Math 53 - Exercise 5

Page 1

Mathematics 53

Exercise Set 5

I. Evaluate the following limits. ln x 1−x √ 1. lim + x→1 x − 1 1− x 2.

6. lim+ sinh−1 z

3. lim

x→∞

x→∞

x

8.

x→0

II. Find

9. lim

x→0+

−x

cschx −

10.

lim

x→ 12 +

lim (tanh x + 1) √ x

x→∞

tan πx +

14. lim− x→1

sin 3πx cot πx

cschx

x→−∞

13. lim 1 x

x3

cosh x 1 1 + ex − e 1 − x

15. lim+ (cosh t − 1)

sinh t

x→0

dy . dx √

1. y =

cosh x

+ (cosh x)

e

2. y = (πx) − (1 − cos x) 3. y = sinh−1 e + tan−1

√ 3

12. y =

5

6. ln x + 1

y

+ tanh

3

13. y = √ √ 4 x coth 2x − cosh−1 x2

y x

−1

7. sinh−1 (ex+y ) + 3tan

x

−1

= coth √

= log

√ 15. y = ln cos tanh−1 (xy)

sech−1 x

Z 3. Z

√ 3

20. y =

Z 5.

1 + ln y cot (ln y) dy y ln y

6.

dν 1 + e2ν

7.

2

z e

z 3 +ez

3

dz

x3

x2 + 1 tan3 ex 18. y = sin (3 − 2x) √ p 19. y = (log3 x) cot−1 x csch−1 x + 2e2x

0

2.

sin−1 3−2x

√ 3

ecosh ex sinh πx − cosh πx

11. y = tan−1 (ln sinh x) + ln tan−1 (sinh x)

Z

√x

r √ 5 cos ln3 x 16. y = 3 tan−1 17. y = xx

9. 3x2 y + cosh2 (5x) = 2y

III. Evaluate the following integrals. Z 1. tan x sec (ln sec x) dx

sec−1 (2x) log3 (tanh x3 )

14. ln x2 + y 2 = sinh e−4x − 52y x3

2x + 1 x 8. y = ln 4 x−2

10. y =

2 x 3 ln cos x + esin(3 −x ) − tan 5x 4

x

p √ ln (cschx) − sin−1 x 4. y = sech−1 ln x √ √ log y 3 3 2 5 5. 7 7 − (csc x) = eπ + 3x y

4.

12.

2x+1

e − e − 2x x − sin x

5. lim

lim

x→+∞

2x − 3 2x + 5

x3 3 x +4

cot x

x→0

sin 3x2 4. lim x→0 ln cos (2x2 − x) x

11. lim

7. lim+ (cos x + 2 sin x)

lim (sec x − tan x) x 1+x

z→0

− x→ π 2

tan z

8.

ln 2

√ x3 + cos x + 23x · log e − x2 − 1 √2 xex2 + π e tan 5x

q

2e dq −q e 3−eq

Z

2 − πt dt eπt

Z

2 tanh2 2w + esinh 2w dw sech2w

Z

27u du 3u − 3


Z 9.

Z

e3v dv 2v e + 6ev + 9

21.

3 2 3log2 (χ +2χ ) √ 10. dχ log χ+2 1 χ9 2 Z dτ √ 11. τ −1 Z cosh (ln a) − coth (ln a) 12. da a sinh (ln a) Z 0 m 2 dm √ 13. 1 4 − 4m 2 Z √ s−1 √ ds 14. (s + 4) s Z p p 15. dp 2 p − 2p + 2 Z 3k + 2 √ dk 16. (3k − 2) 9k 2 − 12k − 5 Z csc2 φ tan φdφ p 17. csc4 φ − 2 csc2 φ − 8 Z dω 18. eω − ee−ω √ Z sinh 2θ √ dθ 19. 1 − sinh2 2θ Z 3 x −1 20. dx x2 + 1

Z

2

tan α tan2 α − 3

Z

coth2 er dr cosh r − sinh r

Z

csch2 β coth β dβ 2 2csch β

22. 23.

csc2 γdγ

Z 24.

p Z

25.

csc2

tan7 FdF

Z 26.

γ − 4 cot γ − 6

2dη η

p

4η 4 − 5

Z

1

27. (ln x) Z

ln

q

dx 2

(x ln x2 ) − x2

3

sechµ (2 − sinh µ tanh µ) dµ

28. 0

r2 − 1

Z 29.

(r4 + 3r2 + 1) tan−1 Z

2 tan ξ + 3 dξ sin2 ξ + 2 cos2 ξ

Z

3♣ + 1 d♣ 9♣ + 1

30. 31.

r 2 +1 r

dr

IV. Do as indicated. 1. Determine the equation of the tangent line to the graph of y = sech ln √ point where x = 2.

x √ 2

√ tanh x − 2 at the + csc−1 x2

2. Show that sin−1 (tanh x) = tan−1 (sinh x). p 3. Find the perimeter of the region bounded by the graphs of x = 4 − y 2 , y = −1, y = 1 and the y-axis. dy 4. Find the complete solution of = ex−y sinh ey . dx Z x t2 5. Find the extreme values of f (x) = x2 e−x and F (x) = e− 2 1 − t2 dt. 1

dy 6. Find the derivative of the following functions. dx Z ln x3 (a) y = et dt tanh x2

Z

π

(b) ex2

p

sinh t + cosh

−1

Z tdt +

tan−1

2y

ln (1 + z) dz = 0 0

7. The slope of the tangent line at any point with coordinate (x, y) on a curve is given by

2x + 1 . (tan y + 2y) (ex2 + ex − e)

If the curve passes through the origin, find the equation of the curve. 8. Set-up a definite integral that represents the volume of the solid formed when the region bounded by the graphs of y = ln x, y = ex , y = 1 and y = e is revolved about the y-axis. Z x 2 tan−1 z dz 9. Evaluate lim 0 √ . x→∞ 1 + x2

2


1 1 1 + + ··· + . n+1 n+2 n+n

Z

z

10. Calculate lim

n→∞

(z − t) sin t2 dt

1 . 12 Z 12. Compute value of the definite integral 11. Show that lim

z→0

0

ln (z 4 + 1)

=

π 4

sin θ + cos θ dθ 3 + sin 2θ 0 13. Find all functions f such that f 0 (x) = f (x) for all x. 14. Determine the sum Z

−5

−4

2

e(x+5) dx + 3

2 3

Z 1 3

2

e9(x− 3 ) dx 2


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.