Public Beach Assesment Aqua-Po

Page 1


PREFACE The Aqua-Po Public Beach report is the first in a series of reports on the public beaches in the Commonwealth of Virginia. There are 14 localities with public beaches totalling about 23 miles of shoreline. The public beach reports are an assessment of the history of each public beach and their current status in terms of loss of beach fill and maintence needed. This is measured by the beach monitoring program sponsored by the Virginia Board on the Conservation and Development of Public Beaches.

The public beach monitoring program was initiated in

1982

shortly after the

creation of the Public Beach Board. Each project funded by the Board requires the locality to monitor the beach by periodic surveys in the form of beach prof iles or transects. These surveys are sent to VIMS where they are entered and stored on computer. Analysis of the beach profile data show where and how fast changes in beach form and volume occur. This data then allows the locality to determine if, when and how much addtional sand is required to maintain their public beach.

Funds for beach projects come in the form of matching grants from the Public Beach Board. There is a fifty/fifty match with the locality. The total cost of the project at the Aqua-Po Public Beach was $370,000. Any questions or comments on the data or contents of this report should be addressed to the Advisor to the Public Beach Board P.O. Box 1024, Gloucester Point, Virginia 23062.


PUBLIC BEACH ASSESSMENT REPORT FOR AQUA-PO, STAFFORD COUNTY, VIRGINIA

by Deborah Linden Donna Radcliffe Scott Hardaway Suzette Kimball Virginia Institute of Marine Science School of Marine Science College of William and Mary Gloucester Point, Virginia 23062

Technical The Virginia

Report

Obtained

Department

Under

Contract

of Conservation

With

and Recreation

via the Joint Commonwealth Proqrams Addressinq Shore Erosion in Virqinia

September

1991


--

---

--- ------

INTRODUCTION Aqua-Po southern beach

Public

Beach

is located

shore of the Potomac

site, as well Before

1987, Aqua-Po

Bay shoreline

retreating

to the west through

the beach.

resulted

shore.

Virginia

It is an important

resource

for Stafford

severe erosion.

overwash

processes

on the public

County.

stretches

The shoreline

was rapidly

and cross-shore

field was constructed

in an attempt

of

transport. to maintain

Continued erosion, however, left four previously attached groins

over 100 feet offshore. south,

County,

Beach was one of the many

undergoing

a groin

1).

natural

Public

Chesapeake

In the late 1960's,

(Figure

River

as a valuable

in stafford

Sediment transport at the site, predominantly to the

in a narrow

beach

zone along the southern

section

of the

Groins at the southern end of the beach trapped some of the material

eroded

from further Early

up the shore.

in 1987, a major beach

in order to halt the continued recreational

beach

stone revetment, long offshore

severe

for Stafford

20,000

attached

restoration shoreline

County.

erosion

The project

cubic yds of beach breakwaters

project

took place and create

included

fill material,

(Hardaway

et al.,

at Aqua-Po a stable

700 feet of

and four 100-foot

1989).

The design of the offshore attached or headland breakwaters was based on procedures

outlined

Embayments

between

in an equilibrium headland

breakwaters

state over time

as a function

of this

is given

concept

The purpose

bay model

will reach

of the wave

in Appendix

of this report

by Silvester

climate

(1978).

an equilibrium at the site.

or stable An explanation

III.

is to provide

information

about present

conditions at Aqua-Po relative to the 1987 restoration project.

beach

All data for

this report were analyzed at the College of William and Mary, Virginia Institute through

of Marine

April

addendums

1990.

to this

Science

(VIMS) and cover

Periodic

report.

updates

a time

of the beach

span from August surveys

1986

will be added

as


1.

lOCATION

l

o

T Y".

Figure 1.

MAP

I

2. Mlt..e:o

Aqua-Po location map (Espey, proposal by Stafford County,

Huston & Associates, Virginia). 2

Inc.,

1985-1986


- - ~-

- --. . -

SETTING The Aqua-Po

beach

site is bordered

on the north by Aquia

the east by the Potomac River (Figure 1). peninsula.

constant wave

speed and direction.

periods

may blow

such as Aqua-Po,

is restricted;

The average

thus,

fetch at Aqua-Po

Not much

information

the wave

climate.

Belvoir,

Virginia

total

peak-gust

the northwest (1989),

river.

2 contains

(Rosen,

component

analysis

northeast

is dominant

the net direction

shore-normal

the northeast

and southeast

Northeasters,

waves

the shoreline

and on net sediment

is evidenced

to dominate of wave

(-85째 true N), perhaps winds.

generated

in

winds

Because

Aqua-Po's

transport. shoreline

fastland

at the north and the accumulation

southern

end of the shore.

3

winds

obtained

are shown

Hardaway

Quantico

as a

approach

would

to be between

associated

have more

The response

Base,

a balance

surge

that

of the

at Aqua-Po

reflecting

effect

of this wave

by the previously

of eroded material

and

et ai.

Marine

that portion

of

at Fort

2, it is evident

of the storm

from northeast

at Aqua-Po.

5 mls and 11 mis,

in this region.

of the wind data from nearby

approximately

process

From Figure

small.

of some effects

Data

than

the wind

somewhat

for wind data

greater

1976).

In a fetch-

conditions

1957-1970.

in limiting

1989).

an assessment

wind roses

of winds

and southeast

They determined

to wave

enables

the period

frequency

frequency

wind

through

strong

rose,

pertaining

remain

et ai.,

of

the area over which

area over which

that develop

is 7.2 km (Hardaway

representing

annual wind

annual

found

Figure

important

greater

the sea surface

however,

by a wind

is particularly The

A fetch refers to

that may be generated.

the waves

exists

The use of local wind data,

are generated

(Komar, 1976).

the larger the waves

situation

waves

The fetch

and wave heights

a wind may blow, limited

over which

and on

It exists on a low, broad, marshy

The shoreline faces east and is fetch-limited.

an area of the sea surface

Creek

eroding along the

with on


"

"

.

..

s

s

~

PERCENT

~

MEAN VELOCITY

FREQUENCY mIs

( A )

FORT BELVOIR, VA. WINOS > 11 MIS

( B )

FORT BEL VOIR, VA.

PERCENT FREQUENCY

ANNUAL WINO ROSE

H

E

w

s

s

FORT BEL VOIR, VA.

FORT BEL VOIR, VA.

WINOS) 5 MIS PERCENT FREQUENCY

Figure

2.

Fort Be1voir, Virginia Wind 1976, Ph.D. Dissertation).

MONTHL Y PEAK GUSTS PERCENT FREQl)ENCY

Station

4

roses

(modified

from Rosen,


METHODS The data

available

for analysis

in this report

included

photographs, beach profile data, and sediment samples.

aerial

Three aerial

photographs of the Aqua-Po site were traced and overlain so that changes in the position of the shoreline could be assessed (Figure 3).

The three years

used in the aerial photographic analysis correspond to a pre-project condition (February, present

1985),

a post-project

condition

(March,

Beach profiles project

County personnel. order to best

(Figure 3).

volume

changed

positions,

shoreline (Table 1).

at mid-beach

to mean

(half-way

profiles

were

respect

however,

Inc. and by Stafford

the breakwaters

dates data

beach

were plotted

and embayments

(MHW), and beach

the back of the beach beach

and breakwater

profiles

elevations

volumetric

of

rates of from the

were measured

and present

portions

for each

in terms

and annual

on plotted

also used to calculate

together

is summarized

elevations,

were measured

high water

MHW).

changes

over

of the shore

2). analyzed

Sediment samples

sieving

Profile

average

between

data were

calculated.

A standard

since the restoration

& Associates,

around

These

to both embayment

(Figure 4 and Table Sediment

I).

Beach widths

back of the beach

1987);

quarterly

Huston

changes

over time.

relative

were

and a near-

Five dates were chosen to demonstrate how individual profiles of

(Appendix

time, with

1987),

Beach profile transects were positioned along the shore in

of the 21 profiles

Plotted

surveyed

firm of Espey,

determine

the beach have

change

(December,

1989).

have been

by the design

condition

for grain

data were

available

were collected

technique

size and statistical

along

for only one date

21 different

was used to separate

and silt and clay

fractions.

Weight

for each sample.

The sand portion

percents

of samples

5

parameters

samples

of each

profiles

alongshore.

into gravel,

fraction

was further

(March,

sand,

were determined

analyzed

using

the


Mar. 1989 MHW

---

AQUA-PO

Feb. 1985 MHW

Potomac River

PI06l8 numbers

II

t 2 3

7

8 9

to

tt

t2

t3

N

~

~~/? 0\

Dec.1987MHW

14

15

17

18

18

19 20 21

-,8cccssroaci

Baseline Marsh

I

I

100' GmphIc 8CIJI6

Figure 3.

Aqu~-Po Public

Beach basemap.

I


Table 1.

AQUA-PO PROFILE SUMMARY DATA

Profile pre to Number post 1 +50 +55 2(MB) 3 +75 +80 4(BW) 5 +50 +45 6(MB) 7 +80 +75 8(BW) +70 9(BW) 10(BW) +75 11 +60 12(MB) +45 13 +80 14(BW) +75 15 +60 16(MB) +45 17 +60 18(BW) +70 19 +55 20(MB) +45 21 +55

BEACH WIDTH pre to post to present present +45 -5 +45 -10 +60 -15 +85 +5 +45 -5 +40 -5 +75 -5 +85 +10 +85 +15 +85 +10 +50 -10 +45 0 0 +80 +85 +10 +50 -10 0 +45 +65 -5 +75 +5 +45 -10 +40 -5 +45 -10

Ave. rate of chane -1.7'/yr -3.3'/yr -5.0'/yr + 1.7'/yr -1.7'/yr -1.7'/yr -1.7'/yr +3.3'/yr +5.0'/yr +3.3'/yr -3.3'/yr 0.0'/yr O.O'/yr

+3.3'/yr -3.3'/yr 0.0'/yr -1.7'/yr + 1.7'/yr -3.3'/yr -1.7'/yr -3.3'/yr

AVERAGE ELEVATION pre to post to pre to post present present +3.5 0.0 +3.5 0.0 +3.5 +3.5 0.0 +3.0 +3.0 +3.5 +3.5 0.0 +3.5 0.0 +3.5 +3.5 0.0 +3.5 +4.0 +3.5 -0.5 -0.5 +4.0 +3.5 +3.5 0.0 +3.5 +0.5 +3.0 +3.5 +4.0 +3.0 +1.0 0.0 +3.5 +3.5 +3.5 0.0 +3.5 +0.5 +3.5 +4.0 +4.0 +0.5 +3.5 +0.5 +4.0 +3.5 +4.0 +0.5 +3.5 -0.5 +4.0 +3.5 +3.0 0.0 +3.0 0.0 +3.0 +3.0 +3.0 0.0 +3.0

All measurements are in feet. "Pre" designates pre-project conditions of 08/86, "post" designates immediate post-project conditions of 03/87, and "present" designates most recent survey data of 04/90. "MB" refers to mid-bay profile stations and "BW" refers to breakwater profile stations. Negative values indicate erosion/deflation, and positive values indicate accretion.

7

- - --


2. ..E.. MAA87-NOV87

-+.

2.

..+..

NOV87-MAR88

1.

/T::~:".,:~~---m--m

.... MAA87-APR90

1. a:

<3

..B.. JUL88-APR90

m-m-----

t x~7~~~L'~"~5:;;

o.

.

i

J

s

!

o.

~~-~

.'

;

.'

.

짜./

/..

+---i(!L-_~\\~~7)\~~:\--

j

==:==::~~:::

-1.o-;

~ ..

x/

k

! . .

\\:......--...---....

\..

::'-.:~: f

-1.5'

:~..........

.:t

-2. 1

2

"A 9.0

12.8 1M

"

Numbers

3

Figure

8.7

12.3 9.8

indicate

embayment (A-E)

4

the volume

9.0

of sand added behind

7.8

each

and each breakwater (1-4) in 1987 (CY/FT)

4.

Aqua-Po

volume

8

changes.


Table 2 . BEACH VOLUME1RIC RATE OF CHANGE RELATIVE TO BREAKWATER UNITS 1THRU 4 AND THEIR ADJACENT BAYS A THRU E.

BayA BW#l BayB BW#2 BavC BW#3 BavD BW#4 BayE

MAR87-NOV87 NOV87-MAR88 JUL88-APR90 MAR87-APR90 CY/FT/YR CY/FT/YR CY/FT/YR CY/FT/YR -0.6 -0.3 -0.2 -1.3 0.3 -1.0 0.4 2.1 -0.4 1.3 0.1 -1.8 1.0 0.4 0.5 0.9 -1.0 0.1 -0.1 0.7 0.4 0.2 1.0 1.1 -0.8 1.1 0.7 0.2 -0.1 -0.8 0.9 0.4 -1.6 0.4 -0.1 -0.5

9

--


VIMS Rapid Sediment Analyzer (RSA) in order to determine specific sand size fractions. sediment grain

Appendix II contains the raw sediment data.

data were

constructed

size and sorting

in order to demonstrate

characteristics

of sediments

mid-shore, and foreshore profile positions. were

used as comparisons

in these

plots

Summary plots of the changes

with

in the mean

respect

to backshore,

Four different mid-bay profiles

(Figures

5 and 6, and Tables

3A and

3B)

.

RESULTS Aerial

Photoaraphic

Three

sets of aerial

condition

(February,

Analvsis

1985),

photographs

corresponding

a post-project

condition

to a pre-project (December,

1987), and a

present condition (March, 1989), were traced and overlain in order to compare changes

in the position

(Figure 3).

of the shoreline

over the three

year monitoring

period

The positions of the 21 profile transects are also shown on

Figure 3 allowing for comparison with the individual profile plots contained in Appendix I.

