2017 Magnetics Powder Core Catalog

Page 1

POWDER CORES

Molypermalloy | High Flux | Kool Mµ® | XFlux® | Kool Mµ® MAX


We offer the confidence of over sixty years of expertise in the research, design, manufacture and support of high quality magnetic materials and components. A major manufacturer of the highest performance materials in the industry including: MPP, High Flux, Kool Mµ®, Kool Mµ® MAX, XFlux®, power ferrites, high permeability ferrites and strip wound cores, Magnetics’ products set the standard for providing consistent and reliable electrical properties for a comprehensive range of core materials and geometries. Magnetics is the best choice for a variety of applications ranging from simple chokes and transformers used in telecommunications equipment to sophisticated devices for aerospace electronics. Magnetics backs it products with unsurpassed technical expertise and customer service. Magnetics’ Sales Engineers offer the experience necessary to assist the designer from the initial design phase through prototype approval. Knowledgeable Sales Managers provide dedicated account management. Skilled Customer Service Representatives are easily accessible to provide exceptional sales support. This support, combined with a global presence via a worldwide distribution network, including a Hong Kong distribution center, makes Magnetics a superior supplier to the international electronics industry.


Contents

Contents Index

Core Locator by Part Number Core Index and Unit Pack Quantities. . . . . . . . 2

General Information Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Applications and Materials . . . . . . . . . . . . . . . 9 Material Properties . . . . . . . . . . . . . . . . . . . . 10 Core Weights and Unit Conversions . . . . . . . 11 Core Identification. . . . . . . . . . . . . . . . . . . . . 12 Inductance and Grading . . . . . . . . . . . . . . . . 13 Core Coating . . . . . . . . . . . . . . . . . . . . . . . . 14

Core Selection Inductor Core Selection Procedure. . . . . . . . 15 Core Selection Example . . . . . . . . . . . . . . . . 16 Toroid Winding . . . . . . . . . . . . . . . . . . . . . . . 17 Powder Core Loss Calculation . . . . . . . . . . . 18 Core Selector Charts . . . . . . . . . . . . . . . . . . 23 Wire Table. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Material Data Permeability versus DC Bias Curves . . . . . . . 29 Core Loss Density Curves. . . . . . . . . . . . . . . 35 DC Magnetization Curves. . . . . . . . . . . . . . . 47 Permeability versus Temperature Curves. . . . 51 Permeability versus Frequency Curves . . . . . 55

Core Data Toroid Data. . . . . . . . . . . . . . . . . . . . . . . . . . 58 E Core Data . . . . . . . . . . . . . . . . . . . . . . . . . 96 Block Data . . . . . . . . . . . . . . . . . . . . . . . . . . 97 U Core Data . . . . . . . . . . . . . . . . . . . . . . . . . 98 MPP THINZÂŽ Data. . . . . . . . . . . . . . . . . . . . . 99

Hardware E Core Hardware . . . . . . . . . . . . . . . . . . . . 100 Toroid Hardware. . . . . . . . . . . . . . . . . . . . . 101

Winding Tables Winding Tables. . . . . . . . . . . . . . . . . . . . . . 103

www.mag-inc.com

1


Index

Core Locator & Unit Pack Quantity MPP Toroids

2

P/N PAGE BOX QTY

P/N PAGE BOX QTY

P/N PAGE BOX QTY

P/N PAGE BOX QTY

P/N PAGE BOX QTY

55014 55015 55016 55017 55018 55019 55020 55021 55022 55023 55024 55025 55026 55027 55028 55029 55030 55031 55032 55033 55034 55035 55036 55037 55038 55039 55040 55041 55042 55043 55044 55045 55046 55047 55048 55049 55050 55051 55052 55053 55059 55070 55071 55072 55074 55075 55076 55082 55083 55084 55086 55087 55088 55089 55090 55091 55092 55098 55099 55101

55102 55103 55104 55106 55107 55108 55109 55110 55111 55112 55114 55115 55116 55117 55118 55119 55120 55121 55122 55123 55124 55125 55127 55128 55129 55130 55131 55132 55133 55134 55135 55137 55138 55139 55140 55144 55145 55147 55148 55149 55150 55164 55165 55167 55174 55175 55177 55178 55179 55180 55181 55190 55191 55192 55195 55196 55197 55198 55199 55200

55201 55202 55203 55204 55205 55206 55208 55209 55234 55235 55236 55237 55238 55239 55240 55241 55242 55243 55248 55249 55250 55251 55252 55253 55254 55256 55257 55264 55265 55266 55267 55268 55269 55270 55271 55272 55273 55274 55275 55276 55277 55278 55279 55280 55281 55282 55283 55284 55285 55286 55287 55288 55289 55290 55291 55292 55293 55304 55305 55306

55307 55308 55309 55310 55312 55313 55318 55319 55320 55321 55322 55323 55324 55326 55327 55336 55337 55339 55340 55341 55344 55345 55347 55348 55349 55350 55351 55352 55353 55374 55375 55377 55378 55379 55380 55381 55382 55383 55404 55405 55407 55408 55409 55410 55411 55412 55413 55432 55433 55435 55436 55437 55438 55439 55440 55441 55542 55543 55544 55545

55546 77 55547 77 55548 77 55550 77 55551 77 55579 78 55580 78 55581 78 55582 78 55583 78 55584 78 55585 78 55586 78 55587 78 55588 78 55614 87 55615 87 55617 87 55620 87 55709 84 55710 84 55712 84 55713 84 55714 84 55715 84 55716 84 55717 84 55718 84 55725 83 55726 83 55727 83 55728 83 55734 89 55735 89 55737 89 55740 89 55774 92 55775 92 55777 92 55778 92 55848 73 55866 90 55867 90 55868 90 55869 90 55894 76 55906 91 55907 91 55908 91 55909 91 55924 76 55925 76 55926 76 55927 76 55928 76 55929 76 55930 76 55932 76 55933 76

61 61 61 61 61 61 61 61 61 61 65 65 65 65 65 65 65 65 65 65 68 68 68 68 68 68 68 68 68 68 70 70 70 70 70 70 70 70 70 70 74 88 77 88 88 88 79 81 80 81 81 81 81 81 81 81 81 93 93 93

10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 1,000 35 250 35 35 35 220 120 180 120 120 120 120 120 120 120 120 25 25 25

MAGNETICS

93 85 85 85 85 85 85 85 85 85 71 71 71 71 71 71 71 71 71 71 69 69 69 69 69 69 69 69 69 58 58 58 58 58 58 59 59 59 59 59 59 95 95 95 60 60 60 60 60 60 60 86 86 86 86 86 86 86 86 73

25 90 90 90 90 90 90 90 90 90 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 7,500 7,500 7,500 7,500 7,500 7,500 7,500 7,500 7,500 7,500 7,500 7,500 6 6 6 5,000 5,000 5,000 5,000 5,000 5,000 5,000 80 80 80 80 80 80 80 80 1,600

73 73 73 73 73 73 73 73 62 62 62 62 62 62 62 62 62 62 80 80 80 80 80 80 80 80 80 63 63 63 63 63 63 63 63 63 63 66 66 66 66 66 66 66 66 66 66 67 67 67 67 67 67 67 67 67 67 74 74 74

1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 180 180 180 180 180 180 180 180 180 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 1,000 1,000 1,000

74 74 74 74 74 74 79 79 79 79 79 79 79 79 79 94 94 94 94 94 75 75 75 75 75 75 75 75 75 72 72 72 72 72 72 72 72 72 64 64 64 64 64 64 64 64 64 82 82 82 82 82 82 82 82 82 77 77 77 77

1,000 1,000 1,000 1,000 1,000 1,000 220 220 220 220 220 220 220 220 220 16 16 16 16 16 720 720 720 720 720 720 720 720 720 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 105 105 105 105 105 105 105 105 105 250 250 250 250

250 250 250 250 250 300 300 300 300 300 300 300 300 300 300 45 45 45 45 90 90 90 90 90 90 90 90 90 70 70 70 70 24 24 24 24 20 20 20 20 1,600 45 45 45 45 400 40 40 40 40 400 400 400 400 400 400 400 400 400


Index

Core Locator & Unit Pack Quantity High Flux Toroids P/N

PAGE BOX QTY

58018 61 58019 61 58020 61 58021 61 58022 61 58023 61 58028 65 58029 65 58030 65 58031 65 58032 65 58033 65 58038 68 58039 68 58040 68 58041 68 58042 68 58043 68 58048 70 58049 70 58050 70 58051 70 58052 70 58053 70 58059 74 58070 88 58071 77 58072 88 58073 88 58074 88 58075 88 58076 79 58083 80 58089 81 58090 81 58091 81 58092 81 58099 93 58100 93 58101 93 58102 93 58109 85 58110 85 58111 85 58112 85 58118 71 58119 71 58120 71

