Issuu on Google+

EWP USER’S GUIDE WSI JOISTS | WS-LAM LVL | HEADERS & BEAMS | ROSBORO GLULAM

Innovation in Distribution

2012

TABLE OF CONTENTS WSI-JOIST SERIES

3

 I-JOIST DIMENSIONS

3

DESIGN PROPERTIES

3

WSI-JOIST FLOOR SPAN CHARTS

4

WSI-JOIST FLOOR LOAD CHARTS

5

WSI-JOIST FLOOR DETAILS

6

WSI-JOIST WEB HOLE SPECIFICATIONS

7

WSI-JOIST ROOF DETAILS

8

WSI-JOIST ROOF SPAN CHARTS

9

WSI-JOIST ROOF LOAD CHARTS

10-11

WS-LAM LVL HEADERS & BEAMS

12



1.5E AND 2.0E DESIGN PROPERTIES

12

ALLOWABLE UNIFORM LOADS–FLOOR 100%

13

ALLOWABLE UNIFORM LOADS–ROOF 115% SNOW

14

BEARING DETAILS

15

BEARING LENGTH REQUIREMENTS

15

WS-LAM HOLE SPECIFICATIONS

15

MULTIPLE-PLY BEAM ASSEMBLY

16

NOTCHED & TAPPERED LVL BEAMS & GLULAM BEAMS

17

VERTICAL HOLES FOR GLULAM BEAMS

17

1.5E WS-LAM 1¼” RIM BOARD

18

1.5E WS-LAM 1¼” STAIR STRINGER

19

WS-LAM LVL STUDS

19

ROSBORO GLULAM PRODUCT OFFERINGS

GLULAM HAS COME A LONG WAY

20 21-22

X-BEAM PRODUCTS

23

X-BEAM FLOOR BEAMS ALLOWABLE LOADS

23

X-BEAM ROOF BEAMS ALLOWABLE LOADS

23

WARRANTY BY PACIFIC WOODTECH

BACK COVER

Innovation in Distribution Engineered Wood Department Toll Free 800.236.1528 • Fax 800.826.7212 www.wausausupply.com Mailing: PO Box 296 • Wausau, Wisconsin 54402 Shipping: 7102 Commerce Drive • Schofield, Wisconsin 54476

lVl flange

ICC-ES ESR-1225 • ICC-ES ESR-1405 • APA PR-L262 HUD SEB 1132 • LA CITY RR 25450 • FL7428 WI 200258-W • NYC MEA 233-98-M VOL III

WsI-JoIsT

icc-eS eSr-1225 n icc-eS eSr-1405 n APA Pr-L262 Hud SeB 1132 n LA city rr 25450 n fL7428 Wi 200258-W n nyc MeA 233-98-M VoL iii

WSI-90

I-JoIsT DImensIons WSi-70

WSi-40 ½” 11 ” 14” 11M\,˝ 9Z\v˝ 99Z\x˝ 14˝ 7/8

WSi-90

7 911M\,˝ ½” 11 14˝ /8” 16” 16˝

16˝

35/UT ” OSB Web 11M\,˝ 9Z\v˝ 9Z\x˝ 14˝ 16˝ 2 5/16” x 1 3/8” LVL Flange

18˝

35/UT ” OSB Web 11M\,˝ 14˝ 16˝ 2 5/16” x 1 ½” LVL Flange

3/8

3/8

18˝

20˝

7/8” 9Z|x˝ 11 11M\,˝

16” 16˝

23/UT ” OSB14˝ Web 16˝ 9Zx˝ 11M\,˝ 3 ½” x 1 ½” LVL Flange 7/16

20˝

18˝

20˝

20˝

M\zn” oSb Web 3Z\x” x 1Z\x” flange

WSI-JOIST(1) DESIGN PROPERTIES Joist Series

Joist Depth

EI(2) (x 106 lbs-in2)

k(3) (x 106 lbs)

M(4) (ft-lbs)

WSi-JoiSt(1) deSiGn 9 1/2”ProPertieS193

WSi-40 WSI-70 WSi-70

WSI-90

WSi-90

14” 16”

4.94 ei(2) 330 6.18 6 2 482(x 10 lbs-in ) 7.28 193 440 6.19 330 644 7.33 482 873 8.42 440 661 6.92 644 965 8.17 873 1306 9.35 661 965 1306

IR(7) (lbs)

Verticle Load(8) (plf) 2400 ir(7) 2400 (lbs) 2400 2160 2400 2500 2400 2500 2400 2335 2850 2335 2850 2335 2850 3355

2735

1120

1080

2160

k(3) 3545 (x 106 lbs) 4270

M(4) 1420 (ft-lbs) 1710

V(5) 1200 (lbs)1200

(6) er 2500 (lbs) 2500

6730 8030 9200 10255 12235 14020

1420 1710 1970 1925 2125 2330

4.94 6.18 7.28 6.19 7.33 8.42 6.92 8.17 9.35

2735 3545 4270 6730 8030 9200 10255 12235 14020

1120 1160 1420 1160 1710 1160 1420 1400 1710 19701400 19251400 2125 2330

1080 2335 1200 2335 1200 2335 1160 3355 1160 3355 1160 3355 1400 1400 1400

3355 3355

1. Values to normal load duration. valuesduration except of El,load. k and Load mayeIbe adjusted foradjusted other load durations as 1. the apply tabulated design properties are forAll normal allVertical properties except and k may be for other load durations as permitted by the code. 2. Bending stiffness (EI). 2. bending stiffness (eI). 3. Coefficient of of shear deflection or22totocalculate calculate uniform load or center deflections in a simple-span application. 3. Coefficient shear deflection(k). (k).Use use Equations equations 11 or uniform load or center pointpoint load load deflections in a simple-span application. Center-point load: where: uniform load: 5wl4 wl2 [1] d = ______ + ____ 384EI k

pl3 _____ 2pl + ___ [2] d = 48EI k

d = calculated deflection (in.) w = uniform load (lbs/in.) l = design span (in.)

P = concentrated load (lbs) EI = bending stiffness of the joist (lbs-in2) k = coefficient of shear deflection (lbs)

4. moment capacity (m).The thetabulated tabulated values values shall any code-allowed repetitive member factor.factor. 4. Moment capacity (M). shall not notbe beincreased increasedbyby any code-allowed repetitive member 5. Shear capacity (V). 5. Shear capacity (V). 6. end reaction capacity (er) of the I-joist without web stiffeners and a minimum bearing length of 1C\v inches. 6. End reaction capacity (ER) of the I-joist without web stiffeners and a minimum bearing length of 1 3/4 inches. 7. Intermediate reactioncapacity capacity(IR) (Ir)of of the the I-joist I-joist without and a minimum bearing length of 3Z\xofinches. 7. Intermediate reaction withoutweb webstiffeners stiffeners and a minimum bearing length 3 ½ inches. 8. Blocking panel and rim joist vertical load capacity. Wausau Supply Company | www.wausausupply.com

page

3

Wausau Supply Company | www.wausausupply.com

page

3

24˝

24˝

P R O P E R T I E S

Series

11 7/8” Joist 14” depth 11 7/8” 9Z\x” 11M\,” 14” 14” 16” 11M\,” 7 11 /8” 14” 14” 16” 16” 11M\,”

ER(6) (lbs)

22˝

D I m e n S I o n S

WSI-40Joist

V(5) (lbs)

22˝

A N D

DesIgn ProPerTIes

18˝

a n D

DESIGN PROPERTIES C\,” oSb Web 2B\zn” x 1Z\x” flange

C\,” oSb Web 2B\zn” x 1C\,” flange

14” 14˝

D I M E N S I O N S

WSI-70

WSI-40

p r o p e r t I e S

I-JOIST DIMENSIONS

W S I - J O I S T

W S I - J O I S T

LVL FLANGE JOISTS

S

FLOOR SPANS ALLOWABLE SPANS FOR WSI-JOIST – 40 PSF LIVE LOAD AND 10 PSF DEAD LOAD

N

Joist Series

1/2”

WSI-40

A

WSI-70

P

WSI-90

S

Joist Depth 9 11 7/8” 14” 11 7/8” 14” 16” 11 7/8” 14” 16”

Simple Span 12” o.c. 18’– 0” 21’– 5” 24’– 4” 23’– 4” 26’– 5” 29’– 3” 26’– 5” 29’– 11” 33’– 1”

16” o.c. 16’– 5” 19’– 7” 22’– 3” 21’– 3” 24’– 2” 26’– 9” 24’– 0” 27’– 3” 30’– 2”

19.2” o.c. 15’– 6” 18’– 6” 20’– 6” 20’– 1” 22’– 9” 25’– 2” 22’– 7” 25’– 8” 28’– 5”

24” o.c. 14’– 6” 16’– 8” 18’– 4” 18’– 8” 21’– 3” 23’– 0” 21’– 1” 23’– 11” 26’– 5”

12” o.c. 20’– 0” 23’– 7” 25’– 11” 26’– 0” 29’– 6” 32’– 8” 29’– 5” 33’– 4” 36’– 11”

Multiple Span 16” o.c. 19.2” o.c. 17’– 10” 16’– 3” 20’– 4” 18’– 7” 22’– 5” 20’– 5” 23’– 8” 22’– 3” 26’– 10” 23’– 1” 27’– 9” 23’– 1” 26’– 9” 25’– 2” 30’– 4” 28’– 6” 33’– 7” 31’– 7”

24” o.c. 14’– 6” 16’– 7” 18’– 3” 18’– 5” 18’– 5” 18’– 5” 23’– 4” 26’– 6” 26’– 7”

Notes: 1. Table values apply to uniformly loaded, residential floor joists. 2. Span is measured from face to face of supports. 3. Deflection is limited to L/240 at total load and L/480 at live load. 4. Table values are based on sheathing that is glued and nailed to the joists (23/32” panels for joists at 24” o.c. and 19/32” panels for joists at 19.2” o.c. and less). Reduce spans by 12” if sheathing is nailed only. 5. Provide at least 1 ¾” of bearing length at end supports and 3 ½” at intermediate supports. 6. Provide lateral restraint at supports (e.g. blocking panels, rim board) and along the compression flange of each joist (e.g. floor sheathing, gypsum board ceiling). 7. Use sizing software or consult a professional engineer to analyze conditions outside the scope of this table (e.g. commercial floors, different bearing conditions, concentrated loads) or for multiple span joists if the length of any span is less than half the length of an adjacent span.

ALLOWABLE SPANS FOR WSI-JOIST – 40 PSF LIVE LOAD AND 20 PSF DEAD LOAD

R

Joist Series

Joist Depth 1/2”

O

WSI-40

WSI-70

16” o.c. 16’– 4” 18’– 8” 20’– 6” 21’– 3” 24’– 2” 26’– 9” 24’– 0” 27’– 3” 30’– 2”

Multiple Span 19.2” o.c. 14’– 11” 17’– 0” 18’– 8” 20’– 1” 22’– 9” 24’– 0” 22’– 7” 25’– 8” 28’– 5”

24” o.c. 13’– 4” 15’– 2” 16’– 8” 18’– 8” 19’– 2” 19’– 2” 21’– 1” 23’– 2” 23’– 2”

12” o.c. 18’– 10” 21’– 6” 23’– 7” 26’– 0” 29’– 6” 30’– 10” 29’– 5” 33’– 4” 36’– 11”

16” o.c. 16’– 3” 18’– 7” 20’– 5” 23’– 1” 23’– 1” 23’– 1” 26’– 9” 30’– 4” 33’– 3”

See notes above

L

O

WSI-90

9 11 7/8” 14” 11 7/8” 14” 16” 11 7/8” 14” 16”

Simple Span 12” o.c. 18’– 0” 21’– 5” 23’– 8” 23’– 4” 26’– 5” 29’– 3” 26’– 5” 29’– 11” 33’– 1”

1. Choose the appropriate live and dead load combination as well as a joist spacing. 2 Scan down the spacing column to find a span that exceeds the design span. 3. Scan to the left from that span to determine the joist size required. 4. Web stiffeners are required at all supports for 22” and 24” joists.

