AeroAstro Annual 2

Page 52

Their biosatellite, with its payload of 15 mice will catch a ride from Cape Canaveral to low earth orbit aboard the Falcon I launch vehicle, currently under development by the Space X company and slated for its first launch in early 2006. Once on orbit, the spacecraft will spin up to create an artificial gravity environment equivalent to the surface gravity of Mars. At the end of the five-week mission, the spacecraft bus will be jettisoned, and the reentry vehicle will begin its descent to the Woomera Prohibited Area of the Australian outback, descending under parachutes and cushioned by airbags to ensure a safe recovery of the mice. In-flight and post-flight observations will chart the first in-depth data point for mammalian physiology between microgravity and Earth’s 1-g, a vital step towards preparing for human exploration of space. The Mars Gravity Biosatellite will be one of the most complex spacecraft built by a university-based team, providing extensive data telemetry, atmospheric re-entry capability, and a record-breaking autonomous life support system. To date, the program has engaged more than 300 students across the three partner universities. MIT spearheads the program management efforts, development of the science package, systems engineering, and design of the Payload Module, providing life support capabilities and data telemetry/storage from onboard experiments. Partners at the University of Washington lead design of the Spacecraft Bus, including structures, propulsion, and power systems, and the University of Queensland Centre for Hypersonics Entry Descent and Landing system carries the payload safely back to Earth at the conclusion of the mission with heat shield, parachutes, and airbags. These complex systems offer students a one-of-a-kind training experience to complement classroom exposure with value hands-on design, management, and product development. Where once sat a dozen students working on a conceptual design for a university competition now stands a full-fledged flight program. Students are working closely with industry partners, faculty and alumni mentors, and a worldwide network of advisors to take their concepts from paper to flight hardware. Partnerships with experienced engineers at the MIT Center for Space Research, Payload Systems Inc., Aerojet Corp., and Draper Laboratory have enabled students and recent grads to maintain project leadership roles while substantially reducing

46

AERO-ASTRO 2004-2005


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.