10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 8,000 8,000 8,000 8,000 8,000 8,000 5,000 5,000 5,000 5,000 5,000 5,000 1,000 35 250 35 35 35 35 220 180 120 120 120 120 25 25 25 25 90 90 90 90 2,000 2,000 2,000

P/N 58121 58122 58123 58128 58129 58130 58131 58132 58133 58164 58165 58190 58191 58192 58195 58204 58205 58206 58208 58209 58238 58239 58240 58241 58242 58243 58252 58253 58254 58256 58257 58268 58269 58270 58271 58272 58273 58278 58279 58280 58281 58282 58283 58288 58289 58290 58291 58292

PAGE BOX QTY 71 71 71 69 69 69 69 69 69 95 95 86 86 86 86 73 73 73 73 73 62 62 62 62 62 62 80 80 80 80 80 63 63 63 63 63 63 66 66 66 66 66 66 67 67 67 67 67

2,000 2,000 2,000 6,000 6,000 6,000 6,000 6,000 6,000 6 6 80 80 80 80 1,600 1,600 1,600 1,600 1,600 10,000 10,000 10,000 10,000 10,000 10,000 180 180 180 180 180 10,000 10,000 10,000 10,000 10,000 10,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000

P/N 58293 58308 58309 58310 58312 58313 58322 58323 58324 58326 58327 58336 58337 58338 58339 58348 58349 58350 58351 58352 58353 58378 58379 58380 58381 58382 58383 58408 58409 58410 58411 58412 58413 58437 58438 58439 58440 58441 58546 58547 58548 58550 58551 58583 58584 58585 58586 58587

PAGE BOX QTY 67 74 74 74 74 74 79 79 79 79 79 94 94 94 94 75 75 75 75 75 75 72 72 72 72 72 72 64 64 64 64 64 64 82 82 82 82 82 77 77 77 77 77 78 78 78 78 78

8,000 1,000 1,000 1,000 1,000 1,000 220 220 220 220 220 16 16 16 16 720 720 720 720 720 720 2,000 2,000 2,000 2,000 2,000 2,000 10,000 10,000 10,000 10,000 10,000 10,000 105 105 105 105 105 250 250 250 250 250 300 300 300 300 300

P/N

PAGE BOX QTY

58588 78 58614 87 58615 87 58616 87 58617 87 58620 87 58714 84 58715 84 58716 84 58717 84 58718 84 58725 83 58726 83 58727 83 58728 83 58734 89 58735 89 58736 89 58737 89 58774 92 58775 92 58776 92 58777 92 58778 92 58848 73 58866 90 58867 90 58868 90 58869 90 58894 76 58906 91 58907 91 58908 91 58909 91 58928 76 58929 76 58930 76 58932 76 58933 76

www.mag-inc.com

300 45 45 45 45 45 90 90 90 90 90 70 70 70 70 24 24 24 24 20 20 20 20 20 1,600 45 45 45 45 400 40 40 40 40 400 400 400 400 400

3


Index

Core Locator & Unit Pack Quantity Kool Mµ® Toroids P/N

PAGE BOX QTY

77020 61 77021 61 77030 65 77031 65 77040 68 77041 68 77050 70 77051 70 77052 70 77054 70 77055 70 77059 74 77068 88 77069 88 77070 88 77071 77 77072 88 77073 88 77074 88 77075 88 77076 79 77083 80 77089 81 77090 81 77091 81 77093 81 77094 81 77095 81 77098 93 77099 93 77100 93 77101 93 77102 93 77109 85 77110 85 77111 85 77120 71 77121 71 77130 69 77131 69 77140 58 77141 58 77150 59 77151 59 77154 59 77155 59 77164 95 77165 95

4

10,000 10,000 10,000 10,000 8,000 8,000 5,000 5,000 5,000 5,000 5,000 1,000 35 35 35 250 35 35 35 35 220 180 120 120 120 120 120 120 25 25 25 25 25 90 90 90 2,000 2,000 6,000 6,000 7,500 7,500 7,500 7,500 7,500 7,500 6 6

MAGNETICS

P/N 77180 77181 77184 77185 77189 77191 77192 77193 77194 77195 77206 77210 77211 77212 77213 77214 77224 77225 77240 77241 77244 77245 77254 77256 77258 77259 77260 77270 77271 77280 77281 77290 77291 77294 77295 77310 77312 77314 77315 77316 77324 77326 77328 77329 77330 77334 77335 77336

PAGE BOX QTY 60 60 60 60 86 86 86 86 86 86 73 73 73 85 85 85 71 71 62 62 62 62 80 80 80 80 80 63 63 66 66 67 67 67 67 74 74 74 74 74 79 79 79 79 79 69 69 94

5,000 5,000 5,000 5,000 80 80 80 80 80 80 1,600 1,600 1,600 90 90 90 2,000 2,000 10,000 10,000 10,000 10,000 180 180 180 180 180 10,000 10,000 8,000 8,000 8,000 8,000 8,000 8,000 1,000 1,000 1,000 1,000 1,000 220 220 220 220 220 6,000 6,000 16

P/N 77337 77338 77339 77350 77351 77352 77354 77355 77356 77380 77381 77384 77385 77410 77411 77414 77415 77431 77438 77439 77440 77442 77443 77444 77445 77548 77550 77552 77553 77555 77585 77586 77587 77589 77590 77591 77614 77615 77616 77617 77618 77619 77620 77715 77716 77717 77719 77720

PAGE BOX QTY 94 94 94 75 75 75 75 75 75 72 72 72 72 64 64 64 64 82 82 82 82 82 82 58 58 77 77 77 77 77 78 78 78 78 78 78 87 87 87 87 87 87 87 84 84 84 84 84

16 16 16 720 720 720 720 720 720 2,000 2,000 2,000 2,000 10,000 10,000 10,000 10,000 105 105 105 105 105 105 7,500 7,500 250 250 250 250 250 300 300 300 300 300 300 45 45 45 45 45 45 45 90 90 90 90 90

P/N 77721 77725 77726 77727 77729 77730 77733 77734 77735 77736 77737 77738 77739 77740 77774 77775 77776 77777 77778 77824 77825 77834 77835 77844 77845 77847 77848 77866 77867 77868 77869 77872 77874 77875 77884 77885 77894 77906 77907 77908 77909 77912 77930 77932 77934 77935 77936

PAGE BOX QTY 84 83 83 83 83 83 83 89 89 89 89 89 89 89 92 92 92 92 92 61 61 65 65 68 68 73 73 90 90 90 90 90 63 63 66 66 76 91 91 91 91 91 76 76 76 76 76

90 70 70 70 70 70 70 24 24 24 24 24 24 24 20 20 20 20 20 10,000 10,000 10,000 10,000 8,000 8,000 1,600 1,600 45 45 45 45 45 10,000 10,000 8,000 8,000 400 40 40 40 40 40 400 400 400 400 400


Index

Core Locator & Unit Pack Quantity Kool Mµ® Blocks, E Cores, and U Cores P/N K114LE026 K114LE040 K114LE060 K130LE026 K130LE040 K130LE060 K160LE026 K160LE040 K160LE060 K1808E026 K1808E040 K1808E060 K1808E090 K2510E026 K2510E040 K2510E060 K2510E090 K3007E026 K3007E040 K3007E060 K3007E090 K3112U040 K3112U060 K3112U090 K3515E026 K3515E040 K3515E060 K3515E090 K4017E026 K4017E040 K4017E060 K4017E090 K4020E026 K4020E040 K4020E060 K4020E090

PAGE

BOX QTY

96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 98 98 98 96 96 96 96 96 96 96 96 96 96 96 96

18 18 18 12 12 12 16 16 16 2,880 2,880 2,880 2,880 1,728 1,728 1,728 1,728 720 720 720 720 672 672 672 720 720 720 720 264 264 264 264 192 192 192 192

P/N K4022E026 K4022E040 K4022E060 K4022E090 K4110U040 K4110U060 K4110U090 K4111U040 K4111U060 K4111U090 K4119U040 K4119U060 K4119U090 K4317E026 K4317E040 K4317E060 K4317E090 K4741B026 K4741B040 K4741B060 K5030B026 K5030B040 K5030B060 K5527U026 K5528B026 K5528B040 K5528B060 K5528E026 K5528E040 K5528E060 K5529U026 K5530E026 K5530E040 K5530E060 K6030B026 K6030B040

PAGE 96 96 96 96 98 98 98 98 98 98 98 98 98 96 96 96 96 97 97 97 97 97 97 98 97 97 97 96 96 96 98 96 96 96 97 97

BOX QTY 168 168 168 168 480 480 480 480 480 480 240 240 240 270 270 270 270 48 48 48 64 64 64 128 112 112 112 112 112 112 96 96 96 96 80 80