W S I - J O I S T

F

HOW TO USE FLOOR SPAN TABLES

page

4

Wausau Supply Company | www.wausausupply.com

19.2” o.c. 14’– 10” 16’– 11” 18’– 7” 19’– 2” 19’– 2” 19’– 2” 25’– 2” 27’– 8” 27’– 8”

24” o.c. 13’– 3” 15’– 1” 16’– 5” 15’– 4” 15’– 4” 15’– 4” 22’– 1” 22’– 1” 22’– 1”

W S I - J O I S T

FLOOR LOADS SIMPLE-SPAN JOIST – ALLOWABLE LOADS FOR WSI JOISTS (PLF) WSI-70

WSI-90

Joist Span (ft)

WSI-40

Live L/480

Total 100

Live L/480

Total 100

Live L/480

Total 100

Live L/480

Total 100

Live L/480

Total 100

Live L/480

Total 100

Live L/480

Total 100

Live L/480

Total 100

Live L/480

Total 100

6

360

400

400

387

387

387

467

467

467

7

309

343

343

331

331

331

400

400

400

8

270

300

300

290

290

290

350

350

350

9

234

240

267

267

258

258

258

311

311

311

10

177

216

240

240

232

232

232

280

280

280

11

137

181

218

218

211

211

211

255

255

255

12

108

152

177

197

200

193

193

193

233

233

233

13

87

129

143

168

185

178

178

178

215

215

215

14

71

112

117

145

165

171

149

166

166

166

200

200

200

15

58

97

96

126

137

152

124

155

155

155

177

187

187

187

16

48

85

81

111

115

133

104

145

145

145

150

175

175

175

17

68

98

97

118

88

136

125

136

136

127

165

-

165

165

18

58

88

83

105

75

129

107

129

129

109

156

154

156

156

19

50

79

71

95

65

122

92

122

122

94

147

133

147

147

20

43

71

62

85

56

112

80

116

107

116

81

140

116

140

140

21

54

77

70

110

93

110

101

133

133

22

47

71

61

105

82

105

89

127

118

127

23

41

65

54

101

72

101

79

122

105

122

24

37

59

48

96

64

97

70

117

93

117

25

57

93

83

112

26

51

89

74

108

27

46

86

67

104

28

41

83

60

100

9 1/2”

11 7/8”

14”

11 7/8”

14”

16”

11 7/8”

14”

16”

F L O O

29 30

L O

HOW TO USE FLOOR LOAD TABLES

R

Notes: 1. Table values apply to uniformly loaded floor joists. 2. Span is measured to the center of each support. 3. The values in the Total columns are based on an L/240 total load deflection limit. Building codes typically require L/360 for live load. Experience has shown that a live load deflection limit of L/480 at 40 psf for residential floors does a better job than L/360 of meeting most performance expectations. 4. Table values do not account for stiffness added by glued or nailed sheathing. 5. Provide at least 1 ¾” of bearing length at end supports and 3 ½” at intermediate supports. 6. Provide lateral restraint at supports (e.g. blocking panels, rim board) and along the compression flange of each joist (e.g. floor sheathing, gypsum board ceiling). 7. Use sizing software or consult a professional engineer to analyze conditions outside the scope of this table (e.g. difference bearing lengths, concentrated loads) or for multiple span joists if the length of any span is less than half the length of an adjacent span.

1. Choose a joist spacing and convert the live and total design loads specified in pounds per square foot (psf) to joist loads in pounds per lineal foot (plf). Joist Spacing (ft) x Design Load (psf) = Joist Load (plf).

A

JOIST LOAD (PLF) Joist Spacing

Design Load (psf) Feet

20

30

40

50

60

70

80

90

100

12

1

20

30

40

50

60

70

80

90

100

16

1.33

27

40

53

67

80

93

106

120

133

19.2

1.6

32

48

64

80

96

112

128

144

160

24

2

40

60

80

100

120

140

160

180

200

D

Inches

Wausau Supply Company | www.wausausupply.com

page

5

S

2. Choose a span and scan across the Span row to find a joist size with sufficent Live and Total load capacities. Both requirements must be satisfied. When no value is shown in a Live column, Total load governs. 3. Web stiffeners are required at all supports for 22” and 24” joists.

S

FLOOR DETAILS GENERAL NOTES

L

1. Nails shall be minimum 2½” x 0.131” unless otherwise noted. Larger diameter nails might split the flanges.

3. Framing lumber is assumed to be S-P-F unless otherwise noted. 4. Mid-span bridging is not required.

I

2. Fastening specifications are minimum requirements. Engineered projects might require higher strength connections. Refer to the building designer’s recommendations. Rim board

A

1a

Load-bearing wall directly above the support below.

1b

T

Fasten rim boards to joists with one nail at each flange. Install as joists are set.

E

Fasten rim boards to top plate with toenails at 6” o.c.

+ 1/16, -0”

D

Fasten joists to the top plate with two nails. Start nails at least 1½” from the end of the flange to avoid splitting.

R

1c

Locate squash blocks under the full width of all columns. Install before the joists are sheathed.

Fasten joists to the top plate with two nails.

Squash block

Fasten squash blocks to joists with one nail at each flange. Install before the joists are sheathed.

O

SQUASH BLOCK—VERTICAL LOAD CAPACITY Pair of 2x4 Squash Blocks

3800 lbs

Pair of 2x6 Squash Blocks

5900 lbs

L

O

(Hem-Fir wall plates assumed)

F

DOUBLE JOIST CONSTRUCTION TABLE A

Filler blocking per Table A 12” ” gap between top flange and filler block

W S I - J O I S T

1/8

Offset nails from opposite face by 6”

FILLER BLOCK REQUIREMENTS FOR DOUBLE I-JOIST CONSTRUCTION Joist Series

Joist Depth

WSI-40

11 7/8”

Flange Width

9 1/2”

page

6

Wausau Supply Company | www.wausausupply.com

14”

16”

10 7/8”

2”

12 7/8”

11 7/8” 14”

2”

8 ¾” 2 5/16”

16”

WSI-90

9” 11 1/8”

11 7/8”

Notes: 1. Support back of I-joist web during nailing to prevent damage to web/flange connection. 2. Leave a 1/8” gap between top of filler block and bottom of top I-joist flange. 3. Filler block is required between I-joists for full length of span. 4. Nail I-joists together with two rows of 10d nails at 12” o.c. (clinched when possible) on each side of the double joist. Total of 4 nails per foot required. If nails can be clinched, only 2 nails per foot are required.

Minimum Filler Block Thickness

6 5/8” 2 5/16”

14”

WSI-70

Maximum Filler Block Height

8 ¾” 3 ½”

10 7/8” 12 7/8”

3”

W S I - J O I S T

WEB HOLE SPECIFICATIONS JOIST TYPICAL HOLES D

D

(see table)

(see table)

Minimum 2x diameter of largest hole

Round holes up to 1 ½” in diameter may be cut anywhere in the web. Provide at least 3” of horizontal clearance from other holes

Do not cut rectangular holes, or round holes larger than 1 ½” in diameter, in cantilevers

Duct Hole (full height)

ROUND AND RECTANGULAR HOLES Minimum Distance ‘D’ From Any Support to the Centerline of the Hole

18” Joist

Span (ft) Span (ft) Span (ft)

22” Joist

Span (ft)

24” Joist

Span (ft)

4” 3” 2’– 1” 3’– 2” 4’– 3” 1’– 7” 2’– 5” 3’– 2” 4’– 0” 1’– 5” 1’– 11” 2’– 5” 2’– 10” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2”

5” 3 ¾” 2’– 8” 3’– 11” 5’– 3” 2’– 0” 3’– 0” 4’– 1” 5’– 1” 2’– 0” 2’– 9” 3’– 5” 4’– 1” 1’– 3” 1’– 3” 1’– 3” 1’– 7” 1’– 10” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3”

6” 4 ½” 3’– 2” 4’– 9” 6’– 4” 2’– 5” 3’– 8” 4’– 11” 6’– 2” 2’– 8” 3’– 6” 4’– 5” 5’– 4” 1’– 5” 1’– 10” 2’– 4” 2’– 9” 3’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 5” 1’– 8” 1’– 11” 2’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3”

6 ¼” 4 5/8” 3’– 3” 4’– 11” 6’– 7” 2’– 7” 3’– 10” 5’– 2” 6’– 5” 2’– 10” 3’– 9” 4’– 8” 5’– 7” 1’– 6” 2’– 1” 2’– 7” 3’– 1” 3’– 7” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 7” 1’– 10” 2’– 2” 2’– 6” 1’– 3” 1’– 3” 1’– 3” 1’– 3” 1’– 3”

8 5/8’” 6 3/8”

10” 7 ½”

3’– 7” 5’– 5” 7’– 2” 9’– 0” 4’– 3” 5’– 8” 7’– 1” 8’– 6” 3’– 0” 4’– 0” 5’– 0” 6’– 0” 7’– 0” 1’– 7” 2’– 2” 2’– 8” 3’– 2” 3’– 9” 1’– 4” 1’– 4” 1’– 4” 1’– 4” 1’– 5” 2’– 7” 3’– 2” 3’– 10” 4’– 6” 5’– 2” 1’– 10” 2’– 3” 2’– 9” 3’– 2” 3’– 8”

5’– 1” 6’– 9” 8’– 5” 10’– 2” 3’– 10” 5’– 1” 6’– 5” 7’– 8” 8’– 11” 2’– 6” 3’– 3” 4’– 1” 4’– 11” 5’– 9” 1’– 10” 2’– 3” 2’– 9” 3’– 2” 3’– 8” 3’– 4” 4’– 2” 5’– 0” 5’– 10” 6’– 8” 2’– 7” 3’– 2” 3’– 10” 4’– 6” 5’– 2”

10 ¾” 8”

12” 9”

12 ¾” 9 ½”

14 ¾” 11”

16 ¾” 12 ½”

5’– 6” 7’– 4” 9’– 3” 11’– 1” 4’– 3” 5’– 1” 5’– 6” 5’– 9” 6’– 9” 7’– 4” 7’– 2” 8’– 5” 9’– 2” 8’– 7” 10’– 1” 11’– 0” 10’– 0” 11’– 10” 12’– 10” 2’– 11” 3’– 9” 4’– 2” 5’– 5” 3’– 11” 5’– 0” 5’– 7” 7’– 3” 4’– 11” 6’– 2” 7’– 0” 9’– 1” 5’– 10” 7’– 5” 8’– 5” 10’– 11” 6’– 10” 8’– 8” 9’– 9” 12’– 9” 2’– 5” 3’– 6” 4’– 1” 5’– 9” 7’– 4” 3’– 1” 4’– 4” 5’– 1” 7’– 2” 9’– 2” 3’– 8” 5’– 2” 6’– 1” 8’– 7” 11’– 0” 4’– 3” 6’– 1” 7’– 2” 10’– 0” 12’– 10” 4’– 11” 6’– 11” 8’– 2” 11’– 5” 14’– 8” 3’– 9” 4’– 5” 4’– 10” 6’– 0” 7’– 1” 4’– 8” 5’– 7” 6’– 1” 7’– 6” 8’– 10” 5’– 7” 6’– 8” 7’– 3” 8’– 11” 10’– 7” 6’– 7” 7’– 9” 8’– 6” 10’– 5” 12’– 5” 7’– 6” 8’– 11” 9’– 9” 11’– 11” 14’– 2” 3’– 0” 3’– 8” 4’– 0” 5’– 1” 6’– 2” 3’– 8” 4’– 6” 5’– 0” 6’– 4” 7’– 8” 4’– 5” 5’– 5” 6’– 0” 7’– 8” 9’– 3” 5’– 2” 6’– 4” 7’– 0” 8’– 11” 10’– 9” 5’– 11” 7’– 3” 8’– 1” 10’– 2” 12’– 4”

S P E C I F I C A T I O N S

20” Joist

Span (ft)

16” Joist

8 12 16 8 12 16 20 12 16 20 24 12 16 20 24 28 12 16 20 24 28 16 20 24 28 32 16 20 24 28 32 16 20 24 28 32

3” 2 ¼” 1’– 7” 2’– 4” 3’– 2” 1’– 2” 1’– 9” 2’– 4” 2’– 11” 1’– 2” 1’– 2” 1’– 5” 1’– 8” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2” 1’– 2”

H O L E

14” Joist

Span (ft)

11 7/8” Joist

Span (ft)

9 ½” Joist

2” 1 ½” 1’– 1” 1’– 7” 2’– 1” 1’– 1” 1’– 1” 1’– 5” 1’– 10” 1’– 1” 1’– 1” 1’– 1” 1’– 1” 1’– 1” 1’– 1” 1’– 1” 1’– 1” 1’– 1” 1’– 1” 1’– 1” 1’– 1” 1’– 1” 1’– 1” 1’– 1” 1’– 1” 1’– 1” 1’– 1” 1’– 1” 1’– 1” 1’– 1” 1’– 1” 1’– 1” 1’– 1” 1’– 1” 1’– 1” 1’– 1” 1’– 1” 1’– 1”

W E B

Round Hole Diameter Rectangular Hole Side

Never drill, cut or notch the flange, or over-cut the web. Holes in webs should be cut with a sharp saw. For rectangular holes, avoid over cutting the corners, as this can cause unnecessary stress concentrations. Slightly rounding the corners is recommended. Starting the rectangular hole by drilling a 1” diameter hole in each of the 4 corners and then making the cuts between the holes is another good method to minimize damage to I-joists.

