Climate Impacts on Energy Systems

Page 68

CHAPTER 3

Climate Impacts on Energy

C

limate change will increasingly affect the energy sector. Although impacts on energy supply and demand are the most intuitive, climate change can also have direct effects on energy endowment, infrastructure, and transportation and indirect effects through other economic sectors. While projected climate change is not commonly factored into conventional energy planning and operations, the role of energy as a driver of climate change is far more studied. Renewable energy plays a key role in future low-carbon-emission plans aimed at limiting global warming. However, its dependence on climate conditions makes it also susceptible to climate change. Although the first part of this “paradox” has been thoroughly studied (IPCC, 2007c), the international scientific community has recently started to investigate the impacts that global climate change may have on energy, in general, and renewable energy, specifically.1 The formal knowledge base is still at an early stage of development (Willbanks et al., 2007). This chapter discusses what is known about how energy systems can be affected by changing climate. Distinctions are made between energy endowment and supply. Energy endowment concerns the amount of primary energy available. Fossil fuels endowments refer to the energy stock and how climate change may affect access to these resources. Renewable energy endowments, on the other hand, refer to a flux of energy that is closely related to climate parameters. Energy supply, as discussed in this chapter, focuses on the technologies that convert primary energy into a form that can be used by consumers.

Impacts on Resource Endowment Hydropower Resources

Hydropower generation depends directly on the availability of water resources, and therefore on the hydrological cycle that plays a major role in mountainous areas and valleys with significant slopes and stream flows. The usual methodological approach to assess climate impacts on hydropower resource endowments consists of translating long-term climate variables into runoff. Various hydrological models evaluate climate impacts on runoff using precipitation and temperature scenarios from GCMs. GCMs project, under various scenarios, that temperature anomalies in mountainous areas are likely to exceed those in surrounding lowlands (Bradley et al., 2006). Temperature anomalies under these conditions have the potential to affect runoff. Milly et al. (2005), using an ensemble of GCM outputs, identified major impacts on net runoffs due to changes in soil temperature, relative humidity, and runoff, even when precipitation is unchanged.

26


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.