P/N K6030B060 K6527E026 K6527E040 K6527E060 K6527U026 K6533U026 K7020B026 K7020B040 K7020B060 K7030B026 K7030B040 K7030B060 K7228E026 K7228E040 K7228E060 K7236U026 K8020E026 K8020E040 K8020E060 K8020U026 K8024E026 K8024E040 K8024E060 K8030B026 K8030B040 K8030B060 K8038U026 K8044E026 K8044E040 K8044E060 K9541B026

PAGE 97 96 96 96 98 98 97 97 97 97 97 97 96 96 96 98 96 96 96 98 96 96 96 97 97 97 98 96 96 96 97

www.mag-inc.com

BOX QTY 80 54 54 54 54 54 90 90 90 60 60 60 84 84 84 60 63 63 63 63 45 45 45 48 48 48 63 63 63 63 30

5


Index

Core Locator & Unit Pack Quantity XFlux® Toroids P/N 78051 78052 78054 78055 78056 78059 78068 78069 78071 78072 78073 78074 78076 78083 78090 78091 78093 78094 78095 78096 78099 78100 78102 78110 78111 78113 78121 78122 78159 78189 78191

PAGE BOX QTY 70 70 70 70 70 74 88 88 77 88 88 88 79 80 81 81 81 81 81 93 93 93 93 85 85 71 71 71 93 86 86

5,000 5,000 5,000 5,000 5,000 1,000 35 35 250 35 35 35 220 180 120 120 120 120 120 25 25 25 25 90 90 2,000 2,000 2,000 25 80 80

P/N 78192 78193 78194 78208 78210 78211 78212 78213 78214 78224 78225 78256 78258 78259 78260 78312 78314 78315 78316 78326 78328 78329 78330 78337 78338 78342 78351 78352 78354 78355 78356

PAGE BOX QTY 86 86 86 73 73 73 85 85 85 71 71 80 80 80 80 74 74 74 74 79 79 79 79 94 94 94 75 75 75 75 75

80 80 80 1,600 1,600 1,600 90 90 90 2,000 2,000 180 180 180 180 1,000 1,000 1,000 1,000 220 220 220 220 16 16 16 720 720 720 720 720

P/N

PAGE BOX QTY

78381 78382 78384 78385 78386 78431 78439 78440 78442 78443 78550 78552 78553 78555 78586 78587 78589 78590 78591 78615 78616 78617 78618 78619 78716 78717 78719 78720 78721 78726 78727

72 72 72 72 72 82 82 82 82 82 77 77 77 77 78 78 78 78 78 87 87 87 87 87 84 84 84 84 84 83 83

P/N

2,000 2,000 2,000 2,000 2,000 105 105 105 105 105 250 250 250 250 300 300 300 300 300 45 45 45 45 45 90 90 90 90 90 70 70

PAGE BOX QTY

78729 83 78730 83 78733 83 78735 89 78736 89 78737 89 78738 89 78739 89 78775 92 78776 92 78777 92 78847 73 78848 73 78867 90 78868 90 78870 90 78871 90 78872 90 78894 76 78907 91 78908 91 78910 91 78911 91 78912 91 78932 76 78934 76 78935 76 78936 76

70 70 70 24 24 24 24 24 20 20 20 1,600 1,600 45 45 45 45 45 400 40 40 40 40 40 400 400 400 400

XFlux® Blocks and E Cores P/N X114LE026 X114LE040 X114LE060 X1808E026 X1808E040 X1808E060 X3515E026 X3515E040 X3515E060 X4017E026 X4017E040 X4017E060 X4020E026 X4020E040 X4020E060 X4022E026 X4022E040 X4022E060 X4317E026 X4317E040 X4317E060

6

PAGE

BOX QTY

96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96

18 18 18 2,880 2,880 2,880 720 720 720 264 264 264 192 192 192 168 168 168 270 270 270

MAGNETICS

P/N X4741B026 X4741B040 X4741B060 X5030B026 X5030B040 X5030B060 X5528B026 X5528B040 X5528B060 X5528E026 X5528E040 X5528E060 X5530E026 X5530E040 X5530E060 X6030B026 X6030B040 X6030B060 X6527E026 X6527E040 X6527E060

PAGE

BOX QTY

97 97 97 97 97 97 97 97 97 96 96 96 96 96 96 97 97 97 96 96 96

48 48 48 64 64 64 112 112 112 112 112 112 96 96 96 80 80 80 54 54 54

P/N X7020B026 X7020B040 X7020B060 X7030B026 X7030B040 X7030B060 X7228E026 X7228E040 X7228E060 X8020E026 X8020E040 X8020E060 X8024E026 X8024E040 X8024E060 X8030B026 X8030B040 X8030B060 X8044E026 X8044E040 X8044E060

PAGE

BOX QTY

97 97 97 97 97 97 96 96 96 96 96 96 96 96 96 97 97 97 96 96 96

90 90 90 60 60 60 84 84 84 63 63 63 45 45 45 48 48 48 63 63 63


Index

Core Locator & Unit Pack Quantity Kool Mµ® MAX Toroids P/N 79051 79052 79059 79071 79072 79074 79076 79083 79090 79091 79099 79102 79110 79111 79121 79122 79191 79192

PAGE 70 70 74 77 88 88 79 80 81 81 93 93 85 85 71 71 86 86

BOX QTY 5,000 5,000 1,000 250 35 35 220 180 120 120 25 25 90 90 2,000 2,000 80 80

P/N 79208 79256 79312 79326 79337 79351 79352 79381 79382 79439 79440 79550 79586 79587 79615 79617 79716 79717

PAGE 73 80 74 79 94 75 75 72 72 82 82 77 78 78 87 87 84 84

BOX QTY 1,600 180 1,000 220 16 720 720 2,000 2,000 105 105 250 300 300 45 45 90 90

P/N 79726 79727 79735 79737 79848 79867 79868 79894 79907 79908 79932

PAGE 83 83 89 89 73 90 90 76 91 91 76

www.mag-inc.com

BOX QTY 70 70 24 24 1,600 45 45 400 40 40 400

7


General Information

Introduction Magnetics Molypermalloy Powder (MPP) cores are distributed air gap toroidal cores made from a 81% nickel, 17% iron, and 2% molybdenum alloy powder for the lowest core losses of any powder core material. MPP cores (and all powder cores) exhibit soft saturation, which is a significant design advantage compared with gapped ferrites. Also, unlike ferrites, the MPP saturation curve does not need to be derated with increasing device temperature. MPP cores possess many outstanding magnetic characteristics, such as high resistivity, low hysteresis and eddy current losses, excellent inductance stability after high DC magnetization or under high DC bias conditions and minimal inductance shift under high AC excitation. MPP THINZ®, or washer cores, put the premium performance of Magnetics’ superior MPP material into robust, low height toroid form, for low profile inductors. With MPP THINZ, exact permeability and height are easily adjusted to result in the optimum design for each application. Magnetics High Flux powder cores are distributed air gap toroidal cores made from a 50% nickel - 50% iron alloy powder for the highest biasing capability of any powder core material. High Flux cores have advantages that result in superior performance in certain applications involving high power, high DC bias, or high AC excitation amplitude. The High Flux alloy has saturation flux density that is twice that of MPP alloy, and three times or more than that of ferrite. As a consequence, High Flux cores can support significantly more DC bias current or AC flux density. High Flux offers much lower core losses and superior DC bias compared with powdered iron cores. High Flux cores offer lower core losses and similar DC bias compared with XFlux cores. Frequently, High Flux allows the designer to reduce the size of an inductive component compared with MPP, powdered iron, or ferrite.

Magnetics Kool Mµ®, XFlux®, MPP, High Flux and Kool Mµ® MAX are true high temperature materials with no thermal aging.

8

MAGNETICS

Magnetics Kool Mµ® powder cores are distributed air gap cores made from a ferrous alloy powder for low losses at elevated frequencies. The near zero magnetostriction alloy makes Kool Mµ ideal for eliminating audible frequency noise in filter inductors. In high frequency applications, core losses of powdered iron, for instance, can be a major factor in contributing to undesirable temperature rises. Kool Mµ cores are superior because their losses are significantly less, resulting in lower temperature rises. Kool Mµ cores generally offer a reduction in core size, or an improvement in efficiency, compared with powdered iron cores. Kool Mµ is available in a variety of core types, for maximum flexibility. Toroids offer compact size and self-shielding. E cores and U cores afford lower cost of winding, use of foil inductors, and ease of fixturing. Very large cores and structures are available to support very high current applications. These include toroids up to 102 mm, 133 mm and 165 mm; large E cores; U cores; stacked shapes; and blocks. Magnetics Kool Mµ® MAX powder cores are distributed air gap cores made from a ferrous alloy powder offering 50% better DC bias performance than standard Kool Mµ material. Use of copper wire is minimized by maintaining inductance using less turns, resulting in savings in overall component cost. With its super low losses, Kool Mµ MAX does not mimic the same temperature rise problems found in iron powder cores. Inductors built with Kool Mµ MAX do not have several of the disadvantages that are inherent with gapped ferrite cores, including low saturation flux density and fringing losses at the discrete air gap. Magnetics XFlux® distributed air gap cores are made from 6.5% silicon iron powder. XFlux offers lower losses than powdered iron cores and superior DC bias performance. The soft saturation of XFlux material offers an advantage over ferrite cores. XFlux cores are ideal for low and medium frequency chokes where inductance at peak load is critical.