Wausau Supply Company | www.wausausupply.com

page

7

S

ROOF DETAILS 2b

RIDGE CONNECTION – 12/12 MAXIMUM SLOPE

Simpson MSTA36 strap* with (26) 10d x 1 ½” nails

OVERHANG PARALLEL TO WSI-JOIST L (2’– 0” max)

Adjustable slope hanger

I

L

2a

L When L exceeds WSI-joist spacing, double joist may be required

A

Beveled bearing stiffener each side WS-Lam ridge beam 2x4 outrigger notched around top flange of WSI-joist. 8d toe nail to plate and top flange.

Uplift connections may be required.

Uplift connections may be required.

D

E

T *Strap required for 16” WSI-joist depth or members with slope of 7/12 or greater.

2c c1

c2

F

Stop WSI-joist at wall line and extend top flange with 2x4. Support extension with 2x4 nailed to web of joist with (2) rows of 8d nails at 8” o.c. clinched. Extend 2x4 support at least 4’ into joist span and nail to top flange with 8d nails at 8”o.c. Bearing stiffener each side

X-bridging or WSI-joist blocking panels. Validate use of x-bridging with local code

O

O

OPTIONAL OVERHANG EXTENSIONS FOR UNIFORMLY DISTRIBUTED LOADS ONLY

2x4 nailed to side of top flange with 10d nails at 8” o.c. Place 2x4 cripple stud at plate, under 2x4 overhang. Bevel cut to match roof slope.

X-bridging or WSI-joist blocking panels. Validate use of x-bridging with local code

Bearing stiffener each side

4’– 0” min

4’– 0” min 24” o.c. max

24” o.c. max

R

Uplift connections may be required.

Uplift connections may be required.

2’– 0” max

2’– 0” max

UP-THE-SLOPE SPANS & CUTTING LENGTHS FOR SLOPED ROOFS

W S I - J O I S T

Joist Depth (inches)

12 X

Sloped Length Cut Length (feet) = (Plan Dimension x Factor) + Depth Correction

Plan Dimension (feet)

page

8

Wausau Supply Company | www.wausausupply.com

Joist Depth Depth Correction

Slope

Factor

11 7/8

14

16

Depth Correction (feet) 1 in 12 2 in 12 2.5 in 12 3 in 12 3.5 in 12 4 in 12 4.5 in 12 5 in 12 6 in 12 7 in 12 8 in 12 9 in 12 10 in 12 11 in 12 12 in 12

1.00 1.01 1.02 1.03 1.04 1.05 1.07 1.08 1.12 1.16 1.20 1.25 1.30 1.36 1.41

0.07 0.13 0.16 0.20 0.23 0.26 0.30 0.33 0.40 0.46 0.53 0.59 0.66 0.73 0.79

0.08 0.16 0.21 0.25 0.29 0.33 0.37 0.41 0.49 0.58 0.66 0.74 0.82 0.91 0.99

0.10 0.19 0.24 0.29 0.34 0.39 0.44 0.49 0.58 0.68 0.78 0.88 0.97 1.07 1.17

0.11 0.22 0.28 0.33 0.39 0.44 0.50 0.56 0.67 0.78 0.89 1.00 1.11 1.22 1.33

W S I - J O I S T

115% SNOW

ROOF SPANS ALLOWABLE SPANS FOR WSI-JOISTS – 30 PSF LIVE LOAD – 15 PSF DEAD LOAD Joist Series Joist Depth

WSI-40

WSI-70

WSI-90

9 1/2” 11 7/8” 14” 11 7/8” 14” 16” 11 7/8” 14” 16”

16” o.c. 20’– 1” (2) 22’– 11” (2) 25’– 2” (2) 26’– 8” (2) 30’– 4” (2) 33’– 7” (2) 30’– 6” (2) 34’– 8” (2) 38’– 5” (2)

Slopes to 4 in 12 19.2” o.c. 18’– 4” (2) 20’– 11” (2) 23’– 0” (2) 25’– 0” (2) 28’– 5” (2) 31’– 6” (2) 28’– 8” (2) 32’– 7” (2) 36’– 1” (3)

24” o.c. 16’– 5” (2) 18’– 8” (2) 20’– 6” (2) 23’– 2” (2) 26’– 4” (3) 28’– 11” (3) 26’– 6” (3) 30’– 2” (3) 33’– 5” (3)

16” o.c. 19’– 1” (2) 22’– 5” (3) 24’– 7” (3) 25’– 2” (3) 28’– 7” (3) 31’– 8” (3) 28’– 10” (3) 32’– 9” (3) 36’– 3” (3)

Simple Span Slopes to 8 in 12 19.2” o.c. 17’– 11” (3) 20’– 5” (3) 22’– 5” (3) 23’– 7” (3) 26’– 10” (3) 29’– 9” (3) 27’– 1” (3) 30’– 9” (3) 34’– 1” (3)

24” o.c. 16’– 0” (3) 18’– 3” (3) 20’– 0” (3) 21’– 10” (3) 24’– 10” (3) 27’– 7” (3) 25’– 1” (3) 28’– 6” (3) 31’– 6” (3)

16” o.c. 17’– 9” (3) 21’– 3” (3) 23’– 10” (3) 23’– 4” (3) 26’– 7” (3) 29’– 5” (3) 26’– 9” (3) 30’– 5” (3) 33’– 8” (3)

Slopes to 12 in 12 19.2” o.c. 16’– 8” (3) 19’– 9” (3) 21’– 8” (3) 21’– 11” (3) 24’– 11” (3) 27’– 8” (3) 25’– 2” (3) 28’– 7” (3) 31’– 8” (3)

24” o.c. 15’– 5” (3) 17’– 8” (3) 19’– 5” (3) 20’– 4” (3) 23’– 1” (3) 25’– 7” (3) 23’– 3” (3) 26’– 5” (3) 29’– 3” (3)

R

Notes: 1. Table values apply to uniformly loaded roof joists that are sloped at least ¼” in 12”. 2. Span is measured on the horizontal from face to face of supports. 3. Table values do not account for stiffness added by glued or nailed sheathing. 4. Provide at least 1¾” of bearing length at end supports and 3½” at intermediate supports. 5. The numbers in parentheses refer to the minimum connection required at each support. (1) Beveled plate and two nails (190 lbs. lateral capacity @ 115%), or joist hanger (2) Beveled plate and four nails (380 lbs. lateral capacity @ 115%), or (3) (3) Gussets at high support (1490 lbs. lateral capacity @ 115%), birdsmouth cut at low support, or (4) (4) Strap (1640 lbs. lateral capacity @ 115%) or pair of twist straps (950 lbs. lateral capacity each @ 115%) at high support, birdsmouth cut at low support 6. Provide lateral restraint at supports (e.g. blocking panels, rim board) and along the compression flange of each joist (e.g. roof sheathing, gypsum board ceiling). 7. Consult a professional engineer to analyze conditions outside the scope of this table (e.g. different bearing conditions, concentrated loads, multiple span joists).

O O

ALLOWABLE SPANS FOR WSI-JOISTS – 40 PSF LIVE LOAD – 15 PSF DEAD LOAD Joist Series Joist Depth 1/2”

WSI-70

WSI-90

24” o.c. 14’– 10” (2) 16’– 11” (2) 18’– 7” (2) 21’– 7” (3) 23’– 9” (3) 23’– 9” (3) 24’– 9” (3) 28’– 2” (3) 28’– 8” (3)

16” o.c. 17’– 10” (3) 20’– 4” (3) 22’– 4” (3) 23’– 7” (3) 26’– 10” (3) 29’– 8” (3) 27’– 0” (3) 30’– 8” (3) 34’– 0” (3)

Simple Span Slopes to 8 in 12 19.2” o.c. 16’– 3” (3) 18’– 7” (3) 20’– 5” (3) 22’– 1” (3) 25’– 2” (3) 27’– 11” (3) 25’– 4” (3) 28’– 10” (3) 31’– 11” (3)

24” o.c. 14’– 6” (3) 16’– 7” (3) 18’– 3” (3) 20’– 6” (3) 22’– 10” (3) 22’– 10” (3) 23’– 5” (3) 26’– 8” (3) 27’– 7” (3)

16” o.c. 16’– 8” (3) 19’– 10” (3) 21’– 9” (3) 22’– 0” (3) 25’– 0” (3) 27’– 8” (3) 25’– 2” (3) 28’– 7” (3) 31’– 8” (3)

Slopes to 12 in 12 19.2” o.c. 15’– 8” (3) 18’– 1” (3) 19’– 10” (3) 20’– 8” (3) 23’– 6” (3) 26’– 0” (3) 23’– 8” (3) 26’– 10” (3) 29’– 9” (3)

24” o.c. 14’– 2” (3) 16’– 2” (3) 17’– 9” (3) 19’– 1” (3) 21’– 7” (3) 21’– 7” (3) 21’– 11” (3) 24’– 10” (3) 26’– 1” (3)

F

WSI-40

9 11 7/8” 14” 11 7/8” 14” 16” 11 7/8” 14” 16”

16” o.c. 18’– 2” (2) 20’– 9” (2) 22’– 9” (2) 24’– 11” (2) 28’– 4” (2) 31’– 4” (2) 28’– 6” (2) 32’– 5” (3) 35’– 11” (3)

Slopes to 4 in 12 19.2” o.c. 16’– 7” (2) 18’– 11” (2) 20’– 9” (2) 23’– 4” (2) 26’– 7” (2) 29’– 5” (3) 26’– 9” (3) 30’– 5” (3) 33’– 8” (3)

See notes above

S  heck the local building code for deflection requirements. Table values are limited to L/180 at total load and L/240 at live load. C Choose the appropriate load duration category – 100% for heavy snow, 115% for snow or 125% for non-snow. When in doubt, consult the local building department. Choose the appropriate live and dead load combination and a joist spacing. Scan down the spacing column to find a span that exceeds the horizontal design span and the minimum connection required at each support. Scan to the left from that span to determine the joist size required. Web stiffeners are required at all supports for 22” and 24” joists.

A

1. 2. 3. 4. 5. 6.

