the 2012 MIT EECS Connector

Page 28

EECS Alumni are making an impact in academia David Wentzlaff, continued for 6.730 (Physics for Solid State Applications). Just as the UROP program provides undergraduates with real opportunities to stretch themselves, Terry gave me the space to explore teaching in a substantive way: I got to design some of the core materials for the course and to put together and deliver some of the lectures. I loved the challenge of scaffolding an educational experience for students, and the reward of seeing them master challenging concepts. This opportunity to explore teaching led to my decision to pursue a career in education, and also, I think, played a pretty critical role in helping me get my first academic job. For me, these themes – intensity and commitment, the virtue of trusting students to go further than the ‘ought to’ be able to, and the rewards of working with students and seeing them develop as thinkers, as doers, and most of all as people – have formed the foundation for my work in helping to build Olin College from a hubristic idea to a place that is influencing the conversation about how engineering education should change, and that is sending graduates to top companies and schools (including, of course, MIT). And while Olin is not, and does not aspire to be, MIT, Olin’s DNA carries more than a few markers from the Institute.

Mark Somerville ment over new experimental results – and I must admit, I find myself doing the same thing with my own students almost twenty years later. As a graduate student, I had the chance to work with some brilliant undergrads – both UROPs in our lab, and through my role as a Graduate Resident Tutor at East Campus. I particularly remember one undergrad who taught himself a number of advanced statistical techniques, and then (largely on his own) applied them in very powerful ways to our experimental results. Seeing undergraduates learning on their own, and contributing in substantive ways to our research group, changed my perspectives about what college students are capable of given appropriate opportunities, support, and trust. This perspective has strongly influenced my own educational philosophy – and I (as well as a number of other ex-MIT folks at Olin) have worked to make this an integral part of what Olin is about. My experiences as a mentor to undergraduates were supplemented by equally important classroom experiences. I was very fortunate to work closely with Terry Orlando to do a major revision and development project

52

Spring 2012

David Wentzlaff MIT PhD ‘11

David Wentzlaff joined Princeton University in September 2011 as an Assistant Professor in Electrical Engineering. At Princeton, the research group he started is investigating how to create efficient manycore and multicore computer chips optimized for data center and cloud computers. His research group is also investigating how to make computing systems and electronics more sustainable by designing electronics which are easier to recycle, have a longer useful lifetime, and can ultimately biodegrade, thereby reducing the amount of e-waste produced by the computing community. I took an exciting path through graduate school which included co-founding Tilera Corporation in 2004. At Tilera, I was the Lead Architect where I designed the chip architecture of Tilera’s first two flagship 64-core multicore microprocessors. In starting a new company, I relied on both the technical aspects of my MIT EECS education as well as the great entrepreneurship network at MIT. Tilera has grown into a successful mid-size company and I’ve been granted 15 patents at Tilera. While at MIT, I had a great opportunity to get involved with teaching both formally and informally. As a TA in

EECS for 6.004, I had the opportunity to lead recitation sections and help students in the lab—an experience that has sharpened my effectiveness as a professor and eased my transition to teaching. In addition to formally TAing, I mentored numerous MEng and UROP students—also useful for my current advising. I also had the chance to informally teach during IAP by instructing 6.186 and by marrying my love of the outdoors with teaching by running the MIT Outing Club’s (MITOC) Winter School. My research work during my MIT career started by jumping into the Raw Processor project in 2000. As a junior graduate student I had the opportunity to design one of the first on-chip networks for the 16-core multicore processor. Later, I used the Raw microprocessor in my research as I studied the limits of emulating code from different computer architectures in parallel on the Raw Processor. My PhD work built on this early multicore architecture by exploring operating systems that can leverage future 1,000-plus core multicore processors. As a member of CSAIL, I had a great experience collaborating with other students on the Factored Operating System (fos) project. Without the support of all of the other students in my group, fos and my PhD work would have been much less developed and exciting. I never expected to end up at MIT. During my last year of undergraduate at UIUC, I was trying to start a company which built what were effectively blade computer servers. My backup plan of going to MIT EECS was one of the best decisions I ever made. The Dot-Com bubble burst and I fell into graduate school at the top CS school in the U.S. I chose to go to MIT after visit day weekend. I just loved the environment, loved the faculty, and loved the students. After all of my years in graduate school, my first impressions did not waiver, the community at MIT and EECS is what makes it such a great place. One of the great things I love about MIT is that people are willing to dream. While working on the MIT Raw microprocessor, we were creating a processor which could best computer chips made by companies with design teams twenty times our size. Most university projects wouldn’t have dared to propose designs as radical as ours, let alone build them. The rag-tag group of Raw designers provided one of the best team experiences that anyone could have. We were able to work together to create something great and we even hung out socially and professionally. Now, away from MIT EECS, I still keep in touch with all of these contacts. Because such a large percentage of MIT

www.eecs.mit.edu

David Wentzlaff EECS graduates go on to be professors or are in high profile jobs, people from CSAIL who I only knew socially have become great colleagues now that I am in academia.

Vanessa Wood MIT PhD ‘11

When I first visited EECS at MIT in March 2005 during the preview days for admitted students, I immediately knew where I’d be heading to graduate school in the fall. The professors, students, and staff were all incredibly enthusiastic about MIT and their research, and I wanted to be part of this vibrant scientific community. I hoped to work at the intersection of materials science and engineering so I was keen to interview with Prof. Vladimir Bulović to see if he had an opening in his group. Unfortunately, his schedule during the visit days was entirely booked. However, he agreed to meet with me at 7:30 Saturday morning before his other appointments and gave me a fascinating tour of his lab. I remember thinking that I hoped I could one day be a professor and radiate such enthusiasm about my research.

the MIT EECS Connector

53


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.