Magnetics is committed to meeting global environmental standards and initiatives. Magnetics’ REACH and RoHS compliance statements and reports are available on our website: www.mag-inc.com


General Information

Applications and Materials Magnetics powder cores are most commonly used in power inductor applications, specifically in switch-mode power supply (SMPS) filter inductors, also known as DC inductors or chokes. Other power applications include differential inductors, boost inductors, buck inductors and flyback transformers. While all five materials are used in these applications, each has its own advantages. For the lowest loss inductor, MPP material should be used since it has the lowest core loss. For the smallest package size in a DC bias dominated design, High Flux material should be used since it has the highest flux capacity. XFlux® can be a lower cost alternative to High Flux, in situations where the higher core losses and

more limited permeability availability of XFlux is acceptable. The unique advantages of Magnetics’ powder cores are used in a variety of other applications, including: High Q filters, high reliability inductors and filters, high temperature inductors and filters, high current CTs, telecom filters, and load coils. Magnetics’ powder cores are available in a variety of shapes including toroids, E cores, U cores, blocks, and cylinders, which can be used to create customizable structures. For more information on cylinders or custom shapes, please contact Magnetics.

Kool Mµ®

XFlux®

Kool Mµ® MAX

High Flux

MPP

Alloy Composition

FeSiAl

FeSi

FeSiAl

FeNi

FeNiMo

Available Permeabilities

14-125

26-90

26-60

14-160

14-550

50 kHz, 1000 G

214

590

205

333

174*

100 kHz, 1000 G

550

1,350

550

900

450*

80% of µi

34

76*

52

69

48

50% of µi

76

131*

103

131

84

60µ Temperature Stability - Typical % shift from -60 to 200°C

7%

5%

-

4%

2.5%

Curie Temperature

500°C

700°C

500°C

500°C

460°C

Saturation Flux Density (Tesla)

1.0

1.6

1.0

1.5

0.8

Frequency Response - 60µ flat to…

900 kHz

500 kHz

900 kHz

1 MHz

2MHz

Relative Cost

1*

1.2x

2x

4x-6x

7x-9x

Core Loss - 60µ (mW/cc) Perm vs. DC Bias - 60µ (AT/cm)

*indicates best choice A lower cost family of alternative products to Magnetics’ five premium powder core materials are powdered irons. Manufacturers of powdered iron use a different production process. For comparison with the above table, powdered irons have permeabilities from 10-100; highest core loss; good perm vs. DC bias; fair temperature stability; lower temperature ratings; soft saturation; 0% nickel content; lowest relative cost. Kool Mµ and powdered iron cores have comparable DC bias performance. The advantages of Kool Mµ compared with powdered iron include (1) lower core losses; (2) no thermal aging, since Kool Mµ is manufactured without the use of organic binders; (3) near zero magnetostriction, which means that Kool Mµ can be useful for addressing audible noise problems; and (4) better stability of permeability vs. AC flux density.

www.mag-inc.com

9


Material Data

Material Properties PERMEABILITY vs. T, B, & f - TYPICAL µ vs. T dynamic range

Permeability (µ)

MPP

High Flux

Kool Mµ®

XFlux®

10

(-50º C TO +100º C) MATERIALS RATED TO 200º C

µ vs. B dynamic range 0 to 400 mT

µ vs. f. flat to...

14µ

0.7%

+0.4%

4 MHz

26µ

0.9%

+0.4%

3 MHz

60µ

1.0%

+0.8%

2 MHz

125µ

1.3%

+1.4%

300 kHz

147µ, 160µ, 173µ

1.5%

+1.9%

200 kHz

200µ

1.6%

+2.8%

100 kHz

300µ

1.6%

+4.5%

90 kHz

550µ

8.7%

+21.0%

20 kHz

14µ

1.5%

+5.0%

3 MHz

26µ

2.0%

+9.0%

1.5 MHz

60µ

2.6%

+13.5%

1 MHz

125µ

3.6%

+19.0%

700 kHz

147µ

4.8%

+22.0%

500 kHz

160µ

5.5%

+25.0%

400 kHz

26µ

1.7%

+1.0%

2 MHz

40µ

2.2%

+1.1%

1 MHz

60µ

3.4%

+1.4%

900 kHz

75µ

4.5%

+2.0%

500 kHz

90µ

5.2%

+2.8%

500 kHz

125µ

8.3%

+3.4%

300 kHz

26µ

2.5%

-

1 MHz

60µ

3.0%

+14.5%

500 kHz

Curie Temperature

Density

Coefficient of Thermal Expansion

MPP

460°C

8.0 grams/cm3

12.9 x 10 -6/°C

High Flux

500°C

7.6 grams/cm3

5.8 x 10 -6/°C

Kool Mµ

500°C

5.5 grams/cm3

10.8 x 10 -6/°C

XFlux

700°C

7.5 grams/cm3

11.6 x 10 -6/°C

MAGNETICS


Material Data

Core Weights Core weights listed in this catalog are for 125µ cores.* To determine weights for other permeabilities, multiply the 125µ weight by the following factors:

Permeability

14µ

26µ

40µ

60µ

75µ

90µ

125µ

147µ 160µ 173µ

200µ 300µ

550µ

x Factor

0.80

0.86

0.90

0.94

0.96

0.97

1.00

1.02

1.03

1.04

*XFlux® and Kool Mµ® MAX are based on 60µ weight. *MPP, High Flux, and Kool Mµ® in sizes 102, 337, and 165 weight based on 26µ.

Unit Conversions To obtain number of

Multiply number of

By

A.T/cm

0.795

oersteds

oersteds A.T/cm

tesla

gauss

0.0001

gauss

tesla

10,000

gauss

mT(milli Tesla)

10

cm

in

6.452

cm

circular mils

(5.07)(10-6)

2 2

1.26

2

www.mag-inc.com

11


General Information

Core Identification All Magnetics powder cores have unique part numbers that provide important information about the characteristics of the cores. A description of each type of part number is provided below.

TOROIDS C O55206A2

Core Finish Code

Voltage Breakdown

Material Availability

OD Size Availability

A2

2,000 VAC min

MPP, High Flux

All

A7

2,000 VAC min

Kool Mµ, XFlux, Kool Mµ MAX

All

(wire to wire)

AY

600 VAC min

All

3.56 - 16.5 mm

A5

2,000 VAC min

All

6.35 - 23.6 mm

A9

8,000 VAC min

All

>4.65 mm

Catalog Number (designates size and permeability) Material Code . . . . 55 = MPP 58 = High Flux 77 = Kool Mµ 78 = XFlux 79 = Kool Mµ MAX Grading Code . . . . . CO = Graded into 2% inductance bands – OD <4.65 mm, 5% bands 00 = Not graded

• No voltage breakdown min for A2 or A7 with OD ^4.65mm • A2 and A7 voltage breakdown is 1000 VAC with 4.65mm < OD < 26.9mm • AY finish not available for 550µ MPP

Powder Core Toroid Marking Summary Size (OD mm)

6-digit Shop Order Number

6.35 - 6.86

4

7.87 - 12.7

4

> 12.7

4

2-digit Material Code

3-digit Catalog Number

2-digit Core Finish Code

4

4

Inductance Code

Marking Example

4

123456 020 +6

4

4

4

123456 050A2 +6

4

4

4

123456 55120A2 +6

• Inductance Code is only marked on MPP and High Flux toroids with C0 grading code • Cores with OD < 6.35 mm are not marked

• Shop order number identifies the product batch, ensuring traceability of every core through the entire manufacturing process, back to raw materials

SHAPES and THINZ 00K55 2 8 E 0 6 0

LARGE E CORES 00K130L E026

Permeability Code ... Permeability, e.g. 060 for 60µ

Permeability Code . . Permeability, e.g. 026 for 26µ

Shape Code . . . . . . E = E Core T = Toroid U = U Core P = I Core/Plate B = Block

Shape Code . . . . . . LE = Large E Core

Size Code . . . . . . . First two digits equal approximate length or OD in mm / Last two digits equal approximate height or ID in mm Material Code . . . . . K = Kool Mµ M = MPP* H = High Flux* X = XFlux *consult factory Grading Code . . . . . 00 = Not graded • Full part number and shop order number are marked on all shapes

