Source Material Everywhere

Page 90

Dense set

87

Dense set In topology and related areas of mathematics, a subset A of a topological space X is called dense (in X) if any point x in X belongs to A or is a limit point of A.[1] Informally, for every point in X, the point is either in A or arbitrarily "close" to a member of A - for instance, every real number is either a rational number or has one arbitrarily close to it (see Diophantine approximation). Formally, a subset A of a topological space X is dense in X if for any point x in X, any neighborhood of x contains at least one point from A. Equivalently, A is dense in X if and only if the only closed subset of X containing A is X itself. This can also be expressed by saying that the closure of A is X, or that the interior of the complement of A is empty. The density of a topological space X is the least cardinality of a dense subset of X.

Density in metric spaces An alternative definition of dense set in the case of metric spaces is the following. When the topology of X is given by a metric, the closure of A in X is the union of A and the set of all limits of sequences of elements in A (its limit points),

Then A is dense in X if

Note that space, X, then

. If

is a sequence of dense open sets in a complete metric

is also dense in X. This fact is one of the equivalent forms of the Baire category theorem.

Examples The real numbers with the usual topology have the rational numbers as a countable dense subset which shows that the cardinality of a dense subset of a topological space may be strictly smaller than the cardinality of the space itself. The irrational numbers are another dense subset which shows that a topological space may have several disjoint dense subsets. By the Weierstrass approximation theorem, any given complex-valued continuous function defined on a closed interval [a,b] can be uniformly approximated as closely as desired by a polynomial function. In other words, the polynomial functions are dense in the space C[a,b] of continuous complex-valued functions on the interval [a,b], equipped with the supremum norm. Every metric space is dense in its completion.

Properties Every topological space is dense in itself. For a set X equipped with the discrete topology the whole space is the only dense set. Every non-empty subset of a set X equipped with the trivial topology is dense, and every topology for which every non-empty subset is dense must be trivial. Denseness is transitive: Given three subsets A, B and C of a topological space X with A ⊆ B ⊆ C such that A is dense in B and B is dense in C (in the respective subspace topology) then A is also dense in C. The image of a dense subset under a surjective continuous function is again dense. The density of a topological space is a topological invariant. A topological space with a connected dense subset is necessarily connected itself.


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.