From Figure 3, the narrow beach can be seen that existed at

Aqua-Po prior to the 1987 project - in some cases reaching almost back to the access

road.

Figure

3 also demonstrates

beach width

from the 1985 shoreline

restoration

project.

as 100 feet. shoreline greater

receded

than

In some sections

slightly.

However,

in the pre-project

restoration

of the beach,

this

created increase

(on the order

summary

in all cases the beach

condition.

Small

of 1 - 5 ft) cannot

due to the scale of the drawing. visual

to the 1987 shoreline

increase

in overall by the is as much

Between 1987 and 1989, especially in the embayments, the

the shoreline

quick

the substantial

of broad

changes

width

remained

in the position

be evidenced

on this

of

sketch

Thus, the photographic analysis provides a

shoreline

changes

project.

10

prior

to and since the


~((/

~o ((/~

Backshore

Offshore

Inshore

4,,0-<"

berm

berm ...... ......

:',' .'

crest ., . . . .'

\. '"

"

: .:-..: :. .: : :'. :. ,..: ".

';"'~'d'i~m

sand

limit

~

of wave

runup

or swash

6

:..:... , . , e~CL'I I '. ,.",

'"...1 imit

c!)ce

. . '. ':", : ..", . .. '. .',:.. ."1'\. . . t ,l."~.. co a r s.e.,' .. , ' " "

sand

.'

of

backwash,

wave -

~st",n

'

, .

m~~'

;.~.~.. ~and

'..

", ': . .,

fine

Figure 5,

Features

and

terminology

of the

beach

profile,

sand


March 1987 - Mid-bay profiles 3.000 2.800 2.600 2.400 2.200' ~

.:=

.a ~

decreasing sediment size

2.000 1.800 1.600

.:i 1.400 'ca ... 1.200

(!)

1.000 0.800 0.600 0.400 0.200 0.000

BACKSHORE --B-

Profile #6

Figure

6.

Mean

MID-SHORE

--+- Profile #12 -짜-

sediment

grain

Profile #16

size for the Aqua-Po

12

FORESHORE Profile #20

Beach profiles.


TABLE 3A

- SEDIMENT SIZE

Millimeters (I Kilometer)

Microns

Wen1worth Size Class

Phi (4)) -20 -12 -10

4096 1024

---- 256 ,64 -

Soulder (-8 to -124»

-8 -6 -4

16 4 3.36 2.83 2.38 2.00 1.68 1.41 1.19 1.00 0.84 0.71 0.59 0.50-500 0.42 0.35 0.30 0.25-250 0.210 0.177 0.149 -0.125-125 0.105 0.088 0.074 -0.0625IModified

CONVERSION TABLE

. Cobble (-6 to pebble (2

-2 -1.75 -1.5 -1.25 -1.0 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75 1.0 1.25 1.5 I. 75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0

420 350 300 210 177 149 105 88 74 62.5

- SORTING ..

CLASSES

Very coorse sand

Caarse sand

0 Z

Medium sond

q: V)

Fine sand

Very fine sand

of sedimentary

AND CORRESPONDING

Rocks)

SORTING VALUES

SortingClus Very well sorted

.

0.35.s0 0.s.80 0.80-1.40

Wellsorted

1.40-2.00

Poony sorted Very poorly sorted Extremely poorly sOrted

2.00-2.60 > 2.60

w > q:

<.9

Granule

Sorting Value < 0.35

fa -6cj»)

-J

a::

from Folk, 1980; Petrology

TABLE 3B

)

Modentely well so

Moderately

IModified from Friedman and Sanders,

1978; Principles 13

of sedimentology)


Beach Profile Appendix

Analvsis

I contains

the individual

profile

plots

with

five chosen

plotted together for each of the 21 profiles spanning the beach. summarizes

the profile

data

in terms

of relative

shoreline

beach elevations, and average annual rates of change. the profile

survey

of August,

1986,

"post" designates

dates

Table 1

positions,

average

Here, "pre" designates the immediate

post-

project survey of March, 1987, and "present" designates the most recent survey data of April, 1990.

All measurements in the table are in feet, with positive

values indicating accretion and negative values indicating erosion or deflation.

Many important observations may be derived from the summary data. all places

along the shore, the beach

project condition.

is significantly

wider

At

than the pre-

Of the width created by the 1987 project, however, the

beach has narrowed in varying degrees alongshore - largely with respect to embayment or breakwater areas of the shoreline. (profiles

The three central embayments

5 - 7, 11 - 13, 15 - 17) show relatively

stable

portions

of the

shoreline (profiles 12, 13, 16), as well as portions which have receded between 5 feet and 10 feet (profiles 5, 6, 7, 11, 15, 17). at the northern-most

and southern-most

19 - 21, respectively)

stretches

show that the shoreline

of the site

there

The two embayments (profiles

has receded

feet and 15 feet over the three year monitoring period.

1 - 3,

between

5

In contrast,

breakwater areas of the shoreline (profiles 4, 8 - 10, 14, 18) consistently show accretion

between

5 feet and 15 feet, with the largest

the center two breakwaters (profiles 8 - 10, 14).

increases

behind

Because fill material

placed on the beach in 1987 was added out to the breakwaters, the increases noted

in beach

breakwaters.

width

indicate

a filling-in

of material

immediately

behind

the

The filling-in of material yields a local increase in elevation

moving the position of MEW to the breakwater position. 14

The pattern of


shoreline adjustment occurring at Aqua-Po is expected when a breakwater system has been implemented in order to maintain a recreational beach.

The

breakwater system at Aqua-Po was designed and constructed based on a net southerly transport of sediment, and thus intended to help trap material which would

otherwise

be lost to the system.

With respect to beach elevation, data indicate that the subaerial beach at Aqua-Po

has remained

relatively

stable

since the 1987 project.

All profile

stations show an increase in subaerial beach elevation behind each breakwater over the pre-project condition. change

in elevation

13, 19 - 21). elevation,

Generally, beach embayments show no net

since the restoration

15 - 17 and 11 which

respectively,

over the post-project

change

the breakwaters

and 9 show no change

recession

1 - 3, 5, 6, 12,

between

Net rates of shoreline

1 foot and 0.5 foot,

The pattern

varied.

Breakwater

of beach

profile

0.5 foot in subaerial period,

beach

stations

4

elevation.

net rates

of shoreline

1.7 ft/yr and 5 ft/yr among the profile

accretion

elevation

8 and 18 have lost 0.5 foot in elevation,

the three year monitoring

varied

have gained

elevation.

is more

in elevation,

and 10 and 14 have gained During

(profiles

Exceptions to this include profile 7 which has lost 0.5 foot in

and profiles

behind

project

also varied

between

1.7 ft/yr

stations.

and 5 ft/yr.

Because much of the shoreline adjustment typically takes place during the first change

few months

following

are poor estimators

of change profiles stabilized

implementation,

of actual

annual

the calculated

changes.

Typically,

begin to slow after the first year of monitoring. spanning

the shore,

(profiles

Long term monitoring adjustment

project

some portions

12, 13, 16), while will provide

of the Aqua-Po

others

data needed

and stabilization.

15

net rates of annual

Based shoreline

rates

on the 21 may have

may be very near equilibrium. for further

evaluation

of beach


In general,

beach

slopes

adjusted.

In the embayments,

elevations

have remained

In breakwater behind

areas,

have changed shore slopes

very

as the shoreline

have steepened

stable or increased

shore slopes

little

and beach

have flattened

slightly

widths

has

as beach

have decreased.

as material

has accumulated

breakwaters. Beach Volumetric Figure

change

Chanaes

4 and corresponding

at Aqua-Po

over time, with

portions of the shore.

2 represent

respect

to both

beach

volumetric

embayment

rates

of

and breakwater

In Figure 4, A - E represent embayments along the

shore, with A corresponding

shore.

Table

to profiles

1 - 3 at the northern-most

part

of the

The numbers (1 - 4) represent breakwater units, with 1 being the

northern-most

breakwater.

Volume

foot per year (cy/ft/yr). (between

profiles

During

changes

were

calculated

in cubic yards

The initial fill volume within the monitoring area

1 - 21) included

approximately

the first eight months

following

13,000

project

cy of sand.

implementation

1987 - November, 1987) negative volume changes were greatest. fill material

placed

on the beach

losses of this material time period. shoreline

This

overall

typically

during

occurred

is consistent

adjustment

1988),

rates

the restoration during

takes place

during

(March,

That is, of the

project,

the immediate

with the earlier

following project implementation. - March,

per

the largest

post-project

statement

that most

the first

few months

During the next four months (November, 1987

of change were predominantly

positive

along the shore.

The pattern of change observed indicates that the beach was continuing to adjust. During the next time period (July, 1988 - April, 1990) there were again predominantly

positive

volume

changes

for both embayment

with the exception of the two end embayments A and E.

and breakwater

units,

The last set of dates

plotted represent rates of change over the total three year monitoring period 16


(March, 1987 - April, 1990).

The indication is that the beach is approaching

an equilibrium

of change

state as rates

The fastland to the beach

bank

site, was stabilized

With the revetment longer

available

alongshore beach

halting

involves

the erosion

mainly

losses

and -0.4 cy/ft/yr),

of upland

with

year period,

in embayment

stone

material,

embayments

revetment. is no

and loss observed

material

the pattern

material

new sediment

of gain

of nourishment

are in the northern

smallest

in the past provided

Thus, the pattern

the movement

Over the three

volume

creek, which

over time.

in the 1987 project

to the system.

in 1987.

largest

along Aquia

are decreasing

placed

on the

is such that the

A and B (-0.6 cy/ft/yr

C (-0.1 cy/ft/yr),

and volume

has

been increasing in the southern embayment D (0.2 cy/ft/yr) as well as behind all the breakwaters. transported

from the northern

accumulating breakwaters reinforces

In general, the sediment within the system is being

behind

embayments,

the breakwaters

and accumulating

as well

direction

the central

as being

in the southern

that the predominant

to the south.

bypassing

transported

embayment.

of sediment

embayment,

and

around the

This pattern transport

at Aqua-Po

is

Embayment E is the one anomaly and has lost material at a rate

of -0.5 cy/ft/yr. Sediment Figures changes

Analvsis 6 and 7 and Table

in mean

backshore,

grain

mid-shore,

size and sorting and foreshore

different mid-bay profiles: D), and 20 (embayment profile

correspond

sediment

data were

project), particular present

4 contain

E).

summarized

sediment

characteristics

profile

of sediments

positions.

Data

Figure

to backshore,

5 indicates mid-shore,

which

portions

and foreshore

for only one date

(March,

we can only report

on the conditions

which

beach

There

sediment

to

are for four

6 (embayment B), 12 (embayment C), 16 (embayment

available

time.

data relating

is no basis

for a comparison

characteristics.

17

of a typical

positions.

Because

1987 - immediate

existed with

at that

pre-project

or

post-


March 1987 - Mid-bayprofiles 1.000 POORLY SORTED

0.900 0.800 0.700 C)

0.600

0.500 -I 0.400 0.300 0.200 WELL SORTED

0.100 0.000

BACKSHORE --a- Profile #6

Figure

7.

--+-

MID-SHORE Profile #12

Sediment

sorting

FORESHORE

*- Profile #16 ~

along

18

the Aqua-Po

Profile #20

Beach profiles.


Table4. SEDIMENTDATA Mean Phi Size for Mid-Bay Profiles Profiles Backshore Mid-shore Foreshore

6 1.329 1.677 2.003

12 1.254 1.776 1.084

16 1.394 1.588 1.232

20 1.429 1.914 2.351

16 0.758 0.616 0.886

20 0.675 0.589 0.852

Sorting - Mid-BayProfiles Profiles Backshore Mid-shore Foreshore

6 0.66 0.45 0.93

12 0.744 0.505 0.897

19


In Figure The phi scale

6, changes

is a common

in mean grain

unit used to designate

designed to simplify calculations. Table

3A.

Note

mean phi size sediment

that as phi values

increases

decreasing

increase,

6 and 20, sediments

sediment

6 and 20, however

size towards

the foreshore

of profiles 6 and 20.

shore

grain

are shown

diameter

that

in phi.

is

A phi/mm conversion table is presented in

along the y-axis,

the same size sediments

grained

profiles

mm values

decrease.

thus corresponding

In Figure

6,

to decreasing

size.

For profiles

roughly

size along

sediments (embayment

the foreshore.

Profiles

in the backshore sediments

in the backshore

with

12 and 16 show

and mid-shore

are significantly

as do profiles

larger than those

One possible explanation for this is that smaller-

are entrained B, profile

transported south.

are largest

and removed

6) and readily

from the northern bypass

part of the

the breakwaters

as they

are

The larger sediments are left within the system as lag

deposits and thus are observed more in the central embayments (C and D) and less at the southern end of the shore.

Because the data represent immediate

post-fill conditions at the site, the observed sediment characteristics are reflective

of an adjusting

In Figure are shown. transport

7, changes

Sorting according

and Sanders, 1978).

refers

beach. in sediment

sorting

to the selection

to their

sizes,

specific

characteristics

of sediment gravities,

along profiles

particles and shapes

Table

have

a very narrow

3B shows various

sorting

values.