12

MAGNETICS

Size Code Material Code . . . . . M = MPP* H = High Flux* K = Kool Mµ X = XFlux *consult factory Grading Code . . . . . 00 = Not graded • Full part number and shop order number are marked on all shapes


Inductance and Grading

9 - old 1 - 4?or5

0 .292 N Measured vs. Calculated Inductance L =

LN = AL N2 10-3 Magnetics’ inductance standards are measured in a Kelsall Permeameter Cup. Actual wound inductance measured outside a Kelsall Cup is greater than the nominal calculated value due to leakage flux and flux developed by the current in the winding. The difference depends on many variables; core size, permeability, core coating thickness, wire size and number of turns, in addition to the way in which the windings are put on the core. The difference is negligible for permeabilities above 125 and turns greater than 500. However, the lower the permeability and/or number of turns, the more pronounced this deviation becomes. Example : C055930A2 (26.9 mm, 125µ, p. 76)

Number of Turns

Calculated Inductance

Measured Inductance

1,000

157 mH

+0.0%

500

39.3 mH

+0.5%

300

14.1 mH

+1%

100

1.57 mH

+3%

50

393 µH

+5%

25

98.1 µH

+9%

L LK- old = leakage induc tan ce adder (µH 9 1 - 4?or5 N = number of turns 1 .065

le

LK

AL (Inductance factor) is given for each core in this catalog. Inductance for blocks is tested in standard picture frame arrangements. Units for AL are nH/T2. AL is related to nominal calculated inductance (LN, in µH) by the number of turns, N.

0 .292 N 1 .065 A e where: le

Ae

A e = core cross sec tion (mm 2)

where:

magnetic length (mm) le = core 0 .292 N 1 .065 Apath e

where: LK = The following formula can be used toLapproximate lethe leakage flux to add to the expected inductance. This formula was Cata log Data developed historical data of cores tested at Magnetics. 9 - old 1 from - 4?or5 induc tan ce adder (µH) LK = leakage BeLaware that9this will give an approximation based on - old 1 -only 4?or5 evenly spaced windings. as much as a ±50% N = number of turns You may expect L LK = leakage induc tan ce adder (µH A L = 157 nH/T 2 deviation from this result. 2 sec tion (mm ) N = number of2 turns A e = core cross A e = 65 .4 mm 0 .292 N 1 .065 A e 1 .065 L = where: = core magnetic path le LK 0 .292 Nlength A e (mm) A e = core cross sec tion (mm 2) l e I L LK = where: e = 63 .5 mm le l = core magnetic path length (mm) e

Cata log Data LLK = leakage inductance adder (µH)Induc tan ce Calculated L LK = leakage induc tan ce adder (µH) Cata log Data 2 -3 N = number of turns (157) (25) N =adder L LK =2 leakage induc tanLce (µH) 10 2 Aeof = core 157 nH/T A L==number N turns cross section (mm ) = 98 .1µH N number of turns 2 Ie == core magnetic core mm cross sec tion (mm 2)path A ee = 65 .4 = 157(mm) nH/T 2 A Llength A e = core cross sec tion (mm 2) Ilee = core 63 .5 magnetic mm path length (mm) A e = 65 .4 mm 2 le = core magnetic path length (mm) Ie =76) 63 .5 mm Example: C055930A2 with 25 turns (p. Leakage Adder Calculated Induc tan ce Cata log Data Cata2Data log Data Catalog Calculated Inductance L N = (157) (25) 10 -3 Calculated tan(65 .4) ce 0 .292Induc (25) 1 .065 L = LK 2 2 -3 63 .5 = 98 .1µH A L = 157 nH/T L N = (157) (25) 10 A L = 157 nH/T 2 = 98 .1µH 9 .3 µH A e = 65 .4 mm 2 = 2 A e = 65 .4 mm Ie = 63 .5 mm Ie = 63 .5 mm Leakage Adder Leakage Adder Estimated Measured Inductance Est Measured Induc tan ce Calculated Induc tan ce Leakage Adder 1 .065 Calculated Induc tan ce (65 .4) 0 .292 (25) L = L + L 2 N LK 10 -3 L N = L LK =(157) (25)63 .5 L N = (157) (25) 2 10 -3 = 98 .1+ 9 .3 0 .292 (25) 1 .065 (65 .4) = 98 .1µH L LK = = 9 .3 µH = 98 .1µH 63 .5 = 107 µH = 9 .3 µH

Leakage Adder Core Inductance Tolerance and Grading Est Measured InducAdder tan ce Leakage Magnetics powder cores are precision manufactured to an inductance tolerance of ± 8%*, using standard Kelsall Permeameter Cup measurements with a precision series inductance bridge. MPP and High Flux cores with outside diameters > 4.65 mm are graded into 2% inductance bands as a standard practice at no additional charge. Core grading can reduce winding costs by minimizing turns adjustments when building high turns inductors to very tight inductance specifications. MPP cores 4.65 mm and smaller are graded into 5% bands.

PARTS NOT GRADED • 14µ and 26µ cores • MPP THINZ® • Parylene coated cores The following toroid OD sizes:

62.0 mm OD

68.0 mm OD

74.1 mm OD

77.8 mm OD

101.6 mm OD

132.6 mm OD

165.1 mm OD

General Information

L LK =

L = LMagnetics Est Measured Induc tan ce N + L LK 1 .065cores and High Flux cores are also available Graded MPP (65 .4) 0 .292 (25) 1 .065 = =LK 98 .1+ 9 .3tighter withL tolerances than the standard ±L 8%. (65 .4) 0 .292 (25) L = N + L LK 63 .5 L LK =

63 .5

107 µHKool Mµ cores with OD < 12.7 = 9 .3 µH = 98 .1+ 9 .3 wider tolerances. *THINZ and mm have = 9 .3 µH

= 107 µH

GRADE INDUCTANCE Stamped % Deviation EstonMeasured Inducfrom tan Nominal ce Core Est Measured InducTotan ce OD From L = L N + L LK L =L +L +8 9 .3 N +8LK = 98 .1+ = 98 .1+ 9 .3 +6 µH +7 = 107 = 107 µH

TURNS % Deviation from Nominal

From

To

+7

-4.0

-3.5

+5

-3.5

-2.5

+4

+5

+3

-2.5

-1.5

+2

+3

+1

-1.5

-0.5

+0

+1

-1

-0.5

+0.5

-2

-1

-3

+0.5

+1.5

-4

-3

-5

+1.5

+2.5

-6

-5

-7

+2.5

+3.5

-8

-7

-8

+3.5

+4.0

www.mag-inc.com

13


General Information

Core Coating Magnetics toroidal powder cores are coated with a special epoxy finish that provides a tough, wax tight, moisture and chemical resistant barrier having excellent dielectric properties. Toroids up to 16.5 mm OD can also be parylene coated. Contact Magnetics for parylene-coated toroid requests.

Material

Color

Core Finish Codes

MPP

Gray

A2, A5, A9

Khaki

A2, A5, A9

High Flux Kool Mµ

Black

A7, A5, A9

XFlux®

Brown

A7, A5, A9

Kool Mµ® MAX

Black

A7, A5, A9

®

The finish is tested for voltage breakdown by inserting a core between two weighted wire mesh pads. Force is adjusted to produce a uniform pressure of 10 psi, simulating winding pressure. The test condition for each core in the random sample set, to guarantee minimum breakdown voltage in each production batch, is 60 Hz rms voltage at 1.25 the guaranteed limit. A2 and A7 samples (26.9 mm and larger) are tested to 2500 V min wire-to-wire. AY samples are tested to 750 V min wire-to-wire.

Higher minimum breakdown coatings can be applied upon request for cores larger than 4.65 mm. Toroids as large as 16.5 mm outside diameter can be coated with parylene to minimize the constriction of the inside diameter. All finished dimensions in this catalog are for epoxy coating (A2 or A7). For a parylene coated toroid (AY), the maximum OD and HT are reduced by 0.18 mm (0.007”), and the minimum ID is increased by 0.18 mm (0.007”). The maximum steady-state operating temperature for epoxy coating is 200°C. The maximum steady-state operating temperature for parylene coating is 130°C, but it can be used as high as 200°C for short periods, such as during board soldering. High temperature operation of Magnetics powder cores does not affect magnetic properties. MPP, High Flux, Kool Mµ, XFlux, and Kool Mµ MAX materials can be operated continuously at 200°C with no aging or damage.

NOTE: Special powder grades and processing were historically used with MPP for passive filter inductors. For information regarding D4, W4, M4 and L6 codes, or precision inductor processing, contact Magnetics.

14

MAGNETICS


Core Selection

Inductor Core Selection Procedure Only two parameters of the design application must be known to select a core for a current-limited inductor; inductance required with DC bias and the DC current. Use the following procedure to determine the core size and number of turns.