P

HOW TO USE ROOF SPAN TABLES

N S

Wausau Supply Company | www.wausausupply.com

page

9

ROOF LOADS

SIMPLE-SPAN JOIST: ALLOWABLE LOADS FOR PWI JOISTS (PLF)

W S I - J O I S T

R

O

O

F

L

O

A

D

Joist Span (ft)

S

WSI-40 9 1/2’’ Live

WSI-70

11 7/8’’

Total

Live

11 7/8’’

14’’

Total

Live

Total

Live

14’’

Total

Live

16’’ Total

Live

Total

L/240

100%

115%

125%

L/240

100%

115%

125%

L/240

100%

115%

125%

L/240

100%

115%

125%

L/240

100%

115%

125%

L/240

100%

115%

125%

6

355

408

444

395

454

493

395

454

493

381

439

477

381

439

477

381

439

477

7

304

350

380

338

389

423

338

389

423

327

376

409

327

376

409

327

376

409

8

266

306

333

296

340

370

296

340

370

286

329

358

286

329

358

286

329

358

9

237

272

296

263

302

329

263

302

329

254

292

318

254

292

318

254

292

318

10

213

245

266

237

272

296

237

272

296

229

263

286

229

263

286

229

263

286

11

178

205

223

215

247

269

215

247

269

208

239

260

208

239

260

208

239

260

12

150

172

187

194

223

243

197

227

247

191

219

238

191

219

238

191

219

238

13

128

147

160

166

190

207

182

209

228

176

202

220

176

202

220

176

202

220

14

110

127

138

143

164

178

169

194

211

163

188

204

163

188

204

163

188

204

15

113

96

110

120

124

143

155

150

172

187

153

175

191

153

175

191

153

175

191

16

94

84

97

105

109

126

137

132

151

165

143

164

179

143

164

179

143

164

179

17

79

75

86

93

97

111

121

117

134

146

135

155

168

135

155

168

135

155

168

18

67

67

77

83

86

99

108

104

120

130

146

127

146

159

127

146

159

127

146

159

19

58

60

69

75

97

77

89

97

93

107

117

126

120

139

151

120

139

151

120

139

151

20

83

70

80

87

84

97

105

109

114

132

143

114

132

143

114

132

143

21

72

63

73

79

76

88

96

95

109

125

126

109

125

136

109

125

136

22

63

58

66

72

70

80

87

83

104

111

111

120

104

120

130

104

120

130

23

56

53

61

66

64

73

80

73

97

97

97

105

99

114

124

99

114

124

24

71

58

67

73

93

95

110

119

95

110

119

25

63

54

62

67

83

92

105

111

111

92

105

114

26

56

50

57

62

74

88

99

99

99

88

101

110

27

51

46

53

58

67

85

89

89

89

85

97

106

28

45

43

49

54

60

80

80

80

80

82

94

102

29

73

79

91

97

30

66

76

88

88

31

60

74

80

80

55

71

73

73

32

Notes: 1. Table values apply to uniformly loaded floor joists. 2. Span is measured to the center of each support. 3. Roofs must be sloped at least ¼” in 12” to assure drainage. 4. Table values do not account for stiffness added by glued or nailed sheathing. 5. Provide at least 1 ¾” of bearing length at end supports and 3 ½” at intermediate supports. 6. Provide lateral restraint at supports (e.g. blocking panels, rim board) and along the compression flange of each joist (e.g. roof sheathing, gypsum board ceiling). 7. Use sizing software or consult a professional engineer to analyze conditions outside the scope of this table (e.g. difference bearing lengths, concentrated loads) or for multiple span joists if the length of any span is less than half the length of an adjacent span.

HOW TO USE ROOF LOAD TABLES 1. Choose a joist spacing and convert the live and total design loads specified in pounds per square foot (psf) to joist loads in pounds per lineal foot (plf). Joist Spacing (ft) x Design Load (psf) = Joist Load (plf). Joist Spacing

Design Load (psf)

(inches)

(feet)

20

30

40

50

60

70

80

90

100

12

1

20

30

40

50

60

70

80

90

100

16

1.33

27

40

53

67

80

93

106

120

133

19.2

1.6

32

48

64

80

96

112

128

144

160

24

2

40

60

80

100

120

140

160

180

200

page

10

Wausau Supply Company | www.wausausupply.com

W S I - J O I S T

Joist Span (ft)

WSI-90 11 7/8’’ Live

14’’

Total

Live

16’’ Total

Live

Total

100%

115%

125%

L/240

100%

115%

125%

460

529

575

460

529

575

7

395

454

493

395

454

493

395

454

493

8

345

397

432

345

397

432

345

397

432

9

307

353

384

307

353

384

307

353

384

10

276

318

345

276

318

345

276

318

345

11

251

289

314

251

289

314

251

289

314

12

230

265

288

230

265

288

230

265

288

13

212

244

266

212

244

266

212

244

266

14

197

227

247

197

227

247

197

227

247

15

184

212

230

184

212

230

184

212

230

16

173

199

216

173

199

216

173

199

216

17

162

187

203

162

187

203

162

187

203

18

153

176

192

153

176

192

153

176

192

19

145

167

182

145

167

182

145

167

182

20

159

138

159

173

138

159

173

138

159

173

21

139

132

151

164

132

151

164

132

151

164

22

122

126

144

157

126

144

157

126

144

157

23

107

120

138

143

120

138

150

120

138

150

24

136

115

132

144

115

132

144

25

122

110

127

138

110

127

138

26

109

106

122

133

106

122

133

27

98

102

118

128

102

118

128

28

88

99

113

118

118

99

113

123

29

107

95

110

119

30

97

92

106

115

31

88

89

102

111

32

80

86

99

107

L

L/240

575

F

125%

529

O

115%

460

O

100%

R

L/240

6

O

Check the local building code for deflection requirements. Building codes typically require L/180 for total load and L/240 for live load. The values in the Total columns are based on L/180. Choose a span. Use the horizontal span dimension from the building plans for roofs that slope up to 2” in 12”. For roof slopes greater than 2’’ in 12’’, multiply the hortizontal dimension by the appropriate factor from the table below.

A

2. 3.

Slope

2 ½ in 12

3 in 12

3 ½ in 12

4 in 12

4 ½ in 12

5 in 12

6 in 12

7 in 12

8 in 12

9 in 12

10 in 12

11 in 12

12 in 12

Factor

1.01

1.02

1.03

1.04

1.05

1.07

1.10

1.14

1.19

1.23

1.28

1.34

1.39

at ends supports and √

S

at intermediate supports

where X = roof slope in 12, L = span (ft) and W = S √

{

LL +

D

4. Choose a load duration category – 100% for heavy snow, 115% for snow and 125% for non-snow. When in doubt, consult the local building department. 5. Scan across the Span row to find a joist size with sufficent Live and applicable Total load capabilities. Both requirements must be satisified. When no value is show in a Live column, Total load governs. 6. Sloping joists must be fastened to each support to resist a siding force equal to:

}

, where S = joist spacing (ft), LL = live load (psf) and DL = dead load (psf)

7. Web stiffeners are required at all supports for 22’’ and 24’’ joists.

Wausau Supply Company | www.wausausupply.com

page

11

S I

E

WS-LAM LVL HEADERS & BEAMS

1½” x 1.5E WS-LAM LVL

E P

WS-LAM

O

R

T

ICBO ES ER-5598 • HUD MR 1310 DSA PA-123 • LAC RR25448 • CCMC 13006-R

DESIGN PROPERTIES WS-Lam LVL Depth

N

P

R

ALLOWABLE DESIGN PROPERTIES

Maximum Vertical Shear (lbs) 100%

115%

125%

Maximum Bending Moment (lbs) 100%

115%

125%

El (x 106 lbs-in2)

Weight (plf)

3 ½”

770

886

963

670

770

837

8

1.36

7 ¼”

1595

1834

1994

2624

3018

3280

71

2.82

1.5E WS-Lam LVL Allowable Design Stresses(1) Modulus of Elasticity E = 1,500,000 psi(2) Bending Fb = 2,250 psi(3)(4) Horizontal Shear (joist) Fv = 220 psi Compression Perpendicular to Grain (joist) Fc = 575 psi(2) Compression Parallel to Grain Fc = 1,950 psi

1¾” x 2.0E WS-LAM LVL ALLOWABLE DESIGN PROPERTIES

1½” 1.5E WS-LAM LVL

G E

S

I

1½” x 2.0E WS-LAM LVL ALLOWABLE DESIGN PROPERTIES WS-Lam LVL Depth

D

5 ½’’

M

Maximum Vertical Shear (lbs)

Maximum Bending Moment (lbs)

100%

115%

125%

100%

115%

125%

El (x 106 lbs-in2)

1210

1392

1513

1563

1798

1954

31

Weight (plf) 2.14

2.0E WS-Lam LVL Allowable Design Stresses(1) Modulus of Elasticity E = 2,000,000 psi(2) Bending Fb = 3,100 psi(3)(4) Horizontal Shear (joist) Fv = 285 psi Compression Perpendicular to Grain (joist) Fc = 850 psi(2) Compression Parallel to Grain Fc = 2,750 psi

Maximum Vertical Shear (lbs)

Maximum Bending Moment (lbs)

100%

115%

125%

100%

115%

125%

El (x 106 lbs-in2)

7 ¼”

2411

2772

3013

4380

5037

5475

111

3.30

9 ½”

3159

3633

3948

7125

8194

8907

250

4.32

11 7/8”

3948

4541

4936

10647

12245

13309

488

5.40

14”

4655

5353

5819

14320

16468

17900

800

6.36

16”

5320

6118

6650

18210

20942

22763

1195

7.27

18”

5985

6883

7481

22511

25888

28139

1701

8.18

23 7/8”

7938

9129

9923

37428

43043

46786

3969

10.85

WS-Lam LVL Depth

AVAILABLE SIZES (INCHES):

2.0E WS-Lam LVL Allowable Design Stresses(1) Modulus of Elasticity E = 2,000,000 psi(2) Bending Fb = 3,100 psi(3)(4) Horizontal Shear (joist) Fv = 285 psi Compression Perpendicular to Grain (joist) Fc = 850 psi(2) Compression Parallel to Grain Fc = 2,750 psi

1 ¾” 2.0E WS-LAM LVL

1½” 2.0E WS-LAM LVL

AVAILABLE SIZES (INCHES):

L

A

AVAILABLE SIZES (INCHES):

W

S

-

(1) These allowable design stresses apply to dry service conditions. (2) No increase is allowed for load duration. (3) Multiply by (12/d)1/8 where d = depth of member (in). (4) A factor of 1.04 may be applied for repetitive members as defined in the National Design Specification® for Wood Construction.

page

12

Wausau Supply Company | www.wausausupply.com

7 1/4

11 7/8

14

16

18

23 7/8

Weight (plf)

2.0E FLOOR 100

W

ALLOWABLE UNIFORM LOADS

S

%

-

ALLOWABLE UNIFORM LOADS* – POUNDS PER LINEAL FOOT – 1¾” 2.0E WS-LAM LVL

8

9

10

12

13

14

15

16

17

18

19

21

22

23

24

25

26

27

29

30

9 ½” 3190 2.2 / 5.4 2632 2.1 / 5.2 2171 2239 2/5 1525 1948 2 / 4.9 1111 1654 1.9 / 4.7 835 1240 1.5 / 3.9 643 952 1.5 / 3.2 506 746 1.5 / 3 405 595 1.5 / 3 329 481 1.5 / 3 271 394 1.5 / 3 226 326 1.5 / 3 191 273 1.5 / 3 162 230 1.5 / 3

11 7/8” 4275 2.9 / 7.2 3483 2.7 / 6.9 2937 2.6 / 6.6 2539 2.6 / 6.4 2171 2236 2.5 / 6.3 1631 1996 2.5 / 6.2 1256 1758 2.4 / 6 988 1466 2.2 / 5.4 791 1170 1.9 / 4.7 643 949 1.6 / 4.1 530 779 1.5 / 3.6 442 647 1.5 / 3.2 372 542 1.5 / 3 316 459 1.5 / 3 271 391 1.5 / 3 234 335 1.5 / 3 204 290 1.5 / 3 178 251 1.5 / 3

14” 5387 3.6 / 9.1 4334 3.4 / 8.5 3624 3.3 / 8.2 3113 3.2 / 7.9 2728 3.1 / 7.7 2427 3 / 7.5 2058 2186 3 / 7.4 1619 1988 2.9 / 7.3 1296 1734 2.8 / 6.9 1054 1508 2.6 / 6.4 868 1284 2.3 / 5.8 724 1067 2.1 / 5.2 610 896 1.8 / 4.6 519 759 1.7 / 4.1 445 648 1.5 / 3.7 384 557 1.5 / 3.4 334 482 1.5 / 3.1 292 419 1.5 / 3 257 367 1.5 / 3 228 322 1.5 / 3 202 284 1.5 / 3 181 252 1.5 / 3 162 224 1.5 / 3

16” 6582 4.4 / 11.1 5225 4.1 / 10.3 4331 3.9 / 9.8 3697 3.8 / 9.4 3224 3.6 / 9.1 2858 3.5 / 8.9 2566 3.5 / 8.7 2328 3.4 / 8.6 1935 2130 3.4 / 8.4 1573 1921 3.3 / 8.2 1296 1685 3.1 / 7.7 1081 1490 2.9 / 7.2 910 1327 2.7 / 6.8 774 1139 2.5 / 6.2 664 974 2.2 / 5.6 573 838 2 / 5.1 499 726 1.8 / 4.6 436 633 1.7 / 4.2 384 554 1.5 / 3.9 340 488 1.5 / 3.6 302 431 1.5 / 3.3 270 383 1.5 / 3.1 242 341 1.5 / 3 218 305 1.5 / 3 197 273 1.5 / 3

18” 7955 5.4 / 13.4 6221 4.9 / 12.2 5105 4.6 / 11.5 4328 4.4 / 11 3755 4.2 / 10.6 3316 4.1 / 10.3 2968 4 / 10.1 2686 3.9 / 9.9 2452 3.9 / 9.7 2240 2255 3.8 / 9.6 1846 2086 3.8 / 9.5 1539 1845 3.6 / 8.9 1296 1643 3.4 / 8.4 1102 1472 3.2 / 8 945 1326 3 / 7.6 816 1200 2.9 / 7.2 710 1040 2.6 / 6.6 621 907 2.4 / 6 547 796 2.2 / 5.5 484 701 2 / 5.1 430 621 1.9 / 4.7 384 552 1.7 / 4.4 344 492 1.6 / 4.1 310 440 1.5 / 3.8 280 395 1.5 / 3.5

* Can be applied to the beam in addition to its own weight. Simple or multiple beam spans Key to Table: LL = Maximum live load –  limits deflection to L/360 TL = Maximum total load – limits deflections to L/240 (or a maximum of 0.3125” for beams 7 ¼” deep or less) BRG = Required end / intermediate bearing length (inches), based on bearing stress of 850 psi.

