoA.AdsorptionpropertiesofCH3OHonAl(111)andFe (100)surfaces:aperiodicfirst-principlesinvestigation, JapaneseJ.Appl.Physics,Part1Regul.PapShortNotesRevPap 2000. https://doi.org/10.1143/jjap.39.4275

[203]PietaIS,RathiA,PietaP,NowakowskiR,HołdynskiM, PisarekM,KaminskaA,GawandeMB,ZborilR. ElectrocatalyticmethanoloxidationoverCu,Niand bimetallicCu-Ninanoparticlessupportedongraphitic carbonnitride.ApplCatalBEnviron2019. https://doi.org/ 10.1016/j.apcatb.2018.10.072.

Pleasecitethisarticleas:YudaA,KumarA,Areviewofg-C3N4 basedcatalystsfordirectmethanolfuelcells,InternationalJournalof HydrogenEnergy,https://doi.org/10.1016/j.ijhydene.2021.01.080

Other documents randomly have different content

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.