(e) Increase the number of turns by dividing the initial number of turns (from step 4(a)) by the percentage rolloff. This will yield an inductance close to the required value after steps 4 (b), (c) and (d) are repeated.

1. Compute the product of LI2 where: L = inductance required with DC bias (mH) I = DC current (A)

(f) Iterate steps 4 (b), (c) and (d) if needed to adjust turns up or down until the biased inductance is satisfactorily close to the target.

2. Locate the LI2 value on the Core Selector Chart (pgs. 24 - 27). Follow this coordinate to the intersection with the first core size that lies above the diagonal permeability line. This is the smallest core size that can be used.

5. Choose a suitable wire size using the Wire Table (p. 28). Duty cycles below 100% allow smaller wire sizes and lower winding factors, but do not allow smaller core sizes. 6. Design Checks

3. The permeability line is sectioned into standard available core permeabilities. Selecting the core listed on the graph will tend to be the best tradeoff between AL and DC bias. 4. Inductance, core size, and permeability are now known. Calculate the number of turns by using the following procedure:

(a)

(b)

The inductance factor (AL in nH/T2) for the core is obtained from the core data sheet. Determine the minimum AL by using the worst case negative tolerance (generally -8%). With this information, calculate the number of turns 2 the - 1 required inductance needed to11old obtain from:

11old 2 - 13 L 10 N= AL L 10 3 N= AL

Where L is required inductance (µH)

NI

Calculate H the= bias le in A·T/cm from:

H=

NI le

(a) Winding Factor. See p.17 for notes on checking the coil design.

(b) Copper Losses. See p.17 for notes on calculating conductor resistance and losses. (c) Core Losses. See p.18 for notes on calculating AC core losses. If AC losses result in too much heating or low efficiency, then the inductor may be loss-limited rather than current-limited. Design alternatives for this case include using a larger core or a lower permeability core to reduce the 11old 2 -density; 1 AC flux or using a lower loss material such as MPP or Kool Mµ MAX in place of Kool Mµ, or High3 Flux in place of XFlux.

N=

L 10 AL

(d) Temperature Rise. Dissipation of the heat generated by conductor and core losses is influenced by many factors. This means there is no simple wayNI to predict temperature rise (%T) precisely. HBut = the following equation is known to give a le useful approximation for a component in still air. Surface areas for cores wound to 40% fill are given with the core data in this catalog.

(c)

From the Permeability vs. DC Bias curves 0 .833 Total Losses (mW) 0 .833 (pgs. 29 - 33), determine the rolloff percentage U Z 3 T (˚C) = Total Losses (mW) Z Component Surface Area (cm 2 ) of initial permeability 3 T (˚C) = U for the previously calculat2 ) Component Surface Area (cm 0 .833 ed bias level. Curve fit equations shown in the Total Losses (mW) catalog can3simplify U step. They are also Z T (˚C) =this 2 Component Surface available to use on Magnetics website: http:// Area (cm ) www.mag-inc.com/design/design-guides/ Curve-Fit-Equation-Tool

(d)

Multiply the required inductance by the percentage rolloff to find the inductance with bias current applied.

www.mag-inc.com

15


Core Selection

0.00 mm Core Selection O.D. Example Determine core size and number of turns to meet the following requirement: (a) M inimum inductance with DC bias of 0.6 mH (600 µH) (b) DC current of 5.0 A 1.

LI2= (0.6)(5.0)2=15.0 mH·A2

2.

U sing the Kool Mµ Toroids LI2 chart found on p. 25, locate 15 mH·A2 on the bottom axis. Following this coordinate vertically results in the selection of 0077083A7 as an appropriate core for the above requirements.

3.

F rom the 0077083A7 core data p. 80, the inductance factor (AL) of this core is 81 nH/T2 ± 8%. The minimum AL of this core is 74.6 nH/T2.

4.

he number of turns needed to obtain 600 µH at no T load is 90 turns. To calculate the number of turns required at full load, determine the DC bias level: H= N·I/le where le is the path length in cm. The DC bias is 45.7 A·T/cm, yielding 71% of initial permeability from the 60µ Kool Mµ DC bias curve on p. 30.The adjusted turns are 90/0.71 =127 Turns.

16

MAGNETICS

5.

R e-calculate the DC bias level. The permeability versus DC bias curve shows 57% of initial permeability at 64.5 A·T/cm.

6.

M ultiply the minimum AL 74.6 nH/T2 by 0.57 to yield effective AL = 42.5 nH/T2. The inductance of this core with 127 turns and with 64.5 A·T/cm will be 685 µH minimum. The inductance requirement has been met.

7.

T he wire table indicates that 17 AWG is needed to carry 5.0 A with a current density of 500 A/cm2. 127 turns of 17 AWG (wire area = 1.177 mm2) equals a total wire area of 149.5 mm2. The window area of a 0077083A7 is 427 mm2. Calculating window fill, 149.5 mm2/427 mm2 corresponds to an approximate 35% winding factor. A 0077083A7 with 127 turns of 17 AWG is a manufacturable design.


Core Selection

0.00 mm Toroid Winding O.D. Winding Factor

MLT and DCR

Winding factor, also called fill factor, is the ratio of total conductor cross section (usually copper cross section) to the area of the core window. In other words, in a toroid, winding factor is given by:

MLT (Mean Length of Turn) is given for a range of winding factors for each core size. To estimate DCR, first, calculate the winding factor for the core, wire gauge, and number of turns selected. On the wire table look up resistance per unit of length for the gauge selected. On the data page for the core selected, consult the Winding Turn Length chart. Unless the winding factor is exactly one of the values listed, interpolate to find the MLT. Then,

where:

N•AW/WA N = Number of turns AW = Area of the wire WA = Window Area of the core 4 ¡ID2

p

Toroid Core Winding factors can vary from 20-60%, a typical value in many applications being 35-40%. In practice, several approaches to toroid winding are used:

-

Single layer: The number of turns is limited by the inside circumference of the core divided by the wire diameter. Advantages are lower winding capacitance, more repeatable parasitics, good cooling, and low cost. Disadvantages are reduced power handling and higher flux leakage.

-

Low fill: For manufacturing ease and reduced capacitance, winding factor between single layer and 30% may be used.

-

Full winding: Factors between 30% and 45% are normally a reasonable trade off between fully utilizing the space available for a given core size, while avoiding excessive manufacturing cost.

-

High fill: Winding factors up to about 65% are achievable, but generally only with special expensive measures, such as completing each coil by hand after the residual hole becomes too small to fit the winding shuttle.

DCR = (MLT)(N) (Q/Length). For single layer winding, MLT is the 0% fill value on each core data page. Even easier, DCRs for single layer windings for a range of wire gauges are given in the winding tables on pgs. 103 - 107.

Wire Loss DC copper loss is calculated directly as I2R. Naturally, for aluminum conductors, a suitable wire table must be used. Also, the increase of wire resistance with temperature should be considered. AC copper loss can be significant for large ripple and for high frequency. Unfortunately, calculation of AC copper loss is not a straight-forward matter. Estimates are typically used.

Estimating Wound Coil Dimensions For each core size, wound coil dimensions are given for 40% winding factor, since this is a typical, practical value. Worst case package dimensions for coils wound completely full are also shown. These are max expected OD and max Rv 7 - 17 HT. expected To estimate dimensions for other winding factors, use:

OD x% =

X% 2 2 2 40% QOD 40% - OD core V + OD core

HTx% =ID core + HTcore -

100% - X% ID + HT - HT Q core core 40%V 60%

Where: X% is the new winding factor; OD40% and HT40% are the coil dimensions shown on the core data page; ODcore and HTcore are the maximum core dimensions after finish.

www.mag-inc.com

17


Core Selection

Powder Core Loss Calculation 14 - old 2 - 8

Core loss is generated by the changing magnetic flux field within a material, since no magnetic materials exhibit perfectly efficient magnetic 14 --response. 2 - 8 Core loss density (PL) 14 -ofold 8old is a function of half the2 AC flux swing (½ B=Bpk) and frequency (f). It can be approximated from core loss charts or the curve fit loss equation:

PLb=f c aB pkb f c PL = aB pk

Method 1 – Determine PL = aB f Bpk from DC Magnetization Curve. Bpk= f(H) b c pk

Flux density (B) is a non-linear function of magnetizing field (H), B -B which in turn is a function of winding numberACmin of turns (N), current B pk = %B = ACmax 2 2 (I), and magnetic path length (le). The value of Bpk can typically be determined by first calculating H at each AC extreme:

where a, b, c are constants determined from curve fitting, and Bpk is defined as half of the AC flux swing:

3I H ACmax = # N Ie S IDC + 2 X& 3I H ACmin = # N Ie S IDC - 2 X&

B max - B AC min %B %Bpk = B AC max AC min = - BAC B pk = B = 2 2 2 2

Units typically used are (mW/cm3) for PL; Tesla (T) for Bpk; and (kHz) for f. 3 I Bpk from The task of core loss calculation isNto N 3 determine I H AC max =H#AC maxS I=DC# +Ie S2I DCX&+ 2 X& known design parameters. Ie

3I N3I N H AC min =H#AC minS I=DC# +Ie S2I DCX&+ 2 X& Ie

Units typically used are (A·T/cm) for H. From HAC max, HAC min, and the BH curve or equation (listed as DC Magnetization, pgs. 47 - 50) BAC max, BAC min and therefore Bpk can be determined.