Wausau Supply Company | www.wausausupply.com

page

13

L O A D S

28

Three 1 ¾” 2.0E WS-Lam™ LVL 18” 5304 5.4 / 13.4 4147 4.9 / 12.2 3404 4.6 / 11.5 2885 4.4 / 11 2504 4.2 / 10.6 2211 4.1 / 10.3 1979 4 / 10.1 1790 3.9 / 9.9 1635 3.9 / 9.7 1493 1504 3.8 / 9.6 1230 1391 3.8 / 9.5 1026 1230 3.6 / 8.9 864 1095 3.4 / 8.4 735 981 3.2 / 8 630 884 3 / 7.6 544 800 2.9 / 7.2 473 694 2.6 / 6.6 414 605 2.4 / 6 365 530 2.2 / 5.5 323 467 2 / 5.1 287 414 1.9 / 4.7 256 368 1.7 / 4.4 230 328 1.6 / 4.1 207 294 1.5 / 3.8 187 264 1.5 / 3.5

U N I F O R M

20

Two 1 ¾” 2.0E WS-Lam™ LVL 11 7/8” 14” 16” 2850 3591 4388 2.9 / 7.2 3.6 / 9.1 4.4 / 11.1 2322 2889 3484 2.7 / 6.9 3.4 / 8.5 4.1 / 10.3 1958 2416 2887 2.6 / 6.6 3.3 / 8.2 3.9 / 9.8 1693 2075 2465 2.6 / 6.4 3.2 / 7.9 3.8 / 9.4 1447 1490 1819 2150 2.5 / 6.3 3.1 / 7.7 3.6 / 9.1 1087 1331 1618 1905 2.5 / 6.2 3 / 7.5 3.5 / 8.9 837 1372 1172 1457 1711 2.4 / 6 3 / 7.4 3.5 / 8.7 659 1079 977 1325 1552 2.2 / 5.4 2.9 / 7.3 3.4 / 8.6 527 864 1290 780 1156 1420 1.9 / 4.7 2.8 / 6.9 3.4 / 8.4 429 703 1049 632 1006 1280 1.6 / 4.1 2.6 / 6.4 3.3 / 8.2 353 579 864 519 856 1124 1.5 / 3.6 2.3 / 5.8 3.1 / 7.7 295 483 720 431 711 994 1.5 / 3.2 2.1 / 5.2 2.9 / 7.2 248 407 607 361 597 885 1.5 / 3 1.8 / 4.6 2.7 / 6.8 211 346 516 306 506 760 1.5 / 3 1.7 / 4.1 2.5 / 6.2 181 296 442 261 432 649 1.5 / 3 1.5 / 3.7 2.2 / 5.6 156 256 382 224 371 559 1.5 / 3 1.5 / 3.4 2 / 5.1 136 223 332 193 321 484 1.5 / 3 1.5 / 3.1 1.8 / 4.6 119 195 291 168 280 422 1.5 / 3 1.5 / 3 1.7 / 4.2 172 256 245 370 1.5 / 3 1.5 / 3.9 152 227 215 325 1.5 / 3 1.5 / 3.6 135 201 190 288 1.5 / 3 1.5 / 3.3 120 180 168 255 1.5 / 3 1.5 / 3.1 108 161 149 227 1.5 / 3 1.5 / 3 145 203 1.5 / 3 131 182 1.5 / 3

A L L O W A B L E

11

9 ½” 2127 2.2 / 5.4 1754 2.1 / 5.2 1447 1493 2/5 1016 1298 2 / 4.9 741 1103 1.9 / 4.7 557 826 1.5 / 3.9 429 635 1.5 / 3.2 337 497 1.5 / 3 270 396 1.5 / 3 220 321 1.5 / 3 181 263 1.5 / 3 151 218 1.5 / 3 127 182 1.5 / 3 108 153 1.5 / 3

M

7

LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG

One 1 ¾” 2.0E WS-Lam™ LVL 9 ½” 11 7/8” 14” 1063 1425 1796 2.2 / 5.4 2.9 / 7.2 3.6 / 9.1 877 1161 1445 2.1 / 5.2 2.7 / 6.9 3.4 / 8.5 724 746 979 1208 2/5 2.6 / 6.6 3.3 / 8.2 508 649 846 1038 2 / 4.9 2.6 / 6.4 3.2 / 7.9 370 724 551 745 909 1.9 / 4.7 2.5 / 6.3 3.1 / 7.7 278 544 413 665 809 1.5 / 3.9 2.5 / 6.2 3 / 7.5 214 419 686 317 586 729 1.5 / 3.2 2.4 / 6 3 / 7.4 169 329 540 249 489 663 1.5 / 3 2.2 / 5.4 2.9 / 7.3 135 264 432 198 390 578 1.5 / 3 1.9 / 4.7 2.8 / 6.9 110 214 351 160 316 503 1.5 / 3 1.6 / 4.1 2.6 / 6.4 90 177 289 131 260 428 1.5 / 3 1.5 / 3.6 2.3 / 5.8 75 147 241 109 216 356 1.5 / 3 1.5 / 3.2 2.1 / 5.2 64 124 203 91 181 299 1.5 / 3 1.5 / 3 1.8 / 4.6 54 105 173 77 153 253 1.5 / 3 1.5 / 3 1.7 / 4.1 90 148 130 216 1.5 / 3 1.5 / 3.7 78 128 112 186 1.5 / 3 1.5 / 3.4 68 111 97 161 1.5 / 3 1.5 / 3.1 59 97 84 140 1.5 / 3 1.5 / 3 86 122 1.5 / 3 76 107 1.5 / 3 67 95 1.5 / 3 60 84 1.5 / 3 54 75 1.5 / 3

A

6

Key

L

Span (ft)

L O A D S

2.0E ROOF SNOW 115 ALLOWABLE UNIFORM LOADS

ALLOWABLE UNIFORM LOADS* – POUNDS PER LINEAL FOOT – 1¾” 2.0E WS-LAM™ LVL Span (ft) 6

U N I F O R M

7

8

9

10

11

12

13

14

A L L O W A B L E

15

16

17

18

19

20

21

22

23

24

25

M

26

A L

30

S

29

-

27

28

W

%

Key LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG LL TL BRG

One 1 ¾” 2.0E WS-Lam™ LVL 9 ½” 11 7/8” 14” 257 998 265 1035 1756 1.5 / 3 1.5 / 3 1.8 / 4.4 141 556 1279 1.5 / 3 1.5 / 3 1.5 / 3.8 324 747 1.5 / 3 1.5 / 3 200 464 1.5 / 3 1.5 / 3 130 302 1.5 / 3 1.5 / 3 87 204 1.5 / 3 1.5 / 3 142 1.5 / 3 102 1.5 / 3 74 1.5 / 3

9 ½” 2447 2.5 / 6.2 2019 2.4 / 6 1718 2.3 / 5.8 1494 2.3 / 5.7 1111 1302 2.2 / 5.5 835 1075 2/5 643 849 1.7 / 4.3 506 666 1.5 / 3.7 405 531 1.5 / 3.2 329 430 1.5 / 3 271 353 1.5 / 3 226 293 1.5 / 3 191 245 1.5 / 3 162 207 1.5 / 3

Two 1 ¾” 2.0E WS-Lam™ LVL 11 7/8” 14” 16” 3279 4132 5049 3.3 / 8.3 4.2 / 10.4 5.1 / 12.8 2672 3324 4008 3.2 / 7.9 3.9 / 9.8 4.7 / 11.8 2254 2780 3323 3 / 7.6 3.8 / 9.4 4.5 / 11.2 1948 2389 2837 3 / 7.4 3.6 / 9.1 4.3 / 10.8 1716 2093 2474 2.9 / 7.3 3.5 / 8.8 4.2 / 10.5 1532 1863 2193 2.9 / 7.1 3.5 / 8.7 4.1 / 10.2 1256 1350 1678 1970 2.7 / 6.9 3.4 / 8.5 4 / 10 988 1148 1526 1787 2.5 / 6.3 3.4 / 8.4 3.9 / 9.8 791 1296 989 1332 1635 2.4 / 5.9 3.2 / 7.9 3.9 / 9.7 643 1054 847 1158 1475 2.2 / 5.4 3 / 7.4 3.8 / 9.4 530 868 696 1016 1294 1.9 / 4.8 2.8 / 6.9 3.5 / 8.8 442 724 1081 578 899 1145 1.7 / 4.2 2.6 / 6.5 3.3 / 8.3 372 610 910 485 800 1020 1.5 / 3.8 2.5 / 6.2 3.1 / 7.8 316 519 774 411 679 914 1.5 / 3.4 2.2 / 5.5 3 / 7.4 271 445 664 351 580 823 1.5 / 3 2/5 2.8 / 7 234 384 573 302 499 745 1.5 / 3 1.8 / 4.5 2.7 / 6.7 204 334 499 261 433 650 1.5 / 3 1.6 / 4.1 2.5 / 6.1 178 292 436 227 377 567 1.5 / 3 1.5 / 3.8 2.2 / 5.6 257 384 330 498 1.5 / 3.5 2.1 / 5.2 228 340 291 439 1.5 / 3.2 1.9 / 4.8 202 302 257 388 1.5 / 3 1.8 / 4.4 181 270 228 345 1.5 / 3 1.6 / 4.1 162 242 203 308 1.5 / 3 1.5 / 3.8 218 276 1.5 / 3.5 197 248 1.5 / 3.3

Three 1 ¾” 2.0E WS-Lam™ LVL 18” 6102 6.2 / 15.4 4772 5.6 / 14.1 3917 5.3 / 13.2 3321 5 / 12.6 2882 4.9 / 12.2 2545 4.7 / 11.8 2278 4.6 / 11.6 2061 4.5 / 11.3 1882 4.5 / 11.2 1732 4.4 / 11 1602 4.4 / 10.9 1417 4.1 / 10.2 1262 3.9 / 9.7 1102 1131 3.7 / 9.2 945 1019 3.5 / 8.7 816 923 3.3 / 8.3 710 839 3.2 / 7.9 621 767 3 / 7.6 547 703 2.9 / 7.3 484 629 2.7 / 6.8 430 557 2.5 / 6.3 384 496 2.3 / 5.8 344 443 2.2 / 5.4 310 397 2/5 280 357 1.9 / 4.7

9 ½” 3671 2.5 / 6.2 3028 2.4 / 6 2577 2.3 / 5.8 2242 2.3 / 5.7 1667 1954 2.2 / 5.5 1253 1612 2/5 965 1273 1.7 / 4.3 759 999 1.5 / 3.7 608 797 1.5 / 3.2 494 646 1.5 / 3 407 530 1.5 / 3 339 439 1.5 / 3 286 368 1.5 / 3 243 311 1.5 / 3

* Can be applied to the beam in addition to its own weight. Simple or multiple beam spans Key to Table: LL = Maximum live load –  limits deflection to L/240 TL = Maximum total load – limits deflections to L/180 (or a maximum of 0.3125” for beams 7 ¼” deep or less) BRG = Required end / intermediate bearing length (inches), based on bearing stress of 850 psi.

page

14

Wausau Supply Company | www.wausausupply.com

11 7/8” 4919 3.3 / 8.3 4008 3.2 / 7.9 3380 3 / 7.6 2922 3 / 7.4 2573 2.9 / 7.3 2298 2.9 / 7.1 1884 2025 2.7 / 6.9 1482 1723 2.5 / 6.3 1187 1483 2.4 / 5.9 965 1270 2.2 / 5.4 795 1044 1.9 / 4.8 663 867 1.7 / 4.2 558 728 1.5 / 3.8 475 617 1.5 / 3.4 407 526 1.5 / 3 352 453 1.5 / 3 306 392 1.5 / 3 268 341 1.5 / 3