(Friedman

It is represented by a statistical parameter which

describes the spread of a population distribution about its mean. sediments

during

spread

sorting

Well-sorted

indicating

classes

sediments

a more

and their

homogeneous

corresponding

have values

Well-sorted population.

statistical

less than 0.50, while

poorly-sorted sediments have values greater than 1.40.

From Figure 7, sorting

values for the March, 1987 data range from 0.45 to 0.93 and are thus within the moderately

sorted to well-sorted

range.

20


Typically,

hydraulic

sorting

of sediments

efficient in the intertidal swash zone. shore region of profiles at Aqua-Po.

by wave

action

is most

This zone corresponds to the mid-

As Figure 7 indicates, the mid-shore

contains the most well-sorted sediments for all four profiles. region

in all cases contains

Sorting

values

reflective affected

sediments

for the backshore

of the fill material by wave

foreshore

action.

regions

discrepancies

are similar placed

between

on the beach

The most poorly-sorted

of the profiles.

in mean grain

and is further

intermediate

indicative

The poor

size of foreshore

of an adjusting

in sorting

characteristic.

profiles

(0.66 to 0.76),

which

has not been

sediments

sorting

The backshore

are observed

is reflected

sediments

between

in

in the

the profiles,

beach.

CONCLUSIONS All data

analyzed

the restoration

over the three year period

project

implemented

of this report

in 1987 has thus

far been

indicate

that

successful.

Aerial photographs clearly show the substantial increase in beach width created

by the restoration

embayments present

project,

along the shore.

beach

condition.

at Aqua-Po

Beach

is wider

and the small profile

loss of this width

analysis

in all cases than

also

indicates

in

that the

in its pre-project

Rates of shoreline recession in embayments are small - between 1.7

ft/yr and 3.3 ft/yr, with

a larger

northern-most embayment.

Rates of shoreline increase are similar, between 1.7

ft/yr and 3.3 ft/yr. of the profile three profile elevation,

stations stations

show no change show a small

as rates

in the

change

since the 1987 project,

show an increase

project.

that the beach

of volume

in elevation

loss of 0.5 feet in subaerial

stations

by the restoration

also small and indicate condition

rate of 5 ft/yr occurring

Beach elevations have remained relatively constant - 12

and the remaining

that created

recession

Beach

in beach

volumetric

have decreased

21

elevation

rates

seems to be approaching over time.

beach over

of change

are

an equilibrium Due to a net


southerly

drift,

volume

loss rates

are greatest

at the northern-most

part of

the shore, however, data indicate that much of this material is accumulating behind breakwaters and within embayment D.

Between the time of the

restoration project in 1987 and April 1990, the overall volume of beach material within

within

the monitoring

the system,

indicate

area has not changed.

there has been

that the 1987 restoration

Though

no net loss of material. project

has succeeded

sand has moved These

data

in halting

the

previous severe shoreline erosion and in creating a stable recreational beach for Stafford

County.

22


REFERENCES

Espey, Huston & Associates, Inc., 1986. Rep. Folk, R.L., 1980.

Proposal by Stafford County.

Petrology of Sedimentary Rocks.

Friesman, G.M. and J.E. Sanders, 1978. Wiley & Sons, New York.

Tech.

Hemphill Pub. Co., Austin.

Principles of Sedimentology.

John

Hardaway, C.S., J.R. Gunn, G.L. Anderson, and T.E. Skrabal, 1989. Shore morphology: An element in breakwater design. Coastal Zone 4:3345-3359. Komar, P.D., 1976. Beach Processes and Sedimentation. Englewood Cliffs.

Prentice-Hall, Inc.,

Rosen, P.S., 1976. The Morphology and Processes of the Virginia Chesapeake Bay Shoreline, Unpublished Ph.D. Thesis, College of William and Mary, Virginia Institute of Marine Science, Gloucester Point, VA. Sylvester, R., 1976. Headland defense of coasts. Proceedings 15th Conference on Coastal Engineering, American Society of Civil Engineers 2:1394-1406.