60µ Kool Mµ DC Magnetization (Example 2)

0.6

Flux Density (Tesla)

0.5

BAC max

0.4

B

BAC min

0.3

H

0.2 0.1 0.0

1

1415 - old 2 - 9 & 10 1415 - old 2 - 9 & 10 10

HAC min HAC max 1415 - old 2 - 9 & 10

100

Magnetizing Force (A·T/cm)

20 S 20 + 2 X = 66 .14 A$ T cm " B ACmax b 0 .40T 20 S 20 + 2 X = 66 .14 A$ T A$ T H cm " B ACmax b 0 .40T 66 .14 0 .40T2 cm "= B ACmax b ACmax 20 6 .35 6 .35S 20 - 2 X2= 59 .84 A$ T cmACmax " B H ACmin = 6 .35 ACmin b 0 .37T 2 Approximate the- core an inductor with 20 turns20 wound on2Kool Mµ p/n 77894A7 p. 76 le=6.35 Ae=0.654 cm2, 1415 old 2loss - 9 &of10 20(60µ, 2 X =cm, A$ T A$ T H = B ACmin S 20 59 .84 cm " B ACmin b 0 .37T = ripple S 20 X = 59 .84 " b 0 .37T cm ACmin ACminwith AL=75 nH/T2). Inductor current is 20 AmpsHDC of 2 Amps peak-peak at 100kHz. 6 .35 2 6 .35 2 H ACmax =

160

1.) Calculate H and determine B from BH curve (p. 48) or curve fit equation (p. 50):

µ

6 .35 Example 1 - AC current is 10% of DC =current: 20 S 20 +22 X = H

0µ - 0 .37 = 0 .015T 55 20 S 20 + 2 X = " T B pk =A$%B = 0 .40 2 H ACmax = 6 .35 66 .14 b 0 .40T cm " B ACmax 2 2 %B 0 .40 - 0 .37 = 0 .015T" B = %B = 0 .40 - 0 .37 = 0 .015T " B pk = 2 = pk 2 2 2 20 2 H ACmin = 6 .35 S 20 - 2 X = 59 .84 A$ T cm " B ACmin b 0 .37T mW 1 .36 2.) Determine Core Loss density from chart calculate from 1 .781 loss) (100 equation 46: cm 3 ) ,p.18 .5 PL or = (62 .65) (0 .015 PL mW = (62 .65) (0 .015 1 .781) (100 1 .36) , 18 .5 mW PL = (62 .65) (0 .015 1 .781) (100 1 .36) , 18 .5 3 cm 3 cm %B 0 .40 0 .37 " B pk = 2 = = 0 .015T 2

3.) Calculate core loss:

Pfe = (PL) (le) (A e) ~ (18 .5) (6 .35) (0 .654) b 77mW (PL) (le) (A e) ~ (18 .5) (6 .35) (0 .654) b 77mW Pfe = (PL) (le) (A e) ~ (18 .5) (6 .35) (0 .654)Pfeb=77mW mW MAGNETICS 1 .781 1 .36 PL = (62 .65) (0 .015 ) (100 ) , 18 .5 cm 3

18


cm

PL = (62 .65) (0 .015 1 .781) (100 1 .36) , 18 .5 cm 3

Core Selection

Pfe = (PL) (le) (A e) ~ (18 .5) (6 .35) (0 .654) b 77mW mW 20 8 1 .781 1 .36 = (62 .65) (0 .015 3 = - 0 .37 S 20 + 2 X = 75 .59 A$ T cm " B ACmax b PL 0 .44T 20 ) (1008 ) , 18 .5 %BH ACmax 0 .40 H ACmax = 6 .35 S 20 + 2 X = 75 .59cmA$ T cm " B ACma " B pk =Pfe =2 (PL) = (le) (A2e)6 .35 = 0 .015T ~ (18 .5) (6 .35) (0 .654) b 77mW Pfe = (PL) (le) (A e) ~ (18 .5) (6 .35) (0 .654) b 77mW 20 A$ T 8 20 8 50 .39 A$ T " B ACmin b 0 .33T X = =75 .59 "2 XB= H ACmax = 6 .35 S 20 + H2ACmin 20 8 cm ACmax b 0 .44Tcm 6 .35 S 20 H ACmin = 6 .35 S 20 - 2 X = 50 .39 A$ T cm " B ACmin 20 8 A$ T 20 8 A$ T S 20 + = 6 .35 X = b75 .59 = 50 .39 0 .33T cm " B ACmax bP0 .44T H ACmin = 6 .35 S 20 - 2HXACmax cm " B fe = (PL) (le) (A e) ~ (18 .5) (6 .35) (0 .654) b 77mW 2ACmin mW 1 .781 1 .36 ) (100 ) ,818 .5 cm 3 PL = (62 .65) (0 .015 20 A$ T 20 8 - 0 .33 H ACmin =%BS 200 .44 S 20 X = 50 .39 A$ T cm " B ACmin b 0 .33T = H ACmax" cm " B ACmax b 0 .44T 20 8 - 0 .33 B pk 6 .35 = 26 .35 = + 2 X2=2 75 .59 = 0 .055T A$ T %BS 200 .44 H ACmax cm " B ACmax b = + 2 2X = 75 .59 = 0 .055T " B=pk =6 .35 2 20 8 A$ T %B 0 .44 0 .33 = = S 20 - 2 X = 50 .39 cm " B ACmin b 0 .33T 20 8 A$ T " B pk = 2 = H ACmin 0 .055T 6 .35 H ACmin = 6 .35 2 Example 2Pfe-=AC 40% of DC current: 20 S 20 - 82 X = 50 .39 A$ T cm " B ACmin b 0 (PL)current (le) (A e) ~ is (18 .5) (6 .35) (0 .654) b 77mW b0 H ACmax = 6 .35 S 20 + 2 X = 75 .59 cm " B %B 0 .44 0 .33 Approximate the core loss inductor, with same inductor current of 20 Amps DC but ripple of 8 Amps peak- ACmax = same = 20-turn = 0 .055T " for B pkthe 2 2 peak at 100kHz. 20 H ACmin = 6 .35 S 20 - 82 X = 50 .39 A$ T cm " B ACmin b 0 .3 mW 1 .781 ) (100 1 .36) , 188 cm 3 PL =%B (62 .65) (0 .055 0 .44 - 0 .33 mW 1 .781 = BH2curve fit= equation 0 .055T p. 50: B pk = 2B from ) (100 1 .36) , 188 cm 3 PL =%B (62 .65)0 .44 (0 .055 - 0 .33 1.) Calculate H and " determine " B pk = 2 = = 0 .055T 2 mW ) (100 1 .36) ,8188 PL = (62 .65) (0 .055 1 .78120 3 H ACmax = 6 .35 S 20 + 2 X = cm 75 .59 A$ T cm " B ACmax b 0 .44T %B 0 .44 - 0 .33 mW 1 .781 1 .36 " B pk = 2 = = 0 .055T ) (100 ) , 188, 781mW PL==(PL) (62 .65) (0 .055 3 20 8e) (A (l (0 .654) P cm A$ T 2 fe e) = (188) (6 .35) H ACmin = 6 .35 S 20 - 2 X = 50 .39 cm " B ACmin b 0 .33T Pfe = (PL) (le) (A e) = (188) (6 .35) (0 .654) , 781mW mW ) (100 1 .36) , 188 cm 3 = (62 .65) (0 .055 1 .781 (188) (6 .35) (0 .654) , 781mW P = (PL) (l ) (A e) =PL 2.)feDeterminee Core Loss density from chart or calculate from loss equation p. 46: PL = (62 .65) (0 .055 1 .781) (100 1 .36) , 188 mW3 cm 3.) Calculate core loss: Pfe = (PL) (le) (A e) = (188) (6 .35) (0 .654) , 781mW %B 0 .44 - 0 .33 " B pk = 2 = = 0 .055T mW 1 .781 1 .36 2 PLnot = (62 .65) (0 .055 ) (100regardless ) , 188ofcm Note: Core losses result only from AC excitation. DC bias applied to any core does cause any core losses, the3 = (PL) (l ) (A ) = (188) (6 .35) (0 .654) , 781mW P fe e e 20 8 magnitude of the bias. Pfe = (PL) (le) (A e)20 = (188)8(6 .35) (0 .654)A$, 781mW H ACmax = 6 .35 S + 2 X = 12 .60 A$ T cm " B ACmax b 0 .092T H ACmax = 6 .35 S + 2 X = 12 .60 T cm " B ACmax b 20 A$ T 20 A$ T H=ACmin -8 X ACmax = -b 12 .60 Example – pure no= DC: S + 82 XAC, 12 .60 0 .092Tcm " B ACmin b-0 .092T H ACmax = 3 20 S - 8 X = - 12 .60 A$ T cm S" 6 .35 2B 6 .35 = = H cm " B ACmin b (PL) (lpeak-peak (188) (0 .654) , 781mW Pfe8=Amps ACmin e) (A e)6 .35 2 Approximate the core loss for the same 20-turn inductor, now with 0 Amps DC and at (6 .35) 100kHz. mW 1 .781 20 1 .368 A$ T 20 8 ) (100 ) , 188 PL = (62 .65) (0 .055 A$ T = 6 .35 S + BXACmin = 12 .60 cm 3 cm " B ACmax b 0 .092T S - 2 X =H ACmax - 12 .60 b-0 .092T H ACmin = cm " 2 1.) Calculate6 .35 H and determine B from BH curve fit equation p. 50: 20 S - 8 X = - 12 .60 A$ T 20 H ACmin = 6 .35 " BbACmin b-0 .092T H ACmax" = S +~820 .092T X =2 12 .60 A$ T cm " cmB ACmax 0 .092T 20 B pk 6 .35 = %B A$ T %BS +~ 80 .092T 2 H ACmax " B=pk =6 .35 2 X = 12 .60 cm " B ACmax b 0 .09 2 20 8 T (le) (A (188) (6 .35) (0 .654) , A$781mW %BPfe = (PL) H ACmin = e) = " B pk = 2 ~ 0 .092T 6 .35 S - 2 X = - 12 .60 cm " B ACmin b-0 .092T H ACmin = 20 S - 8 X = - 12 .60 A$ T cm " B ACmin b-0 .0 20 S + 82 X = 12 .60 A$ T 6 .35 H ACmax = 6 .35 cm " B ACmax b 0 .092 %B for 2 reverse the sign Note: Curve fit equations"are not negative values of B. Evaluate for the absolute value of B, then of the = valid ~ 0 .092T B pk 2 resulting H value. 20 8 A$ T H ACmin = 6 .35 S - 2 X = - 12 .60 cm " B ACmin b-0 .09 mW PL =%B (62 .65) (0 .092 1 .781) (100 1 .36) , 470 cm 3 " B = ~ 0 .092T =%B (62 .65) (0 .092 1 .781) (100 1 .36) , 470 mW pk 2.) Determine Core Loss density 2 from chart or calculate from loss equation p. 46. " BPL cm 3 pk = 2 ~ 0 .092T mW 1 .781 1 .36 PL = (62 .65) (0 .092 20 ) (100 8) , 470 cm 3 A$ T H ACmax = 6 .35 S + 2 X = 12 .60 cm " B ACmax b 0 .092T mW 1 .781 1 .36 " B pk = %B ) (100 ) , 470 PL = (62 .65) (0 .092 3 3.) Calculate core loss: P 20 8 (l (0 .654) , 1 .95W cm T 2 ~ 0 .092T fe = (PL) e) (A e) = (470)A$(6 .35) H ACmin = 6 .35 S - 2 X = - 12 .60 cm " B ACmin b-0 .092T Pfe = (PL) (le) (A e) = (470) (6 .35) (0 .654) , 1 .95W Plotted below are the operating ranges for each of the three examples. mW 1 .36 )core (100loss, ), 470 cm 3Example 3 with Example 2. Lower permeability = (62 .65) (0 .092 Pfe =the (PL)significant (le) (A e) = PL (470) (6 .35) , Note influence of (0 .654) DC bias 1 .781 on1 .95W comparing results in less Bpk, 1 .781 ) (100 1 .36material. ) , 470 mW PLselecting = (62 .65)a (0 .092 cm 3 even if the current ripple is the same. This effect can be achieved with DC bias, or by lower permeability Pfe = (PL) (le) (A e) = (470) (6 .35) (0 .654) , 1 .95W " B pk = %B mW 60µ Kool Mµ DC Magnetization 2 ~ 0 .092T PL = (62 .65) (0 .092 1 .781) (100 1 .36) , 470 cm 3 = (PL) (l ) (A ) = (470) (6 .35) (0 .654) , 1 .95W P fe e e 0.6 Pfe = (PL) (le) (A e) = (470) (6 .35) (0 .654) , 1 .95W