14” 6198 4.2 / 10.4 4987 3.9 / 9.8 4170 3.8 / 9.4 3583 3.6 / 9.1 3140 3.5 / 8.8 2794 3.5 / 8.7 2517 3.4 / 8.5 2289 3.4 / 8.4 1944 1997 3.2 / 7.9 1581 1737 3 / 7.4 1303 1525 2.8 / 6.9 1086 1348 2.6 / 6.5 915 1201 2.5 / 6.2 778 1018 2.2 / 5.5 667 870 2/5 576 749 1.8 / 4.5 501 649 1.6 / 4.1 439 566 1.5 / 3.8 386 496 1.5 / 3.5 341 436 1.5 / 3.2 304 386 1.5 / 3 271 342 1.5 / 3 243 305 1.5 / 3

16” 7573 5.1 / 12.8 6012 4.7 / 11.8 4984 4.5 / 11.2 4255 4.3 / 10.8 3711 4.2 / 10.5 3290 4.1 / 10.2 2954 4 / 10 2681 3.9 / 9.8 2453 3.9 / 9.7 2212 3.8 / 9.4 1941 3.5 / 8.8 1621 1717 3.3 / 8.3 1366 1529 3.1 / 7.8 1161 1370 3 / 7.4 996 1235 2.8 / 7 860 1118 2.7 / 6.7 748 975 2.5 / 6.1 655 851 2.2 / 5.6 576 746 2.1 / 5.2 510 658 1.9 / 4.8 453 582 1.8 / 4.4 405 518 1.6 / 4.1 363 462 1.5 / 3.8 327 414 1.5 / 3.5 295 371 1.5 / 3.3

18” 9152 6.2 / 15.4 7157 5.6 / 14.1 5875 5.3 / 13.2 4981 5 / 12.6 4322 4.9 / 12.2 3817 4.7 / 11.8 3417 4.6 / 11.6 3092 4.5 / 11.3 2823 4.5 / 11.2 2597 4.4 / 11 2402 4.4 / 10.9 2125 4.1 / 10.2 1893 3.9 / 9.7 1653 1696 3.7 / 9.2 1418 1529 3.5 / 8.7 1224 1384 3.3 / 8.3 1065 1259 3.2 / 7.9 932 1150 3 / 7.6 820 1054 2.9 / 7.3 726 943 2.7 / 6.8 645 836 2.5 / 6.3 576 744 2.3 / 5.8 517 664 2.2 / 5.4 465 595 2/5 420 535 1.9 / 4.7

W

BEARING DETAILS BEARING ON WOOD COLUMN

Verify the required bearing area and the ability of the supporting column member to provide adequate strength.

BEARING ON STEEL COLUMN

Verify the required bearing area and the ability of the supporting column member to provide adequate strength.

L

Make sure hanger capacity is appropriate for each application. Hangers must be properly installed to accommodate full capacity.

3c

-

3b

S

BEAM-TO-BEAM CONNECTION 3a

A

BEARING FOR DOOR OR WINDOW HEADER—

BEARING ON EXTERIOR WALL

WINDOW/DOOR HEADER—

3e 1-STORY TYPICAL

Prevent direct contact of WS-Lam with concrete. Consult local building code for requirements.

3f 2-STORY TYPICAL

See “Bearing Length Requirements” below.

M

3d

See “Bearing Length Requirements” below.

B E A R I N G

For multiple-ply WS-Lam LVL beam assembly conditions and fastening recommendations, see next page

BEARING LENGTH REQUIREMENTS WS-LAM BEARING LENGTH REQUIREMENTS S-P-F (South) Hem-Fir (North)(5)

Fc (psi)

Reaction (x 1000 lbs)

405

565

2.0E WS-Lam(6)

575

Support Material

850

Fc (psi)

1 ¾”

3 ½”

1 ¾”

3 ½”

1 ¾”

3 ½”

1 ¾”

3 ½”

1 ¾”

3 ½”

3” 3 ½” 5 ½” 7 ¼” 9 ¼”

1 ½” 3” 3” 3 ½” 4 ½” 5 ½” 6” 7 ¼” 9 ¼” 9 ¼”

1 ½” 3” 4 ½” 6” 7 ¼” 9 ¼”

1 ½” 1 ½” 3” 3” 4 ½” 4 ½” 5 ½” 6” 7 ¼” 7 ¼” 9 ¼”

1 ½” 3” 3 ½” 4 ½” 5 ½” 7 ¼” 7 ¼” 9 ¼” 9 ¼”

1 ½” 1 ½” 3” 3” 3” 3 ½” 4 ½” 4 ½” 5 ½” 5 ½” 6”

1 ½” 3” 4 ½” 6” 7 ½” 9”

1 ½” 3” 3” 4 ½” 5 ½” 6” 7 ½” 9” 9”

1 ½” 1 ½” 3” 3” 3 ½” 4 ½” 5 ½” 5 ½” 7 ½” 7 ½” 7 ½”

1 ½” 1 ½” 1 ½” 1 ½” 3” 3” 3” 3” 3 ½” 3 ½” 4 ½”

Beam Width (in)

Continued in next column

HOLE DETAILS

335 1 ¾”

12 13 14 15 16 17 18 19 20 21 22 23

Southern Pine Douglas Fir – Larch(5)

405 3 ½”

1 ¾”

1.5E WS-Lam(6)

565 3 ½”

9 ¼” 9 ¼”

1 ¾”

2.0E WS-Lam(6)

575 3 ½”

1 ¾”

7 ¼” 7 ¼” 7 ¼” 9 ¼” 9 ¼” 9 ¼” 9 ¼”

850 3 ½”

1 ¾”

3 ½”

9” 9”

4 ½” 4 ½” 5 ½” 5 ½” 5 ½” 6” 7 ½” 7 ½” 7 ½” 7 ½” 7 ½” 9”

5. Use these values when the WS-Lam beam is supported by a wall plate, sill plate, timber or built-up girder. 6. Use these values when the WS-Lam beam is supported by the end of a column or connection hardware. 7. The support member must be sized to carry the load from the WS-Lam beam.

Notes: 1. This detail applies only to uniformly loaded, simple and multiple span beams. Cantilevered beams and beams that carry concentrated loads are outside the scope of this detail. 2. Square and rectangular holes are not permitted. 3. Round holes may be drilled or cut with a hole saw anywhere within the shaded area of the beam. 4. The horizontal distance between adjacent holes must be at least two times the size of the larger hole. This restriction also applies to the location of access holes relative to bolt holes in multi-ply beams. 5. Do not drill more than three access holes in any four foot long section of beam. 6. The maximum round hole diameter permitted is:

HOLES IN WS-LAM BEAMS See note 4 ¹⁄₃ depth ¹⁄₃ depth ¹⁄₃ depth

End support

Hem-Fir S-P-F(5)

¹⁄₃ Span Interior support

WS-Lam Beam Depth Maximum Hole Diameter

5 ½” 1 1/8”

7 ¼” 1 ½”

9 ½” to 24” 1 ½”

7. These limitations apply to holes drilled for plumbing or wiring access only. The size and location of holes drilled for fasteners are governed by the provisions of the National Design Specification® for Wood Construction. 8. Beams deflect under load. Size holes to provide clearance where required.

Wausau Supply Company | www.wausausupply.com

page

15

I N F O R M A T I O N

Notes: 1. The minimum required bearing length is 1 ½”. 2. Duration of load factors may not be applied to bearing length requirements. 3. All WS-Lam beams require support across their full width. 4. All WS-Lam beams require lateral support at bearing points.

¹⁄₄ Span

S-P-F (South) Hem-Fir (North)(5)

H O L E

­1 2 3 4 5 6 7 8 9 10 11

335

1.5E WS-Lam(6)

A N D

Beam Width (in)

Hem-Fir S-P-F(5)

Reaction (x 1000 lbs)

Support Material

WS-LAM BEARING LENGTH REQUIREMENTS Southern Pine Douglas Fir – Larch(5)

A S S E M B L Y

MULTIPLE-PLY BEAM ASSEMBLY COMBINATIONS OF 1 ¾” AND 3 ½” PLIES CONDITION A

CONDITION B

CONDITION C

CONDITION D 2”

2”

2” pieces 11C\v” 22pieces ¾”

pieces 1 1C\v” 33 pieces ¾”

piece 1 1C\v” 11 piece ¾” piece 3 3Z\x” 11 piece ½”

2” pieces11C\v” 44pieces ¾”

pieces11C\v” 22pieces ¾” piece33Z\x” 11piece ½”

pieces 33Z\x” 22pieces ½”

Bolt Spacing

B E A M

Nail Spacing

M U L T I P L E - P L Y

CONDITION E

2” min.

2” min. Stagger rows of bolts

1¾” AND 3½” PLIES—MAXIMUM UNIFORM SIDE LOAD (PLF) 3 ½” x 0.131” Nails Condition

16d Common Nails

½” Bolts

2 Rows at 12” o.c.

3 Rows at 12” o.c.

2 Rows at 12” o.c.

3 Rows at 12” o.c.

2 Rows at 24” o.c.

2 Rows at 12” o.c.

3 Rows at 12” o.c.

Condition A (2 – 1 ¾”)

390

585

565

845

510

1015

1520

Condition B (3 – 1 ¾” OR 1 – 1 ¾” + 1 – 3 ½”)

290

435

425

635

380

765

1145

Condition C (2 – 1 ¾” + 1 – 3 ½”)

260

390

375

565

465

930

1395

Condition D (4 – 1 ¾”)

use bolts for this condition

340

680

1015

Condition E (2 – 3 ½”)

use bolts for this condition

860

1720

2580

Notes: 1. Minimum fastener schedule for smaller side loads and top-loaded beams: Conditions A, B & C, beams 12” deep or less: 2 rows 3 ½” x 0.131” at 12” o.c. Conditions A, B & C, beams deeper than 12”: 3 rows 3 ½” x 0.131” at 12” o.c. Conditions D & E, all beam depths: 2 rows ½” bolts at 24” o.c. 2. The table values for nails may be doubled for 6” o.c. and tripled for 4” o.c. nail spacings.

4. The table values apply to common bolts that conform to ANSI/ASME Standard B18.2.1-1981. A washer not less than a standard cut washer shall be between the wood and the bolt head and between the wood and the nut. The distance from the edge of the beam to the bolt holes must be at least 2” for ½” bolts. Bolt holes shall be the same diameter as the bolt. 5. 7” wide beams must be loaded from both sides and/or top loaded. 6. Beams wider than 7” must be designed by the engineer of record. 7. Load duration factors may be applied to the table values.

M

3. The nail schedules shown apply to both sides of a three-ply beam.

HOW TO USE THE MAXIMUM UNIFORM SIDE-LOAD TABLE THREE 1 ¾” PLIES LOADED FROM BOTH SIDES AND ABOVE (CONDITION B) 1. Use allowable load tables or sizing software to size the beam to carry a total load of (300 + 610 + 550) = 1460 plf. 2. Refer to the Condition B row in the table. Scan across the row from left to right for a table value greater than 550 plf, which is the greatest side load carried by the beam. The fourth value in the row indicates that 3 rows of 16d common nails at 12” o.c. will accommodate a side load of 635 plf which is greater than the 550 plf required. Use 3 rows of 16d common nails at 12” o.c., from both sides, to assemble the beam.

W

S

-

L

A

EXAMPLE:

page

16

Wausau Supply Company | www.wausausupply.com

610 plf 300 plf

550 plf

fv =

3V 2bde

Compression side 3V 3V 3V fv = When e ≥ de, fv = fv = 2bd 2bd d – de 2b d – e de Field Notching and Drilling of Glued Laminated Timber Beams d When e > de, fv = 3V (a) Square End Bearing (b) Slope End Bearing 2bde (d) Compression-side Notch

(

Compression side

)

FIGURE 2f = 3V v 2bd SHEAR DESIGN EQUATIONS FOR NOTCHED AND TAPERED BEAMS

Maximum 1/3 of the span e

de ≥ 0.9d

d

Field Notching and Drilling of Laminated 0.1d or 3 inches max., Veneer Lumber whichever is less

( )

d 2

FIGURE 1

fv =

(b) Slope End Bearing

0.4d max.