23


APPENDIX

I

PROFILE DATA


APRI790 JUL1J88 UAR1788 NOV2J87 UAR0487

20

AQlJA~O PROf" ILE

NO.01

15

10 fEET 5

~~

SURCE LlHIII

0

ULIII

-5 0

50

100

150

200

fEET

APR I790 JUL1J88 UAR1788 NOV2J87 UAR0487

20

AOUA-f'O PROf ILE NO 02

15

10 fEET

--

SURCE t.lilll

o

Ll..1II

~.~.~--.~~~};",,~;;:;::.u..u..m.u

uu

-5

o

50

100 fEET

150

200


t.OUA-PO t.PR 1 790 20

PROfILE

NO 03

JUl1388 UAR1788 NOV2387 Ut.R0487

IS

10 fEET 5

0

~~~:::::::::::::::::~:~~~~:~:~:~:~:~:~:~:~:-

~;CE

-S

50

0

20

r-

APR1790 ;Ul1 J86 UAR1766 NOV2367 UAR0487

150

100 rEET

200

AQUA-PO NO O' PROfILE

1S

10 rEET 5

0

r-

...

---

SURCE

:::::::::::::::::::::::.:::::::::::::::::::

-s 0

SO

100 rEET

150

200


AQUA-PO

APRI790

20

f

PROf ILE

NO. 05

JUL 1388 UAR1788 NOV2387 UAR0487

15

10

rEET

o

-5 o

50

100

150

200

rEET

AQUA-PO

APRI790 JUL 1388

20

PROf ILE

NO

06

UAR1788 NOV2387 UARO'87 15

10 rEn 5 --------------0

t...,...........

SURGE

.---...---..............---.--...-..............

UHIII ULIII

-5 C

50

100 fEET

150

200


APR1790 JUL1J88 "'AR1788 NOV2J87 "'AR0487

20 .-

AOUA-f'O PROfILE NO.07

15

10 rEET 5

--

0

uuuu....

u

SURCE u

:::

uuuuuuuC<u.umuu

--

.......

-_4:".:....__..

-5 0

50

100 rEET

150

200


AOUA-f'0 APR1790 20

PROf" ILE

NO. 09

JUI.1JIIII UAR17I111 NOV2387 r.tAR04117

15

10 fEE T 5

..

-.... ...........................

'f

-5

0

.........

I

I

50

100 fEET

SURCE

..

...... .............. .-

.-,-..........__

r.tI.W I

-.

200

150

AOUA-f'O APR 1790 20

r-

NO 10

PROfILE

.Ull JIIII oAAR1711e NOV2JII7 oAAR04117

15

10 fEET 5

--.......... -------_....:

- - - - - - . SURCE LCHW .........

-:t 0

If!'

..........................,.. I

50

I

100 fEET

.....---150

r.tI.W

I 200


20

f

------.

15

APR1790 jUL1388 UAR1788 NOV2387 UARO87

AOUA-f'O PROfILE NO I'

10 -EET

51__

"SURGE

, f..._........_:o::::::::::::::::

::::

-5

0

50

APR 1790 JUL 1388

20

100 fEET

AQUA-f'O PROf ILE

150

200

NO 12

UAR1788 NOV2387 UARO~87 15

10

5

- - - - :- - - - - - - . SURGE o

::::::::::::: :::

~.~~.~.~.~.~

-5 o

50

100 fEET

150

200


APR1790

r

20

----

AOUA-f'O PROf" ILE NO lJ

jUL1Ja8 UAR1788 I'IOV2J87

UAR0487 15

10 fEET 5

+-

SURCE

<-,

fnuuuuunuuuuuu>___..nuu

, -5

I

I

100 fEET

50

0

1---------/ 150

:::

200

AOUA-f'O

.0 .r ....

APR

1 790

jUl

1 J88

"'AR

1766

PROfILE

NO

"

NOV2J87 UAR0467 15

10

fEn 5 SURCE

--_.....-.-_....-....---

o ~

. . -

. . .

. .

- . -

. . .

. . .

. -.

..-.-.....--...--......

. .

UHIII t.lLlII

:~,......

-5

: ~..._-----

". o

50

100 fEET

150

200


AOUA-f' 0 APRI790 20

.--

PROf'ILE

NO

15

JUL1J88 ..AR1788 NOV2J87 ..ARO.87

IS

10 fEET

_____

5

SURGE 0

::

uu.uuuuuuuu.._.

-5 0

SO

150

100 fEET

200

AOUA-f'O

APRI790 20

PROf ILE

NO.16

JUL 1 J88 "AR 1788 NOV2J87 "ARO'87

IS

10

-- - - --- SURGE o

.............. .................

...........

-5

o

SO

100 fEET

200


APR1790

AOUA-f'O PROf"IlE NO.17_

JUln88

20 -r

o.IAR1788 NOV2 J87 UAR0487

15

10 fEET 5

- - - - - - - - - - - - . SURCE UHIII

0

o.IlIII

-5 0

so

100 fEET

150

200


AOUA-f>O

APR' 790

PROf" JLE

NO

19

JUL 1 J88 tJAR1788 NOV2J87 tJAR0487

'0 rEET

SURCE

o

-~~ ~.~.~.~

- - - - - - - ~-~-~-~-~-~-~:~~~:~uuuuuuuuu

tJHW Ll..W

-5 o

50

'00

ISO

200

rEET

AOUA-f>O

APR'790 JUL' J88

PROfILE

NO

20

tJAR 1 7a8 NOV2 J8 7 R0487

15

'0 fE~T

SUR CE

o

tJHIII

.............

UlW

o

SO

100 rEET

---

ISO

200


APR1790 JUll)88 UAR1788 NOV2)87 UAR0487

20

AQUA-PO PRorIlE

NO. 21

IS

10

rEET

SURCE LtHW

o

UlW

-S

o

SO

100 rEET

ISO

200


II

APPENDIX RAW SEDIMENT

Mz

= Mean

Md

= Median

DATA

grain

size

grain

SI = Standard SKI= Skewness KG = Kurtosis

size

deviation


AQPOP6_1 AQUA PO P6-1

lV~~~hole

-

B?)

0.0 0.0 0.00 Lat Lon Depth(m) Operator: CF 724.7537 Dry Sand Fraction Weight (mg) 2.65 Grain density INatural Grain Fall Time using Wn=0.977WsAO.913 1.3534 0.6792 0.4507 3.5540 M1 M2 M3 M4 (phi) 1.3288 .1.3033 0.6601 0.0868 0.6781 Mz,Md,SI,SKI,KG Size(phi) -1.0000 -0.8750 -0.7500 -0.6250 -0.5000 -0.3750 -0.2500 -0.1250 0.0000 0.1250 0.2500 0.3750 .5000 0.6250 0.7500 0.8750 1.0000 1.1250 1.2500 1.3750 1.5000 1.6250 1.7500 1.8750 2.0000 2.1250 2.2500 2.3750 2.5000 2.6250 2.7500 2.8750 3.0000 3.1250 3.2500 .3750 ..j.5000

~. 6250 .7500 3.8750 4.0000 4.1250 4.2500 4.3750 4.5000

Size(mm) 2.0000 1.8340 1.6818 1.5422 1.4142 1.2968 1.1892 1.0905 1.0000 0.9170 0.8409 0.7711 0..7071 0.6484 0.5946 0.5453 0.5000 0.4585 0.4204 0.3856 0.3536 0.3242 0.2973 0.2726 0.2500 0.2293 0.2102 0.1928 0.1768 0.1621 0.1487 0.1363 0.1250 0.1146 0.1051 0.0964 0.0884 0.0811 0.0743 0.0682 0.0625 0.0573 0.0526 0.0482 0.0442

Wn(cm/s)* 20.1167 18.9156 17.7631 16.6582 15.6003 14.5884 13.6217 12.6995 11. 8208

10.9848 10.1905 9.4370 8.7233 8.0484 7.4111 6.8104 6.2452 5.7143 5.2167 4.7510 4.3163 3.9113 3.5349 3.1860 2.8634 2.5660 2.2927 2.0423 1.8137 1.6058 ~4175 1.2476 1.0949 0.9582 0.8364 0.7282 0.6326 0.5484 0.4744 0.4098 0.3533 0.3043 0.2617 0.2248 O. 1 q~O

Im.Wt(mg) 0.0000 0.0000 0.0000 0.0000 0.7556 0.1804 0.2615 1.7213 2.8469 7.5473 4.4986 11.2944 11. 7714 18.5988 18.4075 23.7573 31.3369 36.3950 39.42~3 34.6459 32.6395 29.7172 31. 3505 22.9493 19.1656 15.4815 11.1765 10.1961 5.9549 5.3560 3.6208 2.6507 2.2560 4.6489 0.6445 1.6815 3.1796 0.5103 0.5103 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Im.Wt(%) Cm.Wt(mg) Cm.Wt(%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1690 0.7556 0.1690 0.2093 0.9360 0.0403 0.2678 0.0585 1.1975 0.6528 0.3850 2.9188 1.2895 0.6367 5.7656 2.9774 1.6879 13.3129 3.9835 1.0061 17.8115 6.5095 29.1059 2.5260 9.1421 40.8773 2.6326 13.3017 59.4761 4.1596 17.4185 77.8836 4.1168 22.7318 101.6409 5.3133 29.7403 7.0084 132.9778 37.8799 8.1397 169.3728 46.6967 208.7951 8.8167 54.4452 7.7485 243.4410 61.7449 7.2998 276.0805 68.3911 305.7976 6.6462 75.4026 7.0115 337.1481 80.5352 5.1326 360.0974 84.8215 379.2631 4.2864 88.2839 3.4624 394.7445 90.7836 2.4996 405.9211 93.0639 2.2803 416.1172 94.3957 1.3318 422.0721 95.5936 1.1979 427.4281 96.4034 0.8098 431.0489 96.9962 0.5928 433.6996 97.5007 435.9556 0.5045 98.5405 1.0397 440.6046 98.6846 441.2490 0.1441 99.0606 442.9305 0.3761 99.7717 0.7111 .446.1101 99.8859 446.6204 0.1141 100.0000 0.11'41 447.1306 100.0000 0.0000 447.1~06 100.0000 447.1306 0.0000 100.0000 447.1306 0.0000 100.0000 447.1306 0.0000 100.0000 447.1306 0.0000 100.nnon n.oonn 4.47 l~()n


.

* - fall velocity

of natural

grains

in fresh water at 200C

1.3534' 0.6792 0.4507 3.5540 ---------------------------------------------

AQPOP6 _1

30

20

10 ** ******* ************ ***************** --------------------------------------------..

-1.0

..

..

0.0

VIm 590l

~,

W E 1 C H T ,1 K M g

..

-

-

..

1.0

RAPIÂť SEDlMEHl'

..

..

..

2.0

..

..

3.0

AtriLYZER ..........

.

mr/~::::::::::::::::::::::::.:::.:::::::::! 344-! ' .. -......... 313 ... .... 281 -! j . J. . . . .. . 259 ...!.r . . . . . .. ............................. 219 ~ ) 188 ~ ., .. ......... 156 J : 125 J } . . . . . . .. : 94 ! I : 63 ~ !. . . . .. .. . ~. . . . . . . .' 31 ...:1 a...il a

.

: : : 1.~k

..

4.0

..

PHI

-------.


AQPOP6 _3 AQUA PO P6-3

0.0 0.0 0.00 Lat Lon Depth(m) Operator: CF 565.6997 Dry Sand Fraction Weight (mg) 2.65 Grain density /Natural Grain Fall Time using Wn=0.977WsAO.913 1.6816 0.4807 -0.0772 4.7921 M1 M2 M3 M4 (phi) 1.6769 1.6802 0.4497 0.0039 0.4469 Mz,Md,SI,SKI,KG Size(phi) -1.0000 -0.8750 -0.7500 -0.6250 -0.5000 -0.3750 -0.2500 -0.1250 0.0000 0.1250 0.2500 0.3750 .5000 U.6250 0.7500 0.8750 1.0000 1.1250 1.2500 1.3750 1.5000 1.6250 1.7500 1.8750 2.0000 2.1250 2.2500 2.3750 2.5000 2.6250 2.7500 2.8750 3.0000 3.1250 3.2500 .3750 3.5000 4.6250 J.7500 3.8750 4.0000 4.1250 4.2500 4.3750 JJ

~()()()

Size(mm) 2.0000 1.8340

1. 6818 1.5422 1.4142 1.2968 1.1892 1.0905 1.0000 0.9170 0.8409 0.7711 0.7071 0.6484 0.5946 0.5453 0.5000 0.4585 0.4204 0.3856 0.3536 0.3242 0.2973 0.2726 0.2500 0.2293 0.2102 0.1928 0.1768 0.1621 0.1487 0.1363 0.1250 0.1146 0.1051 0.0964 0.0884 0.0811 0.0743 0.0682 0.0625 0.0573 0.0526 0.0482 ("0

("oi14?

Wn(cm/s)*

20.1167

18.9156 17.7631 16.6582 15.6003 14.5884 13.6217 12.6995 11.8208 10.9848 10.1905 9.4370 8.7233 8.0484 7.4111 6.8104 6.2452 5.7143 5.2167 4.7510 4.3163 3.9113 3.5349 3.1860 2.8634 2.5660 2.2927 2.0423 1.8137 1.6058 ...4175

1. 2476 1.0949 0.9582 0.8364 0.7282 0.6326 0.5484 0.4744 0.4098 0.3533 0.3043 0.2617 0.2248 ()

, O~()

Im.Wt(mg) Im.Wt(%) Cm.Wt(mg> Cm.Wt(%) 0.0935 0.0271 0.0935 0.0271 0.2857 0.0829 0.3792 0.1100 0.0000 0.0000 0.3792 0.1100 0.0000 0.0000 0.3792 0.1100 0.0000 0.0000 0.1100 0.3792 0.0000 0.0000 0.3792 0.1100 0.3792 0.0000 0.0000 0.1100 0.5792 0.1999 0.0580 0.1679 0.3169 1~0929 0.5138 0.1490 1.1193 0.0264 0.0077 0.3246 1.1458 0.0264 0.0077 0.3323 1.0125 0.2936 0.6259 2.1582 1.0173 0.2950 0.9209 3.1756 6.3779 3.2023 0.9286 1.8495 4.2536 1.2335 10.6314 3.0830 3.7426 12.9061 2.2746 0.6596 6.5631 22.6321 9.7261 2.8205 15.8245 4.5889 11.1520 38.4566 56.8083 18.3517 5.3218 16.4738 80.2753 23.4670 6.8052 23.2790 113.3049 33.0296 9.5783 32.8573 154.4257 41.1207 11.9246 44.7819 40.7607 11.8202 195.1863 56.6020 37.6093 10.9063 232.7956 67.5083 32.5660 9.4438 265.3616 76.9521 27.2386 7.8989 292.6002 84.8511 17.6203 5.1097 89.9608 310.2205 322.4738 12.2533 3.5533 93.5141 330.0970 7.6231 2.2106 95.7247 337.4268 7.3298 2.1256 97.8503 1.1863 0.3440 98.1943 338.6131 1.4652 0.4249 98.6192 340.0783 1.4652 0.4249 99.0441 341.5435 1.4652 0.4249 99.4690 343.0087 0.5497 0.1594 99.6284 343.5584 343.9855 0.4271 0.1239 99.7523 344.4126 0.4271 0.1239 99.8761 344.8397 0.4271 0.1239 100.0000 0.0000 0.0000 100.0000 344.8397 0.0000 0.0000 344.8397 100.0000 0.0000 0.0000 100.0000 344.8397 344.8397 0.0000 0.0000 100.0000 0.0000 0.0000 344.8397 100.0000 0.0000 0.0000 344.8397 100.0000


*

-

fall velocity

of natural

grains

in fresh water at 200C

AQPOP6_3 1.6816 0.4807 -0.0772 4.7921 1--------------------------------------------30 1 1 I 1 I

20

I I 1 I I

10

I

***

I

***** *******

1

**********

I,.

**************

I

1--------------------------------------------A

A

"

A

1.0

2.0

3.0

A

A

-1.0

0.0

UIMS - RAPID SEDIMEIiTA~1YZL~ 599

., . . . . . . . . . : . . . . . . . . . : . . . . . . . ...

469

"i

~

~l::::::::\::...::::T:::::::.

344 !

1

r

313 J. . 2el -i I 250 ~

I ti '1

g

.

./.

~. . .. . . .. . !. .. .. . . . . . .

. . .

219

-1

!

188

"i . : . . . . . . .

1~6 i 115

94

]

.r

63 i l'

31 V

9 .

~

:

...

~

. . . . . . . . .

.

~

~

.

. .

.

. . .

.

.

.

. . .

.

:

. . . . . . . . .

:

; "':'"

~

~

;

. . . . . . .

...

:

. . . ..

~

i

I I

.........

:

:

.

.

;

.

. . .

.

. . .

~

.

. .

.

. .

.

..

....

: . .. . . ':"

.. ..

~ *'

4aQ

6~

TUtE IN SECOHM

1.QQk

"

"

4.0

A

PHI


AQPOP6_4 AQUA PO P6-4

0.0 0.0 0.00 Lat Lon Depth(m) Operator: CF 676.1756 Dry Sand Fraction Weight (mg) 2.65 Grain density INatural Grain Fall Time using Wn=0.977WsAO.913 2.0060 0.9005 -0.2924 2.5624 M1 M2 M3 M4 (phi) 2.0032 2.0872 0.9300 -0.1381 0.5578 Mz,Md,SI,SKI,KG Size(phi) -1.0000 -0.8750 -0.7500 -0.6250 -0.5000 -0.3750 -0.2500 -0.1250 0.0000 0.1250 0.2500 0.3750 0.5000 '.6250 J.7500 0.8750 1.0000 1.1250 1.2500 1.3750 1.5000 1.6250 1.7500 1.8750 2.0000 2.1250 2.2500 2.3750 2.5000 2.6250 2.7500 2.8750 3.0000 3.1250 3.2500 3.3750 "'.5000 J.6250 -3.7500 .8750 4.0000 4.1250 4.2500 4.3750 4.5000

Size(mm) 2.0000 1.8340 1.6818 1.5422 1.4142 1.2968 1.1892 1.0905 1.0000 0.9170 0.8409 0.7711 0.7071 0.6484 0.5946 0.5453 0.5000 0.4585 0.4204 0.3856 0.3536 0.3242 0.2973 0.2726 0.2500 0.2293 0.2102 0.1928 0.1768 0.1621 0.1487 0.1363 0.1250 0.1146 0.1051 0.0964 0.0884 0.0811 0.0743 0.0682 0.0625 0.0573 0.0526 0.0482 0.0442

Wn(cm/s)* 20.1167 18.9156 17.7631 16.6582 15.6003 14.5884 13.6217 12.6995 11.8208 10.9848 10.1905 9.4370 8.7233 8.0484 7.4111 6.8104 6.2452 5.7143 5.2167 4.7510 4.3163 3.9113 3.5349 3.1860 2.8634 2.5660 2.2927 2.0423 1.8137 1.6058 1.4175 ~.2476 1.0949 0.9582 0.8364 0.7282 0.6326 0.5484 0.4744 0.4098 0.3533 0.3043 0.2617 0.2248 0.1930

Im.Wt(mg) 0.0000 0.5222 0.5222 0.1026 0.1026 0.2291 0.1654 0.9325 2.8780 0.7859 3.2911 8.8991 4.8884 8.1449 13.8669 9.0769 14.9621 10.9244 9.9416 12.8406 12.8476 14.8423 17.5499 21. 6062 21.7272 22.0801 24.0726 24.3099 20.9699 19.5151 17.7603 16.5877 18.5591 17.9763 15.0085 9.7373 1.3870 4.1202 4.1202 5.1541 0.0767

1. 0301 0.0000 0.0000 0.0000

Im.Wt<%) Cm.Wt(mg) Cm.Wt(%) 0.0000 0.0000 0.0000 0.5222 0.1261 0.1261 1.0444 0.2522 0.1261 1.1470 0.2770 0.0248 1.2496 0.0248 0.3018 1. 4787 0.3571 0.0553 0.3970 1.6441 0.0399 0.6222 2.5766 0.2252 5.4546 0.6950 1.3172. 1.5070 6.2405 0.1898 9.5317 2.3017 0.7947 4.4506 18.4308 2.1489 5.6311 1.1804 23.3191 7.5979 1.9668 31.4641 3.3486 45.3310 10.9465 13.:1383 2.1919 54.4078 16.7514 3.6130 69.3699 80.2943 19.3894 2.6380 21.7901 2.4007 90.2358 24.8908 3.1007 103.0764 27.9932 3.1024 115.9240 31.5773 3.5841 130.7664 35.8153 4.2379 148.3163 5.2174 169.9224 41.0327 5.2467 46.2793 191.6496 5.3319 51.6112 213.7297 5.8130 57.4242 237.8022 5.8703 262.1121 63.2946 283.0821 5.0638 68.3584 4.7125 302.5971 73.0708 4.2887 320.3574 77.3596 4.0056 81.3652 336.9452 4.4816 355.5043 85.8468 90.1877 4.3409 373.4806 93.8119 3.6242 388.4891 2.3514 398.2264 96.1633 0.3349 399.6134 96.4982 97.4932 0.9949 403.7337 0.9949 407.8539 98.4881 1. 2446 413.0080 99.7327 0.0185 413.0847 99.7512 0.2488 414.1148 100.0000 0.0000 414.1148 100.0000 0.0000 414.1148 100.0000 0.0000 414.1148 100.0000


*

-

fall velocity

of natural grains

AQPOP6_4

2.0060

in fresh water at 200C

0.9005

-0.2924

2.5624

~ 30

r

I

I I I I I

20

I

I 1 I I I

10

I

I 1 I

************ * * * * * * * * * * ** * * * * * * * * * *

*

I.'

I

I

1

1

A

A

..

..

IJIMS -

!of

E

I G If T

313

:

...1 . ..

281 j 258 ..;.

.. .. . .. . .

;

:

. . . .. .. ..

: . ~ .. . . .. . .. ~ . .. . :

.. . . .. . . .

[

: .. . . :.. :

. .

in ~ 94 I'

: /:

!II g

~

~

!: /. . ..

3.0

2.0

!...................

i

344 J

63 J !. ~1 J} ~

9

IJ a

:

:

.:

:

: I

: :

:

: :

: :

:

: I :

.

: :

:

:

:

: : :

.

.

.

. .

.

.

. .

. .

i

. .

.

. .

.

.

:

'

2~

. . . . . . . . .

j

:

Tum

.

.

.

.

:

:

.

.

. . .

.

.

. : : '.. .

:

.

:

.

.

.

.

.

.

.

.

:

:

~~

.

. .

.

..

RAPID SEDIMENTANALYZER

IL /L3 219"':!:

I H

1.0

0.0

-1.0

A

A

,

IN

694

SECOHJ>S

.

8~

1.QQk

..

4.0

PHI


AQP012_1 AQUA PO P12-1

0.0 0.0 0.00 Lat Lon Depth(m) Operator: CF 578.6277 Dry Sand Fraction Weight (mg) 2.65 Grain density INatural Grain Fall Time using Wn=0.977WsAO.913 1.2859 0.7850 0.3329 3.5194 M1 M2 M3 M4 (phi) 1.2541 1.2191 0.7441 0.1317 0.7632 Mz,Md,SI,SKI,KG Size(phi) -1.0000 -0.8750 -0.7500 -0.6250 -0.5000 -0.3750 -0.2500 -0.1250 0.0000 0.1250 0.2500 0.3750 0.5000 6250 0.7500 0.8750 1.0000 1.1250 1.2500 1.3750 1.5000 1.6250 1.7500 1.8750 2.0000 2. 1250 2.2500 2.3750 2.5000 2.6250 2.7500 2.8750 3.0000 3 .1250 3.2500 3.3750 5000 ;J.6250 ~

7500

_.8750 4.0000 4.1250 4.2500 4.3750 4.5000

Size(mm) 2.0000 1.8340 1. 6818 1.5422 1. 4142 1.2968 1.1892 1.0905 1.0000 0.9170 0.8409 0.7711 0.7071 0.6484 0.5946 0.5453 0.5000 0.4585 0.4204 0.3856 0.3536 0.3242 0.2973 0.2726 0.2500 0.2293 0.2102 0.1928 0.1768 0.1621 0.1487 0.1363 0.1250 0.1146 0.1051 0.0964 0.0884 0.0811 0.0743 0.0682 0.0625 0.0573 0.0526 0.0482 0.0442

Wn(cm/s). 20.1167 18.9156 17.7631 16.6582 15.6003 14.5884 13.6217 12.6995 11.8208 10.9848 10.1905 9.4370 8.7233 8.0484 7.4111 6.8104 6.2452 5.7143 5.2167 4.7510 4.3163 3.9113 3.5349 3.1860 2.8634 2.5660 2.2927 2.0423 1.8137 1.6058 1.4175 1~2476 1.0949 0.9582 0.8364 0.7282 0.6326 0.5484 0.4744 0.4098 0.3533 0.3043 0.2617 0.2248 0.1930

~m.Wt(mg) Im.Wt(%) Cm.Wt(mg) Cm.Wt(%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 3.8244 1.0735 3.8244 1.0735 1.4184 0.3981 5.2428 1.4716 0.2310 0.0648 5.4738 1.5365 0.8699 0.2442 6.3437 1.7807 1.8584 0.5216 2.3023 8.2021 10.5325 2.9564 2.3304 0.6541 2.4095 0.6763 12.9420 3.6328 4.2459 2.1844 0.6131 15.1264 21.6836 6.0865 6.5572 1.8406 15.0880 4.2351 36.7716 10.3216 12.7645 3.5829 13.9045 49.5361 64.3197 18.0542 14.7836 4.1497 81.3005 22.8206 16.9807 4.7664 23.3298 6.5485 104.6302 29.3691 25.7090 7.2164 130.3392 36.5855 43.3419 24.0705 6.7564 154.4097 185.9284 52.1890 31.5187 8.8471 21. 1575 5.9388 207.0859 58.1278 22.8680 6.4189 229.9539 64.5467 22.3894 6.2846 252.3433 70.8313 77.2558 22.8881 6.4246 275.2314 80.6566 12.1157 3.4008 287.3471 301.5142 84.6333 14.1671 3.9766 10.2772 2.8847 311.7914 87.5180 6.9232 1.9433 89.4613 318.7146 5.5773 1.5655 324.2919 91.0268 3.0040 0.8432 327.2959 91.8700 92.7132 3.0040 0.8432 330.2999 95.0178 338.5103 8,.2104 2.3046 1.3418 0.3766 339.8521 95.3945 2.0143 0.5654 341.8664 95.9599 3.1830 0.8935 345.0495 96.8534 5.3279 1.4955 350.3774 98.3489 3.6894 1.0356 99.3845 354.0667 2.1930 0.6155 100.0000 356.2597 0.0000 0.0000 356.2597 100.0000 0.0000 0.0000 100.0000 356.2597 0.0000 0.0000 356.2597 100.0000 0.0000 0.0000 356.2597 100.0000 0.00000.0000 356.2597 100.0000 0.0000 0.0000 356.2597 100.0000 0.0000 0.0000 356.2597 100.0000 0.0000 0.0000 356.2597 100.0000


. - r~ll

vplo~;~v

or natural

AQP012_1

arains

1.2859

in fresh

0.7850

water

0.~329

at 200C

3.5194 1

30

I

I I

I

I

I

20

I

I I I I

1 10

I

.

I

.

I

**** *** * **********

I

I

***************

I'

*

I

1

1

A

A

-1.0

A

1.0

2.0

A

A

3.0

IJIMS - RAPID SEDIMEHTRNALYZER

S99-.. 469 J W E I C It T

0.0

A

:

:

:

:..........

:

:

:

:

~~~:: ::..:: . 344 - ~. ~ 313"':. .F.. "81 j f

259 J ..!. 219 ! J

.. [ :

..:

:

:::.:.:::::::I:::::::::I::.::: . . . . . i :

j :

[.. :

:

:

:

:

:

..

.

:.....

I H M g

fi!~. Q

. · .

... . ! . .. . 2ai

. . . · . i . . . .· · · · ·

499.,...

!I ME I Ii

! . . · . . . . . . : · . · · ..

6~

SECOHDS

. aeQ

...

1.90k

4.0

PHI


M5

AQP012_3

AQUA PO P12-3 0.0 0.0 0.00 Lat Lon Depth(m) Operator: CF 714.1762 Dry Sand Fraction Weight (mg) 2.65 Grain density INatural Grain Fall Time using Wn=0.977WsAO.913 1.7691 0.5443 -0.1007 4.1531 M1 M2 M3 M4 (phi) 1.7764 1.7622 0.5051 0.0294 0.4865 Mz.Md.SI.SKI.KG Size(phi) -1.0000 -0.8750 -0.7500 -0.6250 -0.5000 -0.3750 -0.2500 -0.1250 0.0000 0.1250 0.2500 0.3750 1').5000

.6250 0.7500 0.8750 1.0000 1.1250 1.2500 1.3750 1.5000 1.6250 1.7500 1.8750 2.0000 2.1250 2.2500 2.3750 2.5000 2.6250 2.7500 2.8750 3.0000 3.1250 3.2500 3.3750 5000 3.6250 "\.7500 3.8750 4.0000 4.1250 4.2500 4.3750 4.5000

..

Size(mm) 2.0000 1.8340 1.6818 1.5422 1.4142 1.2968 1.1892 1.0905 1.0000 0.9170 0.8409 0.7711 0.7071 0.6484 0.5946 0.5453 0.5000 0.4585 0.4204 0.3856 0.3536 0.3242 0.2973 0.2726 0.2500 0.2293 0.2102 0.1928 0.1768 0.1621 0.1487 0.1363 0.1250 0.1146 0.1051 0.0964 0.0884 0.0811 0.0743 0.0682 0.0625 0.0573 0.0526 0.0482 0.0442

WnCcm/s)* 20.1167 18.9156 17.7631 16.6582 15.6003 14.5884 13.6217 12.6995 11.8208 10.9848 10.1905 9.4370 8.7233 8.0484 7.4111 6.8104 6.2452 5.7143 5.2167 4.7510 4.3163 3.9113 3.5349 3.1860 2.8634 2.5660 2.2927 2.0423 1. 8137 1.6058 1.4175 1"'.2476

1.0949 0.9582 0.8364 0.7282 0.6326 0.5484 0.4744 0.4098 0.3533 0.3043 0.2617 0.2248 0.1930

Im.Wt(mg) Im.WtCX) Cm.Wt(mg> Cm.WtC%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0087 0.0380 0.0380 0.0087 0.0000 0.0000 0.0380 0.0087 0.0000 0.0000 0.0380 0.0087 0.0380 0.0087 0.0000 0.0000 0.0857 0.0197 0.0477 0.0109 0.1334 0.0306 0.0477 0.0109 2.6799 2.5465 0.5840 0.6146 3.4675 0.7952 0.7876 0.1806 4.2848 0.9826 0.8173 0.1874 6.4879 2.2031 0.5052 1.4878 10.6818 4.1939 0.9618 2.4496 2.6063 11.3651 0.6833 0.1567 14.3385 3.2882 2.9734 0.6819 4.7321 20.6350 6.2965 1.4440 30.0526 6.8918 9.4175 2.1597 11.5949 2.6590 41.6475 9.5508 58.9903 17.3429 3.9772 13.5280 22.8830 5.2477 81.8733 18.7757 122.4406 40.5673 9.3031 28.0788 37.8858 42.7643 9.8070 165.2049 213.3208 48.9200 48.1159 11.0342 48.4299 11. 1062 261.7507 60.0262 303.1737 41.4230 9.4994 69.5256 337.4428 34.2691 7.8588 77.3844 27.5740 6.3234 365.0168 83.7078 384.6828 19.6660 4.5099 88.2177 16.6794 3.8250 92..0428 401.3622 94.5957 412.4947 11.1325 2.5530 96.1172 6.6344 1.5214 419.1291 5.4872 1.2583 97.3755 424.6163 3.6051 0.8267 98.2023 428.2213 429.0496 98.3922 0.8283 0.1900 98.6142 0.9682 0.2220 430.0178 99.8479 1. 2337 435.3973 5.3795 100.0000 0.6632 0.1521 436.0606 436.0606 100.0000 0.0000 0.0000 436.0606 100.0000 0.0000 0.0000 100.0000 0.0000 0.0000 436.0606 0.0000 0.0000 436.0606 100.0000 0.0000 0.0000 436.0606 100.0000 0.0000 0.0000 436.0606 100.0000 0.0000 0.0000 436.0606 100.0000 436.0606 0.0000 0.0000 100.0000


*

-

fall velocity

of natural

AQP012_3

grains

1.7691

in fresh

0.5443

water at 200C

-0.1007

4.1531

1 i

30

1 I 1 I", I I

20

1

I I I I I

10

**

I

I

*****

I

*******

I

*********

:,

I

**************

I

I

1

1

,..

!J

. (

344 1

i

I

AHRLYZER ; j

j

~

.........

~

313 j ..r -. -... . .... ...; ?81...

I

zSIt

...j .

<.

219

-1

J

31

3.0

<~~..!::::: ~:::I.::::::'::!:::::::::.:::::::::. . .

! r:

ili 31. 63i

2.0

SIPIMEH!

UIMS - RAPID .: ' : j ~

509". ~91

W E I G H T I H M

1.0

0.0

-1.0

,..

;....................

:

~

.

.

.

.

. .

:

~

. ..

...!.

~

.

. .

.

. . .

. .

:

;

. .

.

~

.,.

. .

. .

.

.

:

.

.

.

~

.

. .

. .

.

. .

.

.

. .

. .

.

.

.

.

.

.

.1.......... . .

u

-J . . . . . . . . . i . . . . . . . . . j . . . . . . . - . ~ . . . . . - . . . ~ . . . . . . . . . ~

-a

2~

.w.\

TIME IN

6~

SECorms

8~

1.~k

4.0

PHI


~5

AQP012_4

AQ-UA PO P12-4 0.0 0.0 0.00 Lat Lon Depth(m) Operator: CF 567.2667 Dry Sand Fraction Weight (mg) 2.65 Grain density /Natural Grain Fall Time using Wn=0.977WsAO.913 1.0969 0.9157 0.9650 3.4130 M1 M2 M3 M4 (phi) 1.0841 0.8621 0.8973 0.4058 0.9333 Mz.Md.SI.SKI.KG Size(phi) -1.0000 -0.8750 -0.7500 -0.6250 -0.5000 -0.3750 -0.2500 -0.1250 0.0000 0.1250 0.2500 0.3750 -0.5000 .6250 0.7500 0.8750 1.0000 1.1250 1.2500 1.3750 1. 5000 1.6250 1.7500 1.8750 2.0000 2.1250 2.2500 2.3750 2.5000 2.6250 2.7500 2.8750 3.0000 3.1250 3.2500 3.3750 .5000 3.6250 -'.7500 .:S.8750

4.0000 4.1250 4.2500 4.3750 4.5000

Size(mm) 2.0000 1.8340 1.6818 1.5422 1.4142 1.2968 1.1892 1.0905 1.0000 0.9170 0.8409 0.7711 0.7071 0.6484 0.5946 0.5453 0.5000 0.4585 0.4204 0.3856 0.3536 0.3242 0.2973 0.2726 0.2500 0.2293 0.2102 0.1928 0.1768 0.1621 0.1487 0.1363 0.1250 0.1146 0.1051 0.0964 0.0884 0.0811 0.0743 0.0682 0.0625 0.0573 0.0526 0.0482 0.0442

Wn(cm/s). 20.1167 18.9156 17.7631 16.6582 15.6003 14.5884 13.6217 12.6995 11.8208 10.9848 10.1905 9.4370 8.7233 8.0484 7.4111 6.8104 6.2452 5.7143 5.2167 4.7510 4.3163 3.9113 3.5349 3.1860 2.8634 2.5660 2.2927 2.0423 1.8137 1.6058 1.4175 f'.2476 1.0949 0.9582 0.8364 0.7282 0.6326 0.5484 0.4744 0.4098 0.3533 0.3043 0.2617 0.2248 0.1930

