UND Discovery | Autumn 2013

Page 16

THEN Research at landlocked UND yielded discoveries about high-pressure environments

The “deep blue sea” of North Dakota By Brian Johnson The University of North Dakota wasn’t the obvious choice to conduct deep-sea research. The irony is inescapable, as the University is roughly 1,500 miles away from the nearest ocean. Rugby, N.D., just 150 miles to the west, has a stone cairn marking the geographical center of North America. But UND’s geography was irrelevant for faculty in engineering and medicine who looked to expand their research capabilities in the 1960s. They submitted proposals to the U.S. Department of Defense after the creation of “Project Themis,” a program established to develop centers of excellence at universities. Their second proposal was approved and, starting in 1968, the University received capital to construct a new kind of lab. It was known as the “Man-in-the-Sea” project. Funded by the Office of Naval Research for $2 million — a big amount today and even bigger then — the UND High-Pressure Life Laboratory was the only one of its kind in the western world. The 40-foot-long, 20-foot-wide, and 9-foot-high structure in Upson Hall consisted of two 7-foot spheres joined by a passageway and a gate valve. Each sphere had seven sub-chambers — animal living chambers — where atmospheric pressure was regulated by an IBM computer. During the dedication of the laboratory on Nov. 30, 1973, U.S. Navy Rear Adm. M.D. Van Orden noted that although humans have walked on the Moon, the oceans on our own planet were still a mystery to us. The Man-in-the-Sea project was a giant leap forward. “There is no other laboratory like this elsewhere in the world that can do the type of research that will be conducted here,” said Van Orden. Thomas K. Akers, a Brooklyn, N.Y., native and UND physiology and pharmacology professor, became the director of the Man-in-the-Sea project in 1972. Akers, a Navy veteran and founding member of the North Pacific’s chapter of the Underwater Medical Society, found that humans are fragile under extreme pressure. “Many of the physical laws we’ve always accepted don’t seem to hold in a high-pressure environment, and we are just beginning to discover some reasons why this is so,” Akers told the Grand Forks Herald. During the lifespan of the project, tests were run on the animals’ respiration, oxygen toxicity, nutrition, bone and calcium metabolism, 14 n UND Discovery n University of North Dakota

circulation, reproduction, drug metabolism, and renal function. The data collected helped researchers understand the effects of high atmospheric pressure on humans at sea depths of 1,300 feet. Naval Research hoped the results would eventually lead to humans having the ability to harvest food and resources off the continental shelf, an undersea plateau that forms 18 percent of Earth’s total area. Keeping humans healthy at those depths is challenging. It centers on finding the minimums and the maximums. Under pressure, nitrogen, argon and other gases become so dense it’s hard to breathe. An interdisciplinary team of UND researchers began substituting nitrogen in favor of helium, which was less dense under pressure. They learned nitrogen is an essential element, a fact they didn’t know before the study. Researchers had another good day at the office when they returned a group of lab rats to normal atmosphere after 84 days at 20 times the normal atmospheric pressure. The pressure maintained during the experiment simulated pressure below 660 feet of sea water — near the maximum depth of the continental shelf. It nearly tripled the longest span a human had spent in those conditions at the time. Though breakthroughs like these provided the Navy with essential information, the Man-in-the-Sea project had a shelf life. With rising equipment costs, once the Man-in-the-Sea project met all original objectives, it ended in 1977. The large pressure chamber was dismantled. The seven-foot spheres were given to the UND Park District and became playground equipment for children growing up far from any ocean. Akers drove past the new-use playground spheres every day on his way to work. “They remind me of the good days,” he told the Herald. “They were busy, long days, but it was lots of fun. It was one of the largest interdisciplinary projects ever done at UND, and the sense of teamwork we had was wonderful.” n Editor’s note: Thomas Akers retired from the UND faculty in 1991. In addition to his teaching and research accomplishments, he also was recognized as an artist.

This semi-fisheye view shows the primary chambers and supporting apparatus of the Man-in-the-Sea Project. The facility occupied a significant portion of UND’s Upson I engineering building. Photo courtesy of UND Special Collections.


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.