3V 2bd

d

2

d

Maximum 1/3 of the span 3V e fv =

Maximum 1/3 d ≥ 0.6d of the span e e

NOTCHED AND TAPPERED LVL BEAMS & GLULAM BEAMS

2 fv = 3V d 2bde de

de ≥ 0.6d

Maximum Compression side 1/3 of the span e

(a) Square End Bearing

d

W S - L A M

NOTCHED AND TAPPERED LVL BEAMS & GLULAM BEAMS

(c) Sloped End Cut for Roof Drainage

2bd (e) Tension-side Notch 0.4d 3V 3V When e ≤AND de, fv TAPERED When e ≤ de, fv = = SHEAR DESIGN EQUATIONS FOR NOTCHED LVL BEAMS max. d – de d – de e e 2b dof–beam (in.) 2b d – fv = shear stress (psi) V = shear force at notch location (lb) b = width TAPERED LVL BEAMS de as shown (in.) de d = depth of beam (in.) de = effective depth as shown (in.) e = length of notch d d Compression side Compression side (a) Square End Bearing d ≥ 0.6d (b) Slope E e de ≥ 0.6d When e > de, fv = 3V When eside > de, fv = 3V Compression 2bde 2bde (d) Compression-side Notch (c) Sloped End Cut for Roof Drainage 3V 3V d d When e ≤ de, fv = When e ≤ de, fv = d – de d – de 2b d – e 2b d – 3de or d de de e 3d the s maximum whichev When e > de, fv = 3V When e > de, fv = 3V 2bde 2bde 3V 3V fv = fv = 2bd 2bd (c) Sloped End Cut for Roof Drainage (d) Compression-side Notch 3V d ≥ 0.9d 0.4d e = 2010 APA – The Form No. EWS S560G f■v © Engineered Wood Association ■ www.apawood.org d 2bd max.

(

)

(

(

0.1d max.

(a) Square End Bearing (b) Slope End Bearing

e

0.4d max.

0.4d max.

d de ≥ 0.6d

d

3V d–d 3V e e 2b d – When e ≤ de, fv = dd–e de 2b d – e de When e > de, fv = 3V 2bde 3V When e >End de, fvCut = for (c) Sloped 2bdRoof Drainage

(

)

(

e

(d) Compression-side Notch © APA - The Engineered Wood Association

)

0.1d max.

d

3V 2bde

= width of beam (in.) = length of notch as shown (in.)

( )

fv = 3V d 2bde de (c) Sloped End Cut for Roof Drainage

V = shear force at notch location (lbf) d de = effective depth as shown (in.)

e

2

(d) Compr

b = width of beam (in.) e = length of notch as shown (in.)

de ≥ 0.9d 3V d – de 2b d – e de Wood Association ■ www.apawood.org Form No. EWS G535A ■ © 2010 APA – The Engineered 0.1d or 3 inches max., whichever is less When e > de, fv = 3V 2bde fv = 3V (d) Compression-side Notch 2bde Form No. EWS G535A ■ © 2010 APA – The Engineered Wood Association ■ www. (e) Tension-side Notch

When e ≤ de, fv =

(

)

fv = shear stress (psi) d = depth of beam (in.)

Form No. EWS G535A/Revised June 2010 Form No. EWS S560G/Revised June 2010

de ≥ 0.9d d

fv =

V = shear force at notch location (lb) de = effective depth as shown (in.)

d for Glulam Beams

0.1d max.

( ) VERTICAL HOLES FOR GLULAM BEAMS f = 3V ( d ) 2bd d (e) Tension-side Notch fv = 3V d 2bde de

2

v

e

)

de ≥ 0.6d

2

for Glulam Beams (e) Tension-side Notch

fv = shear stress (psi) d d= ≥depth 0.6dof beam (in.)

d

When e ≤ de, fv =

for LVL Beams

(

( )

Maximum 1/3 of the spanfv = shear stress (psi) Maximum d = depth of beam (in.) 1/3 of the span e

de ≥ 0.6d

)

(b) Slope End Bearing d/3 de min. 3V d v= de ≥ f0.9d 2bde de

(e) Tension-side Notch Maximum 1/3 of(lbf) the span V = shear force at notch location b de = effective depth as shown (in.) e e

)

2

e

b = width of b e = length of n

Whenever possible, avoid drilling vertical holes through glulam beams. As a rule of thumb, vertical holes drilled through the depth of a glulam Form beamNo. cause a reduction EWS S560G ■ © 2010 APA – The the capcity at that location directly proportional to the ratio of 1 ½ time the diameter of the hole to the width of the beam. For example, a 1 inch hole drilled in a 6 Tension-side in Notch fv = shear stress (psi) V = shear force at notch location (lbf) b = width of beam (in.) (1 x 1 ½) inch widedbeam would reduce(in.) the capacity the beam at as that section = depth of beam de = ofeffective depth shown (in.) by approimately e = length of notch = as 25% shown (in.) b = width of beam (in.) 6

otch location (lbf) as shown (in.)

e = length of notch as shown (in.)

For this reason, when it is necessary to drill vertical holes through a glulam member, the holes should be positioned in areas of the member that are stressed to less than 50 percent of the design in blending. In a simply supported, uniformly loaded beam, this area would be located from the end of the beam inward approximately 1/8 of the beam span. In all cases, the minimum clear edge distance, as measured from either side of the member to the nearest edge span. In all cases, the minimum clear edge distance, as measured from either side of the member to the nearest edge of the vertical hole, should be 2 ½ times the hole diameter. Use a drill guide to minimize “wandering” of the bit as it passes through knots or material of varying density and to insure a true alignment of the hole through the depth of the beam.

Wausau Supply Company | www.wausausupply.com

Form No. EWS G535A ■

© 2010 APA – The Engineered Wood Association

www.apawood.org

page

17

D R A

1.5E WS-LAM LVL

11/4” RIM BOARD DESIGN PROPERTIES • Horizontal Load Capacity – 200 plf with 8d nails (box or common) at 6” o.c.(2)

B

O

• Rim Board Vertical Load Capacity – 3450 plf • ½” Diameter Lag Screw or Bolt Lateral Load Capacity – 350 lbs Notes: 1. These allowable design stresses apply to dry service conditions, and may be adjusted for load duration except where noted. 2. The stated capacity applies to a ten minute wind or earthquake load duration (CD = 1.60). No increase is allowed for load duration.

1.5E WS-Lam LVL Beam Design Properties(1) Modulus of Elasticity E = 1500000 psi(2) Bending Fb = 2250 x (12/d)0.125 psi, where d is the depth of the member(3) Horizontal Shear (joist) Fv = 220 psi Compression Perpendicular to Grain (joist) Fc = 575 psi(2) (1) These allowable design properties apply to dry service conditions, and may be adjusted for load duration except where noted. (2) No increase is allowed for load duration. (3) A factor of 1.04 may be applied for repetitive members as defined in the National Design Specification® for Wood Construction.

11/4” 1.5E WS-LAM LVL

Rim Board vertical load transfer = 3450 plf maximum

M

AVAILABLE SIZES (INCHES):

11 7/8

I

One 8d nail at top and bottom flange

R

Attach Rim Board to top plate using 8d box toenails @ 6” o.c.

WEIGHTS (PLF):

1 . 5 E

1¼”

3.9 18' length only

One 8d face nail at each side at bearing

EQUIVALENT SPECIFIC GRAVITY FOR FASTENER DESIGN— 11/4” 1.5E WS-LAM LVL

Nails & Wood Screws

Lateral, Face

0.42

Lateral, Edge

0.39

Withdrawal

0.42

Lateral, Face

0.42

Lateral, Edge

N.A.

Bolts & Lag Screws

To avoid splitting flange, start nails at least 1 ½” from end of I-joist. Nails may be driven at an angle to avoid splitting of bearing plate.

DECK ATTACHMENT Sheathing

Rim Board

Closest On-Center Spacing

M

for a single row of nails in the narrow face

Spacing

8d common (2 ½” x 0.131”)

3”

10d common (3” x 0.148”)

4”

L

A

Nail Size

16d common (3 ½” x 0.162”)

6”(1)

W

S

-

1. M  ay be 4” when nailing through bottom wall plate and sheathing (maximum 1 7/8” penetration).

page

18

Wausau Supply Company | www.wausausupply.com

Attach Rim Board to top plate using 8d box toenails @ 6” o.c.

Ledger attached with ½” diameter through bolts with washers and nuts. Space as necessary per deck design. One 8d nail at top and bottom flange

11/4” STAIR STRINGERS

EVALUATION REPORTS

S

ICC-ES ER-5598

-

HUD MR 1310a

DESIGN PROPERTIES

W

1.5E WS-LAM LVL

LA CITY RR 25448

L

APA PR-L233

A

MAXIMUM STRINGER RUN 1¼’’ X 1.5E-2250F WS-LAM MAXIMUM STRINGER RUN – 40 PSF LIVE LOAD AND 12 PSF DEAD LOAD 2 Stringers

42” Tread Width

44” Tread Width

48’’ Tread Width

3 Stringers

3 Stringers

3 Stringers

3 Stringers

M

36” Tread Width Stringer Depth

No Reinforcement With Reinforcement No Reinforcement With Reinforcement No Reinforcement With Reinforcement No Reinforcement With Reinforcement No Reinforcement With Reinforcement

11 7/8’’

9’-0”

9’-9”

10’-6”

11’-3”

9’-9”

10’-6”

9’-9”

10’-6”

9’-0”

9’-9”

Table values are based on a maximum step rise of 7 ¾” and a minimum step run of 9”.

1 . 5 E

1¼’’ X 1.5E-2250F WS-LAM MAXIMUM STRINGER RUN – 100 PSF LIVE LOAD AND 12 PSF DEAD LOAD 36’’ Tread Width Stringer Depth

2 Stringers

42’’ Tread Width

44’’ Tread Width

48’’ Tread Width

3 Stringers

3 Stringers

3 Stringers

3 Stringers

No Reinforcement With Reinforcement No Reinforcement With Reinforcement No Reinforcement With Reinforcement No Reinforcement With Reinforcement No Reinforcement With Reinforcement

11 ’ 7/8

6’-5”

7’-4”

8’-3”

8’-3”

7’-4”

8’-3”

7’-4”

8’-3”

7’-4”

7’-4”

Table values are based on a maximum step rise of 7’’ and a minimum step run of 11’’.

1¼”

GENERAL NOTES:

1. Verify compliance with the local building code. 2. Table values are limited by deflection equal to L/360 at live load or L/240 at total load. 3. For other design loads, stair constructions or attachment details, consult with the project designer or engineer of record.

S T A I R

4. Stringers are unstable until treads are installed. 5. To minimize squeaks, install treads with panel adhesive in addition to nails or screws. 6. Stringers shall be separated from concrete or masonry in accordance with the building code.

WS STUDS

LAIMNATED VENEER LUMBER ENGINEERED FOR TALL WALL FRAMING Build tall walls with confidence. Extra long WS Stud wall framing LVL offers a stronger, stiffer and straighter product than dimension lumber for all your tall-wall applications. WS Stud is competitive in materials cost and is easy to handle and install, which can result in shorter construction schedules, saving you time and money.

Compression Parallel Fc (psi)(4)

MOE (psi)

Horizontal Shear Fv (psi)

1.5" x 3.5" x 2.0E PW LVL

4125

2750

2,000,000

285

1.5" x 3.5" x 1.5E PW LVL 2x4 Douglas Fir-Larch No.2 2x4 Spruce-Pine-Fir No.2 2x4 Hem-Fir No.2 2x4 Western Woods No.2 1.5" x 5.5" x 2.0E PW LVL 1.5" x 5.5" x 1.5E PW LVL 2x6 Douglas Fir-Larch No.2 2x6 Spruce-Pine-Fir No.1/No.2 2x6 Hem-Fir No.2 2x6 Western Woods No.2 1.5" x 7.25" x 2.0E PW LVL 1.5" x 7.25" x 1.5E PW LVL 2x8 Douglas Fir-Larch No.2 2x8 Spruce-Pine-Fir No.1/No.2 2x8 Hem-Fir No.2 2x8 Western Woods No.2

2995 1555 1510 1465 1165 3770 2735 1345 1310 1270 1010 3565 2590 1240 1205 1175 920

1950 1550 1325 1495 1035 2750 1950 1485 1265 1430 990 2750 1950 1420 1210 1365 945

1,500,000 1,600,000 1,400,000 1,300,000 1,000,000 2,000,000 1,500,000 1,600,000 1,400,000 1,300,000 1,000,000 2,000,000 1,500,000 1,600,000 1,400,000 1,300,000 1,000,000

230 180 135 150 135 285 230 180 135 150 135 285 230 180 135 150 135

2x4

2x6

2x8

(1) (2) (3) (4)

Refer to APA PR-L233 for PW LVL adjustment factors and design properties. Refer to the 2005 NDS® for lumber adjustment factors and other design properties. Load applied to the narrow face of the stud. Repetitive member and size factors have been applied. Size factors have been applied to lumber values.