Im.Wt(mg) Im.Wt(%) Cm.Wt(mg) Cm.Wt(%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3331 0.0957 0.3331 0.0957 2.1385 1.8054 0.5187 0.6144 2.4091 0.6922 4.5476 1.3066 9.6770 5.1294 1.4738 2.7804 2.1669 0.6226 11.8439 3.4030 16.6531 4.8092 1.3818 4.7847 31.4937 14.8405 4.2640 9.0487 43.7571 12.2635 3.5235 12.5722 66.5769 22.8197 6.5565 19.1287 97.4806 28.0079 30.9038 8.8792 28.8052 8.2762 126.2858 36.2842 148.1401 21.8542 6.2791 42.5633 176.9978 28.8577 8.2913 50.8546 19.6309 5.64003 196.6287 56.4949 222.1845 25.5558 7.3426 63.8376 237.1659 14.9815 4.3044 68.1420 248.6434 71.4397 11.4774 3.2977 260.1416 11.4983 3.3037 74.7433 268.6678 77.1931 8.5261 2.4497 276.1715 79.3490 7.5037 2.1560 282.2123 6.0407 1.7356 81.0846 289.6465 7.4342 2.1360 83.2206 294.1697 4.5232 1.2996 84.5202 299.0647 4.8950 1.4064 85.9266 306.0329 6.9681 2.0021 87.9287 310.1222 4.0894 1.1749 89.1037 315.6092 5.4870 1.5765 90.6802 320.2482 92.0130 4.6390 1.3329 323.7051 3.4569 0.9932 93.0062 329.5803 5.8752 1.6881 94.6943 334.9310 5.3507 1.5373 96.2316 4.9320 1.4171 97.6487 339.8630 340.7795 0.9165 0.2633 97.9120 342.0073 1.2279 0.3528 98.2648 343.2352 1.2279 0.3528 98.6176 344.4631 1.2279 0.3528 98.9704 348.0466 3.5835 1.0296 100.0000 0.0000 0.0000 348.0466 100.0000 0.0000 0.0000 348.0466 100.0000 348.0466 0.0000 0.0000 100.0000 348.0466 0.0000 0.0000 100.0000 348.0466 0.0000 0.0000 100.0000


* -

fall velocity

of natural

grains

in fresh water at 200C

AOP012_4 1.0969 0.9157 0.9650 3.4130 1--------------------------------------------30

20

10 ** * ***** * * ******** **************

*

*

1--------------------------------------------,.

- RAPI»

UIMS 1

469

"1

.

.

1.0

0.0

-1.0

599

,.

.

.

.

.

. .

.

.

~

. . .

. . .

. .

~

ANALYztR

SEDIMENt . . . . . . . . .

~

:

3.0

2.0

~

. . . . . . . . .

1

.

~

.

. .

.

.

. .

.

j

W E I G H T I N

m3:::':::::I:::::::::I:::::::::I:::::::::I::::::::: ~

M Sf

in~!'

344

.

313

"

-! ! . . .~.

2SQ

j

r

31""11 9 · £>3

.

.

.

. .

I!

219

~

"i

t

:

i : .

(

~81 -

. .

!

: .

.

. .

.

. . .

.

.

:

.

.

.

.

. . . ;

!

. . . . . . . . .

:

, .

: : ~. . ... . ... ~ : : . .

. ... . ~..

!

.

.

.

. .

. .

. .

.

.

:

.

.

. . . . . . . . .

:

!

.

.

. .

.

.

. .

.

:

:

1.:::,.::: . . .

. .

.. . ..

:

:

...:1:'::... '.j

. . . . . . . . .

:

. . . . . . . . .

:

;

;

:

:

:

:

:

:

:

:

Sat\

1.~Jc

Z.a

~

TItlE IN

6~

SECOHDS

4.0

PHI


---

- -

-.

- -.

-.-

AQP016_1 AQUA PO P16-1

0.0 0.0 0.00 Lat Lon DepthCm) Operator: CF 661.6806 Dry Sand Fraction Weight Cmg) 2.65 Grain density INatural Grain Fall Time using Wn=0.977WsAO.913 1.4180 0.7647 0.5144 3.3119 M1 M2 M3 M4 Cphi) 1.3940 1.3437 0.7575 0.1525 0.7255 Mz,Md,SI,SKI,KG SizeCphi) -1.0000 -0.8750 -0.7500 -0.6250 -0.5000 -0.3750 -0.2500 -0.1250 0.0000 0.1250 0.2500 0.3750 f).5000 .6250 0.7500 0.8750 1.0000 1.1250 1.2500 1.3750 1.5000 1.6250 1.7500 1.8750 2.0000 2.1250 2.2500 2.3750 2.5000 2.6250 2.7500 2.8750 3.0000 3.1250 3.2500 _3.3750 .5000 3.6250 -,.7500

.$.8750 4.0000 4.1250 4.2500 4.3750 4.5000

SizeCmm) 2.0000 1.8340 1.6818 1. 5422 1.4142 1.2968 1.1892 1.0905 1.0000 0.9170 0.8409 0.7711 0.7071 0.6484 0.5946 0.5453 0.5000 0.4585 0.4204 0.3856 0.3536 0.3242 0.2973 0.2726 0.2500 0.2293 0.2102 0.1928 0.1768 0.1621 0.1487 0.1363 0.1250 0.1146 0.1051 0.0964 0.0884 0.0811 0.0743 0.0682 0.0625 0.0573 0.0526 0.0482 0.0442

WnCcm/s)* 20.1167 18.9156 17.7631 16.6582 15.6003 14.5884 13.6217 12.6995 11.8208 10.9848 10.1905 9.4370 8.7233 8.0484 7.4111 6.8104 6.2452 5.7143 5.2167 4.7510 4.3163 3.9113 3.5349 3.1860 2.8634 2.5660 2.2927 2.0423 1.8137 1.6058 1. 4175 f.2476 1.0949 0.9582 0.8364 0.7282 0.6326 0.5484 0.4744 0.4098 0.3533 0.3043 0.2617 0.2248 0.1930

Im.Wt(mg) 0.0000 0.0000 0.3867 0.0000 0.0000 0.0000 0.0000 4.8511 3.8625 5.5374 2.6168 8.2884 10.8616 15.1027 21.7181 21. 3877 28.8788 28.3150 27.7169 29.3719 28.8242 26.8959 22.3016 18.7393 16.4476 15.4627 9.5754 11.2210 7.9610 6.3503 6.1446 3.0065 3.1236 3.1236 7.2497 3.6240 0.7618 0.7269 0.7269 1.9286 0.0000 0.0000 0.0000 0.0000 0.0000

Cm.Wt(mg} Cm.Wt(%) 0.0000 0.0000 0.0000 0.0000 0.3867 0.0959 0.3867 0.0959 0.3867 0.0959 0.3867 0.0959 0.3867 0.0959 5.2379 1.2994 2.2576 9.1003 14.6377 3.6314 17.2546 4.2806 6.3368 25.5430 36.4045 9.0313 51.5072 12.7781 73.2253 18.1659 23.4719 94.6130 30.6362 123.4918 151.8068 37.6607 44.5368 179.5236 51.8234 208.8956 58.9742 237.7198 264.6157 65.6466 71.1793 286.9173 75.8282 305.6565 322.1042 79.9086 83.7446 337.5669 86.1201 347.1423 88.9038 358.3633 366.3243 90.8788 372.6746 92.4542 378.8192 93.9786 94.7245 381.8257 95.4994 384.9494 388.0730 96.2743 395.3226 98.0728 98.9719 398.9467 399.7085 99.1609 400.4354 99.3412 401.1623 99.5215 100.0000 403.0909 403.0909 100.0000 403.0909 100.0000 403.0909 100.0000 403.0909 100.0000 403.0909 100.0000

Im.WtC%) 0.0000 0.0000 0.0959 0.0000 0.0000 0.0000 0.0000 1.2035 0.9582

1. 3737 0.6492 2.0562 2.6946 3.7467 5.3879 5.3059 7.1643 7.0245 6.8761 7.2867 7.1508 6.6724 5.5326 4.6489 4.0804 3.8360 2.3755 2.7837 1.9750 1.5754 1.5244 0.7459 0.7749 0.7749 1.7985 0.8991 0.1890 0.1803 0.1803 0.4785 0.0000 0.0000 0.0000 0.0000 0.0000


*

-

fall velocity

of natural grains

in fresh water at 200C

AQP016_1 1.4180 0.7647 0.5144 3.3119 1--------------------------------------------30

I I

I

20

J

I

I

I

I

10

I 1

I

****** ***********

I I.

I

J

*****************

I

I

1

1

0.0

-1.0

UIMS

II

E

I G H T 1 N M 9

1~.0' 281 j

f

rl~ "9

-

2.0

1.0

RAPIDSEDIKEtfTANALYZER

1

1

:

:

:

I

~ TIME 1M

2~

3.0

I

I

'

1

:

:

I

l.~Jt

,~ 8~ SECONDS

1

4.0

PHI


AQP016_3 AQUA PO P16_3

M<?

0.0 0.0 0.00 Lat Lon Depth(m) Operator: CF 609.5767 Dry Sand Fraction Weight (mg) 2.65 Grain density /Natural Grain Fall Time using Wn=0.977Ws~0.913 1.6149 0.6571 0.4789 4.1733 Ml M2 M3 M4 (phi) 1.5880 1.5897 0.6156 0.0457 0.6131 Mz,Md,SI,SKI,KG Size(phi) -1.0000 -0.8750 -0.7500 -0.6250 -0.5000 -0.3750 -0.2500 -0.1250 0.0000 0.1250 0.2500 0.3750 --0.5000 .

.6250 0.'7500 0.8750 1.0000 1.1250 1.2500 1. 3750 1.5000 1.6250 1.7500 1.8750 2.0000 2.1250 2.2500 2.3750 2.5000 2.6250 2.7500 2.8750 3.0000 3.1250 3.2500 _3.3750 .5000 3.6250 .7500 ..J.8750

4.0000 4.1250 4.2500 4.3750 4.5000

Size(mm) 2.0000 1.8340 1.6818 1.5422 1.4142 1.2968 1.1892 1.0905 1.0000 0.9170 0.8409 0.7711 0.7071 0.6484 0.5946 0.5453 0.5000 0.4585 0.4204 0.3856 0.3536 0.3242 0.2973 0.2726 0.2500 0.2293 0.2102 0.1928 0.1768 0.1621 0.1487 0.1363 0.1250 0.1146 0.1051 0.0964 0.0884 0.0811 0.0743 0.0682 0.0625 0.0573 0.0526 0.0482 0.0442

Wn(cm/s). 20.1167 18.9156 17.7631 16.6582 15.6003 14.5884 13.6217 12.6995 11. 8208

10.9848 10.1905 9.4370 8.7233 8.0484 7.4111 6.8104 6.2452 5.7143 5.2167 4.7510 4.3163 3.9113 3.5349 3.1860 2.8634 2.5660 2.2927 2.0423 1.8137 1.6058 1.4175 r.2476 1.0949 0.9582 0.8364 0.7282 0.6326 0.5484 0.4744 0.4098 0.3533 0.3043 0.2617 0.2248 0.1930

Im.Wt(mg) Im.Wt(%) Cm.Wt(mg> Cm.Wt(%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.8127 1. 8127 0.4800 0.4800 1.9220 0.1093 0.0290 0.5090 2.4466 0.5245 0.1389 0.6479 0.5245 0.1389 2.9711 0.7868 4.8867 1.9156 0.5073 1.2940 10.4721 5.5854 1.4791 2.7731 2.5835 0.6841 13.0556 3.4573 7.1139 1.8838 20.1695 5.3411 9.6137 2.5458 29.7833 7.8869 41.8677 12.0844 3.2001 11. 0869 57.5900 15.7223 4.1634 15.2503 77.4107 19.8207 5.2487 20.4990 25.4951 6.7513 102.9058 27.2504 26.1003 6.9116 129.0061 34.1620 33.6807 8.9189 162.6868 43.0809 36.4051 9.6404 199.0919 52.7213 34.5144 9.1397 233.6063 61. 8610 33.5005 8.8712 267.1069 70.7323 25.1647 6.6638 292.2716 77.3961 21.0539 5.5753 313.3255 82.9714 15.3909 4.0756 328.7164 87.0470 10.2071 2.7029 338.9234 89.7499 346.1986 7.2751 1.9265 91.6764 353.2033 7.0048 1.8549 93.5314 358.0071 4.8038 1.2721 94.8034 Z.5586 0.6775 360.5657 95.4810 2.5586 0.6775 363.1244 96.1585 2.8418 0.7525 365.9661 96.9111 368.2340 2.2679 0.6006 97.5116 2.2679 0.6006 370.5019 98.1122 2.2679 0.6006 372.7698 98.7127 0.9358 0.2478 373.7056 98.9606 0.9358 0.2478 374.6414 99.2084 2.9895 0.7916 100.0000 377.6309 0.0000 0.0000 377.6309 100.0000 0.0000 0.0000 377.6309 100.0000 0.0000 0.0000 377.6309 100.0000 0.0000 0.0000 377.6309 100.0000 0.0000 0.0000 377.6309 100.0000


fS

AQP016_4

AQUA PO P16-4 0.0 0.0' 0.00 Lat Lon Depth(m) Operator: CF 707.1246 Dry Sand Fraction Weight (mg) 2.65 Grain density INatural Grain Fall Time using Wn=0.977WsAO.913 1.2391 0.8934 0.7782 3.2112 M1 M2 M3 M4 (phi) 1.2324 1.0299 0.8861 0.3408 0.8183 Mz.Md.SI.SKI.KG Size(phi) -1.0000 -0.8750 -0.7500 -0.6250 -0.5000 -0.3750 -0.2500 .-0.1250 0.0000 0.1250 0.2500 0.3750 .5000 0.6250 0.7500 0.8750 1.0000 1.1250 1. 2500 1.3750 1.5000 1.6250 1.7500 1.8750 2.0000 2.1250 2.2500 2.3750 2.5000 2.6250 2.7500 2.8750 3.0000 3.1250 3.2500 .3750 .3.5000 4.6250 7500 3.8750 4.0000 4.1250 4.2500 4.3750 4.s()n()

