NCCU Quest Magazine - Winter 2013

Page 4

research NEWS

NCCU PHYSICIST’S TEAM GETS PATENT FOR HIGH-TECH Carbon nanotubes get their name from their long, hollow SCANNING DEVICE structure, with walls formed by one-atom-thick sheets of carbon

BBRI Receives $5.7 million NIH Grant for Health Disparities Projects

K. Sean Kimbro, Ph.D.

Mildred A. Pointer Ph.D., FAHA

North Carolina Central University’s Julius L. Chambers Biomedical/Biotechnology Research Institute (BBRI) has received a National Institute of Minority Health and Health Disparities (NIMHD) Exploratory Center of Excellence grant for $5.7 million. Originally funded in 2002 as Project EXPORT, this is a five-year competitive renewal of the longest-funded National Institutes of Health (NIH) grant at BBRI. Research involving health disparities — the gaps between the health status of racial and ethnic minorities compared with the population as a whole — is explicitly part of BBRI’s mission, and the projects funded by the NIH grant all focus on cardio-metabolic diseases that disproportionately affect African-Americans. The projects will be administered by the newly named Center for Translational Health Equality Research (CTHER), led by K. Sean Kimbro, Ph.D., director of BBRI, and Mildred A. Pointer, Ph.D., FAHA, associate professor. CTHER consists of four key projects:

Adiponectin in Cardio-metabol-

Calcium in Metabolic Syndrome:

ic Health Disparities: Sujoy Ghosh, Ph.D., senior scientist, will lead an investigation of the role of adiponectin, a substance that helps the body regulate insulin, in health disparities. Low levels of adiponectin are associated with diabetes and obesity.

Emmanuel Awumey, Ph.D., assistant professor and research scientist, and Mildred Pointer, Ph.D., FAHA, both in the CardioMetabolic Research Program at BBRI, will lead an investigation of the role of calcium in diabetes, hypertension and obesity. This project will combine laboratory and community approaches, conducted by the Community Engagement group, to gain a better understanding of the role of calcium in these diseases.

6

nccu

Training and Education: Saundra Delauder, Ph.D., associate professor of chemistry, will direct a project to support minority students in health disparities research. The aims are to recruit and increase the number of future health disparities researchers from the fields of biomedical sciences, nursing, psychology, and public health education. Community Engagement: Natasha Greene Leathers, Ph.D., RN, FNP, BC, assistant professor of nursing, will oversee community-based culturally sensitive interventions aimed at helping African-American communities in Halifax County, N.C., and surrounding counties to adopt healthy behaviors. This project will develop a partnership between a rural population and academic researchers to evaluate and refine a family-focused intervention for AfricanAmericans with Type 2 Diabetes. “For the renewal of this grant, we targeted diseases that profoundly impact minority communities,” BBRI director Kimbro said. “With an investment of approximately $5 million over five years, the National Institutes of Health and the scientific community have given a strong statement of support and confidence in our research.” Pointer emphasized the translational aspect of the projects — finding ways to use the research to directly improve health outcomes. “We really wanted to combine expertise from the various disciplines to make sure that our research conclusions can be directly applied in North Carolina communities,” she said. “This ‘bench-to-curbside’ philosophy is at the heart of CTHER.” CTHER will partner with organizations and communities to conduct these four projects, working toward an ultimate goal of eliminating cardio-metabolic health disparities. BBRI is part of NCCU’s Division of Research and Economic Development.

Dr. Igor V. Bondarev,

associate professor of physics at North Carolina Central University, and two other scientists at the University of South Florida have been awarded a patent for a device to scan extremely smooth surfaces to identify the tiniest flaws. The device, called a carbon nanotube oscillator, is designed to improve on the performance of an existing tool called the atomic force microscope. The carbon nanotube oscillator device has a wide range of potential applications in places where extremely smooth surfaces are needed, or where one needs to determine a detailed structure of the local surface roughness pattern — in industrial, research and university laboratories and in manufacturing. “When you need an extremely clean, flat solid surface, you can never get it, even if you polish,” Bondarev says. “Our device is able to sense surface roughness with a resolution that is two to three orders of magnitude better than that of currently available atomic force microscopes. That will make it possible to sort out ‘dirty’ sample surfaces from ‘clean’ ones. Our device can also be used to study surface roughness patterns at a nanometer-scale resolution.” “The new machine does not yet physically exist,” Bondarev emphasizes. “The patent is for the idea — the concept.” But there is good reason to think the oscillator has the potential to improve significantly on the performance of atomic force microscopes currently in use. Many thousands of such microscopes are employed in laboratory and industrial settings around the world, and they range in price from $20,000 to more than $1 million. Sharing in the patent with Bondarev are his long-term collaborators, University of South Florida physicists Adrian Popescu and Lilia Woods. The three scientists are named as the inventors, and the patent is assigned to their respective universities.

7

called graphene. They are among the stiffest and strongest fibers known, with remarkable electronic properties and other unique characteristics, and they have attracted huge academic and industrial interest. In atomic force microscopes, a tiny, needle-like piece of metal functions as a mechanical probe, “feeling” the surface in question to detect flaws. The carbon nanotube oscillator device developed by Bondarev and his USF collaborators replaces the metal piece with a double-walled carbon nanotube oscillator in which one cylindrical nanotube is contained and is moving within another one of slightly larger diameter. The device will be able to measure a given surface profile at a resolution on the order of one nanometer — one billionth of a meter. A single molecule of water has a size of slightly less than one nanometer; a human hair is about 100,000 nanometers thick. The technology for creating carbon nanotubes is changing rapidly, Bondarev said, and it may well become feasible to build the new device for less than it costs to build a conventional atomic force microscope. Any commercial payoff from the patent is likely to be years away. Dr. Undi Hoffler, NCCU’s director of research compliance, said that NCCU and the Florida university expect to explore options for licensing the concept to a manufacturer, and that future profits would be divided among the universities and the inventors. “This is a long-term prospect,” Hoffler said, “but this invention should stand for awhile.” Bondarev joined the NCCU physics faculty in 2005. He is a native of Belarus, the former Soviet republic. He holds a master’s degree and Ph.D. from the Belarusian State University in Minsk, and a Doctor of Science (D.Sc.) degree in theoretical solid-state physics from the National Academy of Sciences of the Republic of Belarus. The D.Sc. degree is awarded to less than 1 percent of active former Soviet Union scientists who hold the Ph.D. Bondarev said he will be pleased to see the machine he helped conceive become reality. “I’m a theoretical physicist. I've done my part of the job,” he said. “The experimentalists now need to build it and use it.”

nccu


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.