Wausau Supply Company | www.wausausupply.com

S T R I N G E R S

Bending Fb (psi)(3)

Product (Highlighted in Stock)

page

19

S G N C

T

O

F

F

E

R

I

PRODUCT OFFERINGS

BEAM OFFERINGS—ARCHITECTURAL APPEARANCE

Depth

Width

Depth

Width

Depth

9 ½” 9 ½” 11 7/8” 11 7/8” 3 ½” 14” 5 7/16” 14” 7” 16” 16” 18” 18” Lengths available up to 60’–0”. Sold in 2' increments, starting at 10'.

– 11 7/8” 14” 16” 18”

Width

R

Depth

6 ¾”

15” 18” 21” 24”

Lengths available up to 60’–0”. Sold in 2' increments, starting at 10'.

COLUMN OFFERINGS—ARCHITECTURAL APPEARANCE Width

Depth 6” 7 ½” Lengths available up to 60’–0”. Sold in 2' increments, starting at 10'.

COLUMN OFFERINGS Width

Depth

Width

Depth

4 ½” 4 ½” 5 7/16” 6” 7 1/8” 6” 7 ½” 7½” Lengths available up to 60’–0”. Sold in 2' increments, starting at 4'. Columns can also be used as headers.

R O B

Width

Depth

O

P

Depth

9 ½” – 3 ½” 5 ½” 11 7/8” 11 7/8” Lengths available up to 60’. Sold in 2' increments, starting at 10'. 4, 5, 6, 7, 8, & 9’ also available.

BEAM OFFERINGS—TREATED GLULAM Width

S

5 ½”

15” 18” 21” 24”

X-BEAM OFFERINGS Width

O

Depth

5 ½”

O

D

U

Width

Depth

Width

Depth

9 ½” 9 ½” 11 7/8” 11 7/8” 3 ½” 5 7/16” 14” 14” – 18” Lengths available up to 48’–0”. Sold in 2' increments, starting at 8'.

COLUMN OFFERINGS—TREATED GLULAM Width

R

Width

BIGBEAM® OFFERINGS

Depth

5 ¼” 5 ½” Lengths available up to 48’–0”. Sold in 2' increments, starting at 8'. page

20

Wausau Supply Company | www.wausausupply.com

All Glulam product sales are final Some products require a lead time, please call for availability

HAS COME A LONG WAY Many builders and specifiers commonly think of glulam only as an attractive exposed architectural beam. While this is still the case on many projects, modern glulam has developed into a product with a wide variety of uses on today’s residential & light commercial jobsites. Why are builders using glulam more and more? It’s light, strong, easy to work with while meeting demanding jobsite requirements. Glulams combine engineered structural values and the product consistency of engineered wood with the ease-of-use qualities of traditional lumber.

• I-joist depths: 9½”, 11 7/8”, 14”, 16” and 18”

• Deep BigBeam depths: 20” through 30” in 2” increments.

• Fully sealed and individually paper wrapped

• Framing appearance

• 3000Fb, 2.1E

• Balanced layup with zero camber

• APA EWS certified

M

A

• Framing widths: 3½”, 5 7/16” and 7”

L

U

Besides offering the industry’s widest variety of glulam products, we also provide valuable information to help builders do their job smarter and faster. Beginning with the industries most thorough collection of technical literature and continuing on to our interactive website (www.rosboro.com). We also offer our KeyBeam software which helps you determine the best product for a job and our 24/7 toll-free technical support hotline that answers even your most difficult jobsite questions. We stand behind our products.

BigBeam is available in long lengths; widths of 3½”, 5 7/16” and 7”; and depths of 9½”, 11 7/8”, 14”, 16” and 18”. Deep BigBeam is available in 5 7/16” and 7” widths and depths of 20” through 30” in 2” increments.

L

ASK FOR ROSBORO

Manufactured to the APA EWS Framing Appearance Standard, BigBeam is perfect for framing applications where appearance is not important. To ensure proper width tolerances, the beam is touchsanded or planed after gluing.

G

Glulam is more resilient to weather-related problems than other EWP. Made from “dry” lumber, glulam has a typical moisture content of only 15 percent at the time of fabrication. This translates to products with exceptional dimensional stability that will resist warping, twisting, shrinking, swelling or splitting like solid sawn timbers and built-up lumber.

Not only does BigBeam ensure a flat, consistent floor when used in engineered floor systems, it is also manufactured to match standard I-joist depths and wall-framing widths. Our high-performing beam is dimensionally consistent, kiln-dried and is designed with a balanced layup (no top or bottom) and zero camber. Builders also like the fact that all BigBeam products are delivered individually wrapped and sealed to protect them from moisture.

R O S B O R O

GLULAM

P

We also understand builder’s demands. That’s why we’ve manufactured all our products for seamless installation on the jobsite, which saves builders and their subs installation time—and money. From our popular BigBeam®, which is compatible with all I-joists on the market, our products are guaranteed to perform to builder’s strict standards and all national and local building codes. We also realize that builders juggle numerous deadlines when scheduling framers and subs. This is why we ensure that materials you need to order from your supplier will be in their yard when your crew needs them.

R O D

FOUR REASONS TO BUILD WITH ROSBORO

U C

ONE: R  OSBORO BIGBEAM— STRENGTH, VERSATILITY AND STABILITY

T

A builder favorite, BigBeam is Robsoro’s higheststrength, I-joist-compatible glulam beam designed as a precise beam for engineered floor systems.

S

Wausau Supply Company | www.wausausupply.com

page

21

S T

Choosing the right materials for a deck, porch or balcony can be treacherous. That’s why Rosboro introduced Treated Glulam. A 2400Fb, 1.8E glulam beam made from sturdy Southern Pine is then pressure treated with an industrial wood preservative and waterrepellent. You can offer your customers the assurance that their deck or porch will be safe from insects, decay, mold, mildew and bacterial growths. The product is recommended for applications where the member is directly exposed to the elements, but will not reach the equilibrium moisture content level of above 16 percent, the threshold for wet-use. Its design values outperform other treated EWP products and treated solid sawn lumber in both dry- and wet-use environments (though we do not recommend that Treated Glulam be used in a wet-use environment). It’s available in long lengths; widths of 3 ½”, 5 7/16”; and depths of 9 ½”, 11 7/8”, 14”, 16” and 18”.

• Framing widths: 3 ½” and 5 7/16”

• I-joist depths: 9 ½”, 11 7/8”, 14”, 16” and 18”

• Recommended if exposed to the elements

• 2400Fb, 1.8E

• Balanced layup with zero camber

• APA EWS certified

FOUR: R  OSBORO GLULAM Rosboro is now manufacturing all 4x and 6x Glulam products in full framing widths in Architectural Appearance. Made from renewable 2nd and 3rd generation forests, Glulam was green before green was exciting. As an even better choice for today's progressive market, X-Beam is manufactured with wet-use adhesives that meet or exceed the most stringent global emission standards. Single piece installation eliminates side loading issues common with multi-ply LVL. With full width X-Beam provides greater surface area for continuous and interior bearing applications and holes can be drilled within liberal guidelines. Don't forget, X-Beam is the most competitively priced EWP on the market.

G

L

U

L

A

M

P

R

O

D

U

TWO: R  OSBORO TREATED GLULAM— 2400Fb, 1.8E BALANCED

C

GLULAM

THREE: G  ET TALL WITH ROSBORO’S 1.9E LAMINATED COLUMN Many homeowners are demanding tall walls, such as expansive entryways and seamless floor to ceiling tall wall interiors. The 1.9E Laminated Column delivers in these applications for builders. No more fabricating your own columns that may twist and warp causing problems down the road.

R O S B O R O

All of our Laminated Columns are Framing Appearance classified, perfect for applications that demand a straight, tall column hidden from view. Delivered to your jobsite load-wrapped, the 1.9E Laminated Column is available in long lengths and standard framing widths of 3 3/8”, 5 7/16” and 7 1/8” and depths of 4 ½”, 6” and 7 ½”.

DESIGN VALUES Fb tension = 2,400 psi Fb compression = 1,850 psi Fv horizontal shear (2400Fb-V4) = 265 psi

MOE = 1.8 x 106 psi

• Architectural appearances

• Dimensionally stable

• L engths: Available in lengths up to 60 feet, sold in 2” increments

• Widths: 3 ½”, 5 ½”, 6 ¾” and 8 ¾”

• Glulam Depths: 6” to 30” in 1 ½” increments

• Framing widths: 3 3/8”, 5 7/16”” and 7 1/8”

• I-Joist Depths : 9 ½”, 11 7/8”, 14”, 16” and 18”

• Depths: 4 ½”, 6” and 7 ½”

• Wet-use adhesives comply with ASTM D-2559

• Framing appearance

• 2400Fb, 1.8E

• Load wrapped

• Recognized under ICC-ES report ESR-1940

• 1.9E

• APA EWS certified

• APA EWS certified

page

22

Wausau Supply Company | www.wausausupply.com

Span (Feet) Width(in.)

Depth(in.)

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

1,308

825

474

296

195

135

96

70

52

-

-

-

-

-

-

-

-

11

2,046

1,306

904

583

387

269

193

143

108

83

64

50

-

-

-

-

-

14

2,846

1,817

1,258

921

639

446

322

239

181

140

110

87

70

56

-

-

-

2,056

1,297

745

465

307

212

151

110

82

62

-

-

-

-

-

-

-

11 7/8

3,216

2,052

1,420

916

609

423

304

224

169

130

101

79

62

-

-

-

-

14

4,473

2,856

1,978

1,448

1,005

700

505

375

285

220

172

137

109

88

71

58

-

7/8

X

Notes for X-Beam Floor Beams: (1) For preliminary design use only. Final design should include a complete analysis, including bearing stresses and lateral stability (2) Span = simply supported beam. (3) Maximum deflection = L/360 under live load. Where additional stiffness is desired or for other live/total load ratios, design for deflection must be modified per requirements. (4) Service condition = dry. (5) Tabulated values represent total loads based on live/total load = 0.8 and are in addition to the beam weight (assumed 35 pcf). (6) Sufficient bearing lengths shall be provided at supports. (7) Maximum beam shear is located at a distance from the supports equal to the depth of the beam.

R O S B O R O

Floor Beams Allowable Loads Simple Spans (LDF=1.00)

B E A

Roof Beams Allowable Loads Simple Spans (LDF=1.15)

Width(in.)

Depth(in.)

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

1,505

961

665

478

318

221

159

117

88

68

53

-

-

-

-

-

-

11

2,355

1,503

1,041

762

581

437

316

235

178

138

109

86

69

56

-

-

-

14

3,275

2,092

1,449

1,061

810

637

514

389

297

231

183

146

118

97

80

66

55

2,366

1,510

1,044

751

499

347

249

184

139

107

83

65

51

-

-

-

-

11 7/8

3,700

2,363

1,636

1,198

913

686

496

369

280

217

171

136

109

88

72

59

-

14

5,147

3,287

2,277

1,668

1,273

994

793

611

466

363

287

230

186

152

125

104

86

7/8

Notes for X-Beam Roof Beams: (1) For preliminary design use only. Final design should include a complete analysis, including bearing stresses and lateral stability (2) Span = simply supported beam. (3) Maximum deflection = L/180 under live load. Under deflection limits may apply. (4) Service condition = dry. (5) Tabulated values represent total loads and include beam weight (assumed 35 pcf). (6) Sufficient bearing lengths shall be provided at supports. (7) Maximum beam shear is located at a distance from the supports equal to the depth of the beam.

Wausau Supply Company | www.wausausupply.com

page

23

M

Span (Feet)

OUR PRODUCT WARRANTY Pacific Woodtech Corporation warrants that its products will be free from manufacturing errors or defects in workmanship and material. In addition, provided the product is correctly installed and used, Pacific Woodtech Corporation warrants the adequacy of its design for the normal and expected life of the structure. This warranty is backed by the full resources of Pacific Woodtech Corporation and by underwritten product liability insurance.

Innovation in Distribution PL30071201 1.12


EWP User Guide