Size(mm) 2.0000 1.8340 1.6818 1.5422 1.4142 1.2968 1.1892 1.0905 1.0000 0.9170 0.8409 0.7711 0.7071 0.6484 0.5946 0.5453 0.5000 0.4585 0.4204 0.3856 0.3536 0.3242 0.2973 0.2726 0.2500 0.2293 0.2102 0.1928 0.1768 0.1621 0.1487 0.1363 0.1250 0.1146 0.1051 0.0964 0.0884 0.0811 0.0743 0.0682 0.0625 0.0573 0.0526 0.0482 0.044;>

Wn(cm/s)* 20.1167 18.9156 17.7631 16.6582 15.6003 14.5884 13.6217 12.6995 11. 8208

10.9848 10.1905 9.4370 8.7233 8.0484 7.4111 6.8104 6.2452 5.7143 5.2167 4.7510 4.3163 3.9113 3.5349 3.1860 2.8634 2.5660 2.2927 2.0423 1.8137 1.6058 1"'.417

5

1.2476 1.0949 0.9582 0.8364 0.7282 0.6326 0.5484 0.4744 0.4098 0.3533 0.3043 0.2617 0.2248 n.lq~()

Im.Wt(mg) 0.0000 0.3119 0.3119 1.3944 0.5714 0.5714 4.5437 3.4129 3.4129 14.2652 12.2720 16.9009 19.9540 26.3213 35.8342 28.5087 40.5749 34.1439 24.6154 20.2203 14.5358 13.6000 11. 9130 10.4336 8.4113 9.7529 10.9697 10.2252 8.8258 5.6256 5.9440 7.5535 7.7937 1. 7157 6.5938 1.3077 1. 9530 2.7723 4.4228 2.0348 0.1358 0.0000 0.0000 0.0000 n (If) n n

Im.Wt(%) Cm.Wt(mg) Cm.Wt(%) 0.0000 0.0000 0.0000 0.3119 0.0718 0.0718 0.0718 0.1435 0.6239 0.4643 2.0182 0.3208 0.5958 0.1315 2.5897 0.7272 3.1611 0.1315 1.7726 7.7047 1.0453 2.5578 0.7852 11.1177 3.3430 0.7852 14.5306 3.2819 6.6249 28.7958 9.4482 2.8234 41.0679 13.3365 3.8883 57.9688 17.9272 77.9228 4.5907 23.9828 6.0556 104.2441 32.2270 140.0783 8.2442 6.5588 38.7858 168.5870 48.1206 9.3348 209.1619 55.9759 7.8553 243.3058 5.6631 61.6390 267.9212 4.6520 66.2910 288.1415 3.3442 69.6352 302.6773 3.1289 72.7640 316.2773 75.5048 2.7408 328.1904 2.4004 77.9052 338.6239 1.9351 79.8403 347.0352 2.2438 82.0841 356.7881 2.5237 84.6078 367.7578 2.3524 86.9603 377.9830 2.0305 88.9908 386.8088 90.2850 1.2942 392.4344 1.3675 91.6525 398.3784 1.7378 93.3903 405.9319 1.7931 95.1834 413.7256 95.5781 0.3947 415.4413 97.0951 1.5170 422.0351 97.3960 0.3009 423.3429 97.8453 0.4493 425.2959 98.4831 0.6378 428.0683 99.5006 432.4910 1.0175 99.9688 0.4681 434.5258 100.0000 0.0312 434.6617 100.0000 0.0000 434.6617 0.0000 434.6617 100.0000 434.6617 100.0000 0.0000 n . n ()n n i1~4 hhl7 lnn nnnn


*

-

fall velocity

of natural

AQP016_4

grains

1.2391

in fresh water at 200C

0.8934

0.7782

3.2112 1

30

I

I

I~

20

10 * * ***** ******** ***************

****

--------------------------------------------A

-1.0

0.0

1.0

2.0

HAPID SIDlMEHI

AttALYZER

3.0

c

IJIMS

W E I G H I I H " g

-

589 1 . . . . . . . . . : . . . . . . . . . : . . . . . . . . . : . . . . . . . . . 4691 i i 438 :.. ,.1. ,......... .. . 486 3751 344... .. : . .. . . . . . . : . . . . . . . . . j . . . . . . . . .

i

~

I

J' 281 I I

313

~

~

:~

~ ... ... .... ... ... ... ~

~

. .

. .

259 ... ... . . . . . . . : . . . . . . . . . : . . . . . . . . . . . . . . . . . . .

.

219~1

~

.

:

~

.

1

1...................

188"1,

156 1 ! 1~~ 63 31 o II

~

; i ..;

i................... i................... 1 .. 6 SECONDS

.

4.0

PHI


--_. r

AQP020_1 AQUA PO P20-1

0.0 0.0 0.00 Lat Lon Depth(m) Operator: CF 623.6800 Dry Sand Fraction Weight (mg) 2.65 Grain density INatural Grain Fall Time using Wn=0.977WsAO.913 1.4369 0.6777 0.3929 3.2958 M1 M2 M3 M4 (phi) 1.4285 1.3736 0.6747 0.1621 0.6920 Mz,Md,SI,SKI,KG Size(phi) -1.0000 -0.8750 -0.7500 -0.6250 -0.5000 -0.3750 -0.2500 -0.1250 0.0000 0.1250 0.2500 f).3750 ( .5000 0.6250 0.7500 0.8750 1.0000 1.1250 1.2500 1.3750 1.5000 1.6250 1.7500 1.8750 2.0000 2.1250 2.2500 2.3750 2.5000 2.6250 2.7500 2.8750 3.0000 3.1250 1.2500 .3750 3.5000 ,.6250

J.7500 3.8750 4.0000 4.1250 4.2500 4.3750 -

-

... -

Size(mm) 2.0000 1.8340 1.6818 1.5422 1.4142 1.2968 1.1892 1.0905 1.0000 0.9170 0.8409 0.7711 0.7071 0.6484 0.5946 0.5453 0.5000 0.4585 0.4204 0.3856 0.3536 0.3242 0.2973 0.2726 0.2500 0.2293 0.2102 0.1928 0.1768 0.1621 0.1487 0.1363 0.1250 0.1146 0.1051 0.0964 0.0884 0.0811 0.0743 0.0682 0.0625 0.0573 0.0526 0.0482

Wn(cm/s)* 20.1167 18.9156 17.7631 16.6582 15.6003 14.5884 13.6217 12.6995 11.8208 10.9848 10.1905 9.4370 8.7233 8.0484 7.4111 6.8104 6.2452 5.7143 5.2167 4.7510 4.3163 3.9113 3.5349 3.1860 2.8634 2.5660 2.2927 2.0423 1.8137 1.6058 1".4175 1.2476 1.0949 0.9582 0.8364 0.7282 0.6326 0.5484 0.4744 0.4098 0.3533 0.3043 0.2617 0.2248 --

,

Im.Wt(mg) 0.0000 0.0000 0.0000 0.1969 0.1969 0.3017 1.2329 0.8034 3.5212 0.7913 5.5815 4.1938 6.3140 12.1229 15.1897 19.6510 27.3334 28.6824 34.2548 32.6588 32.6292 30.5058 23.9248 20.3195 13.9295 12.8555 10.9610 7.1341 Q.8456 6.1915 j.8214 3.5014 8.9968 1. 5629 4.2879 1.3224 0.2839 0.1054 0.1054 0.0000 0.0000 0.0000 0.0000 0.0000

Im.Wt<%) Cm.Wt(mg) Cm.Wt(%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0511 0.0511 0.1969 0.0511 0.1022 0.3937 0.0783 0.6955 0.1805 0.3200 0.5005 1.9284 0.2085 2.7318 0.7090 0.9139 6.2529 1. 6228 0.2054 7.0443 1.8282 1.4486 12.6258 3.2768 1.0884 16.8195 4.3652 1.6387 23.1335 6.0039 35.2564 3.1463 9.1501 50.4461 3.9422 13.0923 70.0971 5.1000 18.1924 97.4305 7.0939 25.2862 7.4440 126.1129 32.7302 8.8902 160.3677 41.6204 8.4760 193.0264 50.0963 8.4683 225.6557 58.5646 7.9172 256.1615 66.4818 280.0863 6.2092 72.6911 5.2735 300.4058 77.9646 3.6151 314.3353 81.5798 3.3364 327.1908 84.9161 2.8447 338.1517 87.7609 1.8515 345.2858 89.6124 355.1314 92.1676 2.5552 1.6069 361.3230 93.7745 0.9918 365.1444 94.7663 0.9087 368.6458 95.6750 2.3350 377.6426 98.0100 0.4056 379.2054 98.4156 1.1128 383.4933 99.5284 0.3432 384.8158 99.8716 0.0737 385.0997 99.9453 0.0274 385.2051 99.9726 0.0274 385.3104 100.0000 0.0000 385.3104 100.0000 0.0000 385.3104 100.0000 0.0000 385.3104 100.0000 0.0000 385.3104 100.0000 0.0000 385.3104 100.0000


*

-

fall velocity

of natural

grains

in fresh water at 200C

1.6149 0.6571 0.4789 4.1733 --------------------------------------------30

20

10 *....

....... ...........

**.. --------------------------------------------..

0.0

-1.0

2.0

1.0

3.0

(

UIMS : 0

S9a, W E I G H T

~3 ~

188

~

. l' of

31

0..0

0.0

000.0.000

J"

.

.

. .

o. 00

00.

. .. . .. . 0 0 0..

0.0

0

0

0

0

0.0:

0

0 o.

0 0 000000

...0....

.

........

.

........

.

0

.

0.00.

~

.

.

.

. .

. .

j

.

.

.

.

.

.

0

'.00.0.00:.00......

~

It

0

~

1S6-11

63

0 0"

00

0 . 0 . . 0 ~ . . 0 0 . . 0 . .

J I

l;t

0..

~

If:

281 219

M !J

~ 00..0.

-1

~U o~ r 313 l' f 0.0...:.. 2SB

I H

0

RAPID SEDllIDiT ANALYZER 0 0

.......

.

.......

.

j :

6 SECONDS

4.0

PHI


*

-

fall velocity

of natural grains

1.4369

AQP020 _1

in fresh water at 200C

0.6777

0.3929

---------------------------------------------

3.2958

30

20

10 *** ******* ********* **************

I

I

*

*

I

1

1.0

0.0

-1. 0

2.0

3.0

(

UIMS - RAPID SEDIMEHTAHALYZEK

W E I G H T T 1

H !II g

~'3:::::::::1::::::::::::::::::::::::::::: 496

'

344 1 313 281

. . .~

."1. :-:-'. . . . . . . . . . . . . . . . . . . . . . . . . .

f

:

. .f. . . . . . .

,

-1 !

~

258...,. t 219 -I I

. . .1:

. . . . . . . . .

-I .(. . . . . . . . ~ . . . . . . . . .

156

-i

1~~

I

63j 31 ,

.

v

~

. .

. .

.

.

.

.

~

.........

.

.........

.

.........

.

.........

.

.........

.

..

188

9

.

~

. ~

375

.

. . . . . . . . .

:.........

j :

6

TIME IN SECONDS

4.0

PHI


AQP020_3 AQUA PO P20-3

0.0 0.0 0.00 Lat Lon Depth(m) Operator: CF 622.5047 Dry Sand Fraction Weight (mg) 2.65 Grain density /Natural Grain Fall Time using Wn=0.977WsAO.913 1.9230 0.5931 0.2415 3.3963 M1 M2 M3 M4 (phi) 1.9141 1.8721 0.5887 0.1367 0.5062 Mz,Md,SI,SKI,KG Size(phi) -1.0000 -0.8750 -0.7500 -0.6250 -0.5000 -0.3750 -0.2500 -0.1250 0.0000 0.1250 0.2500 0.3750 ( .5000 0.6250 0.7500 0.8750 1.0000 1.1250 1.2500 1.3750 1.5000 1.6250 1.7500 1.8750 2.0000 2.1250 2.2500 2.3750 2.5000 2.6250 2.7500 2.8750 3.0000 3.1250 3.2500 .3750 .j.5000 ~ .6250 .7500 3.8750 4.0000 4.1250 4.2500 4.3750 4

!:'nnn

Size(mm) 2.0000 1.8340 1.6818 1.5422 1.4142 1.2968 1.1892 1.0905 1.0000 0.9170 0.8409 0.7711 0.7071 0.6484 0.5946 0.5453 0.5000 0.4585 0.4204 0.3856 0.3536 0.3242 0.2973 0.2726 0.2500 0.2293 0.2102 0.1928 0.1768 0.1621 0.1487 0.1363 0.1250 0.1146 0.1051 0.0964 0.0884 0.0811 0.0743 0.0692 0.0625 0.0573 0.0526 0.0482 n.n44?

Wn(cm/s). 20.1167 18.9156 17.7631 16.6582 15.6003 14.5884 13.6217 12.6995 11.8208 10.9848 10.1905 9.4370 9.7233 8.0484 7.4111 6.8104 6.2452 5.7143 5.2167 4.7510 4.3163 3.9113 3.5349 3.1860 2.8634 2.5660 2.2927 2.0423 1.8137 1.6058 1"'.4175

1.2476 1.0949 0.9582 0.8364 0.7282 0.6326 0.5484 0.4744 0.4098 0.3533 0.3043 0.2617 0.2248 n 'Q~n

Im.Wt(mg) Im.Wt(%) Cm.Wt(mg> Cm.Wt(%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0860 0.0226 0.0860 0.0226 0.1720 0.0451 0.0860 0.0226 0.2580 0.0677 0.0860 0.0226 0.2779 0.0729 0.0199 0.0052 0.2779 0.0729 0.0000 0.0000 0.2779 0.0729 0.0000 0.0000 0.2779 0.0729 0.0000 0.0000 0.7236 0.4457 0.1169 0.1898 0.3067 1.1694 0.4457 0.1169 0.4236 1.6151 0.4457 0.1169 0.7987 3.0456 1.4305 0.3752 4.6106 1.5650 0.4104 1.2092 6.5658 1.7220 1.9553 0.5128 10.5750 2.7734 4.0091 1.0515 4.3103 16.4349 5.8599 1. 5369 29.3309 7.6925 12.8960 3.3822 39.9014 10.4648 10.5706 2.7723 61.9055 16.2357 22.0041 5.7709 21. 9754 83.7907 21.8851 5.7397 35.3943 9.2827 31. 2581 119.1850 32.6288 8.5574 39.8155 151.8138 191.5577 50.2389 39.7439 10.4234 225.2580 33.7003 8.8384 59.0773 257.7625 32.5045 8.5248 67.6021 283.2213 25.4588 6.6770 74.2791 303.1493 79.5055 19.9280 5.2264 83.9907 320.2511 17.1017 4.4852 334.8718 87.8252 14.6207 3.8345 344.2060 90.2733 9.3342 2.4480 353.3941 9.1881 2.4097 92.6830 359.5523 6.1582 1.6151 94.2981 366.8317 7.2794 1.9091 96.20'72 374.6770 98.2648 7.8453 2.0576 375.6460 98.5189 0.9690 0.2541 379.2759 99.4709 3.6299 0.9520 1. 1562 0.3032 380.4321 99.7741 0.8613 0.2259 381. 2934 100.0000 391.2934 0.0000 0.0000 100.0000 381.2934 0.0000 0.0000 100.0000 0.0000 0.0000 381.2934 100.0000 381.2934 0.0000 0.0000 100.0000 381.2934 0.0000 0.0000 100.0000 ()

n()()()

()

()()()(,

'H). 1

? Q "U1


*

-

fall velocity

of natural

grains in fresh water at 200C

AQP020_3 1.9230 0.5931 0.2415 3.3963 1--------------------------------------------30 I

I

I

I

I

20

I I I I I

10

I

*

I

***** ****** ********** ***************

I

I

I

*

~--------------

I

-1.0

0.0

1.0

2.0

3.0

(

VIlIS

599 ~ 469 1

438;

H

ni ~ ..

...

.

~

.

~Uj...~......................... "

259

1

219 1

ii

156 1~~

188

"1 ..

1

(

. J.

~

~

. .

.

. .

. .

. .

. .

.

.

. . .

.

.

.

.

. .

. .

.

.

. . .

.

.

.. . . . . . . . . . . . . . . . . . . . . . .. . . . .

!

...

.

...

.

. . . . . . ~ . . . . . . . . .

i

~

I

63 31 9

. . . . .

.

.

:

486;

1

M g

RAPID SEDIMEHI ANALYZER

~

~ E T

G

-

:.............................

~ 8

.

.

. .

.

.

.

~

. . . . . . . . .

:......... ~ :

.........

6 SECOH])S

.

1)(

4.0

PHI


AQP020_4 AQUA PO P20-4

0.0

.

0.0

0.00

Lat

Lon

Depth(m)

Operator: CF

555.1222 Dry Sand Fraction Weight (mg) 2.65 Grain density /Natural Grain Fall Time using Wn=0.977Ws~0.913 2.2918 0.8502 -0.4826 3.2761 M1 M2 M3 M4 (phi) 2.3505 2.2684 0.8521 0.0152 0.5484 Mz1MdlSIISKI1KG Size (phi) -1.0000 -0.8750 -0.7500 -0.6250 -0.5000 -0.3750 -0.2500 -0.1250 0.0000 0.1250 0.2500 0.3750 f .5000 0.6250 0.7500 0.8750 1.0000 1.1250 1.2500 1.3750 1.5000 1.6250 1.7500 1.8750 2.0000 2.1250 2.2500 2.3750 2.5000 2.6250 2.7500 2.8750 3.0000 3.1250 3.2500 .3750 3.5000 -'.6250 7500 3.8750 4.0000 4.1250 4.2500 4.3750 LI C;()()()

Size(mm)

2.0000 1.8340 1.6818 1.5422 1.4142 1.2968 1.1892 1.0905 1.0000 0.9170 0.8409 0.7711 0.7071 0.6484 0.5946 0.5453 0.5000 0.4585 0.4204 0.3856 0.3536 0.3242 0.2973 0.2726 0.2500 0.2293 0.2102 0.1928 0.1768 0.1621 0.1487 0.1363 0.1250 0.1146 0.1051 0.0964 0.0884 0.0811 0.0743 0.0682 0.0625 0.0573 0.0526 0.0482 ()

()dd~)

Wn(cm/s). 20.1167 18.9156 17.7631 16.6582 15.6003 14.5884 13.6217 12.6995 11.8208 10.9848 10.1905 9.4370 8.7233 8.0484 7.4111 6.8104 6.2452 5.7143 5.2167 4.7510 4.3163 3.9113 3.5349 3.1860 2.8634 2.5660 2.2927 2.0423 1.8137 1.6058 :f'.4175 1.2476 1.0949 0.9582 0.8364 0.7282 0.6326 0.5484 0.4744 0.4098 0.3533 0.3043 0.2617 0.2248 ()

'a~()

Im.Wt(mg) 0.3645 0.0000 0.0000 0.0000 0.0000 0.4163 0.0000 0.0000 0.0000 5.6317 3.9161 3.9161 1.8458 1.8458 2.1051 0.2356 4.8202 3.4361 4.1545 5.1650 9.2741 12.6223 18.7171 24.0941 24.4347 24.8249 20.8259 18.2250 18.1609 15.2569 13.6106 16.1909 13.0709 17.0412 18.6942 15.6974 9.9749 7.8330 8.0051 2.2760 1.7947 2.1903 0.0000 0.0000

Im.Wt(%) Cm.Wt(mg) Cm.Wt(%) 0.3645 0.1039 0.1039 0.0000 0.1039 0.3645 0.3645 0.0000 0.1039 0.3645 0.0000 0.1039 0.0000 0.3645 0.1039 0.7808 0.1187 0.2227 0.0000 0.2227 0.7808 0.0000 0.7808 0.2227 0.0000 0.7808 0.2227 1.6060 6.4125 1.8287 1.1168 10.3286 2.9454 1.1168 14.2447 4.0622 0.5264 16.0905 4.5885 0.5264 5.1149 1.7.9364 0.6003 20.0415 5.7152 0.0672 20.2771 5.7824 1.3746 25.0973 7.1570 0.9799 8.1369 28.5334 1.1847 9.3216 32.6879 1.4729 37.8529 10.7945 2.6447 13.4392 47.1270 3.5995 59.7493 17.0387 5.3376 78.4664 22.3763 6.8709 102.5605 29.2472 6.9681 126.9952 36.2152 7.0793 151.8201 43.2945 5.9389 172.6459 49.2335 5.1972 190.8709 54.4307 5.1789 209.0318 59.6096 4.3508 63.9604 224.2887 3.8813 67.8418 237.8993 4.6172 72.4589 254.0902 3.7274 76.1864 267.1611 4.8596 284.2024 81.0460 5.3310 86.3770 302.8966 4.4764 318.5940 90.8535 2.8445 328.5689 93.6980 2.2337 336.4019 95.9318 2.2828 344.4070 98.2146 0.6490 98.8636 346.6830 0.5118 99.3754 348.4776 0.6246 350.6679 100.0000 0.0000 350.6679 100.0000 350.6679 0.0000 100.0000


*

-

fall velocity

of natural

AQP020_4 30

grains

2.2918

in fresh water at 200C

0.8502

-0.4826

3.2761 1

I

I I",

20

10

I

** * ********

1

*******************

* ***

1--------------------------------------------..

0.0

-1. 0

1.0

..

3.0

2.0

(

RAPID SEDIJIIE,~ ANALYZER

UIMS -

., . . . . . . . . . : . . . . . . . . . : . . . . . . . ..

~ E I G If T I H

438...J

3441 r

258 ~

~

125

M g

..

..

219 ~ i~~

94 63

31 Q .,

i

.

.

j

j

~

:

;

496 t 375 ~ UI

i

;

7fS .

..

.

...;

..

..

..

..

.

--.:

j

. ./.

...

j

j

469 -I

i

599

. . . . . . . . .

-

.

.........

. . ..

. ..

. ..

.........

.

-

-..

.........

. .

.

. -

. .

..

-

-

.

.

.

. .

.

.........

~

. . . . . . . ~ . . . . . . . . . ~ . - . . . . . . -

; . .

.

~

[

-..

.........

. . . . . . ~ . . . . . . . . . ~ . . . . . . . ..

~

.........

"

- . . . . . .

~

-

.

TIME Iii

6

SECOH~

-. .

..

4.0

PHI


APPENDIX EQUILIBRIUM

(

III BAYS


Silvester

(1974) considered

at least two fixed breakwaters

or headlands

in his definition of equilibrium shore for the embayed pocket beach. numerous

investigations

scale models, indentation headland

of natural

Silvester

while

crenulate

(1974) developed

knowing

the incident

or log-spiral

a model

wave

bays and physical

to determine

angle,

From

maximum

to the center

bay

line of two

breakwaters.

Oblique incident waves approaching widely spaced breakwaters may cause an effect

in the adjacent

embayment.

Natural

headlands

and their

embayments

have been studied by Yasso (1965), Silvester (1974), and others. of the headland-bay

beaches

is dependent

attack (Yasso, 1965; Silvester, 1974). referred

to as the aforementioned

Because

of the decreasing

characteristically

occurs

on the predominant

toward

direction

of wave

Headland-bay beaches often are

crenulate radius

The planform

or log-spiral

of plan

the headland

curvature

bay beaches. that

and because

the rate of decrease

( in radius

curvature

equiangular

(logarithmic)

for goodness equation center; point

appears

above,

RZ/R1 is the ratio of two radius

Silvester

a radius

for a given

and the constant nomenclature

is shown

(1976) recognized

in relating

vector

the

8

=

In the

from a log-spiral

and tangent

log-spiral;

in Figure

beaches.

vectors

e is the base of Naperian

beach to the log-spiral formula. resulted

(1965) tested

spiral,

a is the angle between

log-spiral

Yasso

of fit to the plan shape of headland-bay

and is a constant

vectors;

to be non-linear,

to the wave

the angle

between

logarithms.

A diagram

in defining

of

the equilibrium

Extensive research on crenulate bays

the equilibrium

beach

planform

to maximum

bay indentation

Silvester divided the bay into the

updrift shadow reach or logarithmic spiral and the tangential reach. logarithmic spiral reach is affected most by wave diffraction.

-

radius

III-1.

the difficulty

and incident wave angle (Figure 2).

-

at that

The

The tangential


reach, wave

which

is slightly

convex

seaward

or straight,

is affected

mostly

by

refraction. Rea and Komar

(1975),

in studying

log-spiral

bays

through

numerical

modeling, indicated that the shoreline will always attempt to achieve an equilibrium

configuration

which

is governed

by the patterns

of offshore

refraction and diffraction and by the distribution of wave energy flux.

wave

If

the system is closed, then a true equilibrium is achieved wherein the shoreline

everywhere

takes

on the shape of the wave

angles are everywhere zero). continues

to be transported

crests

(i.e. breaker

If the system is not closed and sediment

to the downdrift

end of the model

and further,

then equilibrium occurs where the breaker angles are precisely those required to transport the sediment eroded from the updrift section of beach.

Under

this definition of equilibrium the shoreline continues to erode but retains its overall

shape

(Rea and Komar,

1975).

The breakwater system at Aqua-Po initially was overfilled to provide a wide backshore.

The bays would adjust with time to a stable planform.

According to Silvester's equilibrium bay model (1974), the maximum bay indentation less than

within 24 m

the maximum

range of wave directions

(80 ft).

from shore-normal

This was an important

bay indentation

could

not encroach

design

to 45째 would

consideration

on the road behind

be

because the beach.

The costs and objective of a recreational beach were also critical factors and limited

the dimensions

of the project.


Figure

III-I.

Definition sketch of logarithmic spiral (after Yasso, 1965).

,

,

.#

Figure

111-2. Crenu1ate shaped bay in stable and unstable conditions (after Silvester, 1976).


APPENDIX

III REFERENCES

Rea, C.C. and P.D. Komar, 1975. Computer simulation modes of a hooked beach shoreline configuration. Jour. Sedimentary Petrology 45:866-877.

Silvester, R., 1974. 338 p.

Coastal Engineering.

Vol. 2, Elsevier, Amsterdam,

Silvester, R., 1976. Headland defense of coasts. Proc. 15th Conf. Coastal Engineering, American Society of Civil Engineers 2:1394-1406. Yasso, W.E., 1965. 78:703-714.

Plan geometry of headland bay beaches.

Jour. Geology


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.