Powder Core Loss Calculation

Flux Density (Tesla)

0.5

Example 1 HAC min= 59.84 BAC min= 0.37

mW PL = (62 .65) (0 .092 1 .781) (100 1 .36) , 470 cm 3

0.4

Pfe = (PL) (le) (A e) = (470) (6 .35) (0 .654) , 1 .95W

0.3

Pfe = (PL) (le) (A e) = (470) (6 .35) (0 .654) , 1 .95W

BAC max=0.4

Example 2 HAC max=75.59

Example 3 HAC max=12.6

BAC max=0.44

BAC max=0.092

0.2

Example 2 HAC min= 50.39 BAC min= 0.33

0.1 0.0

Example 1 HAC max=66.14

1

10

100

Magnetizing Force (A·T/cm) www.mag-inc.com

19


Core Selection

Powder Core Loss Calculation Method 2, for small H, approximate Bpk from effective perm with DC bias. 16 - old 2 - 11 Bpk = f(µe, H)

16 - old 2 - 11 ppp The instantaneous slope ppp of the BH curve is defined as the absolute permeability, which is the product of permeability of free space

(µ0=4 x10-7) and the material permeability (µ), which varies along the BH curve. For small AC, this slope can be modeled as a 16 - oldAC 2 - excitation, 11 constant throughout with µ approximated as the effective perm at DC bias (µe):

p

ppp

dB = µ µ " %B = µ µ " %B = µ µ %H B = %B = 0 .5 µ µ %H V 0 e 0 e e 0 e dB = µ dH %B %B pk= 0 .5 %H " 0%B 2 µ Qµ %H " = µ = µ B Q V 0 µe 0 µe 0 µe %H pk = 0 e dH %H 2

The effective perm DC bias is shown in this catalog as % of initial perm %B and can be obtained from the DC bias curve or curve dB =with µe " %B fit equation, pgs %H = µ0 µe " %B = µ0 µe %H B pk = 2 = Q0 .5V µ0 µe %H dH29 µ- 034

B pk = Q0 .5VQ µ0VQ%µiVQ µiVQ100VQ%HV where N%I %H = N%I le B pk = Q0 .5VQ µ0VQ%µiVQ µiVQ100VQ%HV where %H = l e

H is multiplied by 100 because le is expressed in cm, while Bpk units include m.

B pk = Q0 .5VQ µ0VQ%µiVQ µiVQ100VQ%HV

where %H = N%I le 20 A$ T H Q20V& = 63 cm " from curve or curve fit equation, %µi = 0 .58 20DC = # 6 .35 H DC = # 6 .35 Q20 V& = 63 A$ T cm " from curve or curve fit equation, %µi = 0 .58 µi = 60 Reworking Example 1 (20 Amps DC, 2 Amps pk-pk) µi = 60 N%I = 20(2) = 6 .3 A$ T %H = 20(2) cm 20 20 & = 63 A$ T N%I 6 .35A$ %µ T H DC = # 6 .35 from%H curve or curve fitleequation, Q V cm " = 6 .3 = l = 6 .35 cm i = 0 .58 e B pk = 0 .5(4r x 10 -7) (0 .58) (60) (100) (6 .3) b 0 .014T (this compares to 0 .015T using Method1) 600 .014T (this compares to 0 .015T using Method1) µi = b B pk = 0 .5(4r x 10 -7) (0 .58) (60) (100) (6 .3) N%I 20(2) %H = l = 6 .35 = 6 .3 A$ T cm e B pk = 0 .5(4r x 10 -7) (0 .58) (60) (100) (6 .3) b 0 .014T (this compares to 0 .015T using Method1)

Reworking Example 2 (20 Amps DC, 8 Amps pk-pk)

From example 1,

H DC = 63 A $ T cm ,%µ i = 0 .58; µ i = 60 N%I 20 (8) %H = le = 6 .35 = 25 .2 A $ T cm B pk = 0 .5 (4r x 10-7) (0 .58) (60) (100) (25 .2) = 0 .055T (this compares to 0 .055T using Method 1) H DC = 63 A $ T cm ,%µ i = 0 .58; µ i = 60 N%I 20 (8) %H = le = 6 .35 = 25 .2 A $ T cm B pk = 0 .5 (4r x 10-7) (0 .58) (60) (100) (25 .2) = 0 .055T (this compares to 0 .055T using Method 1) A $T Reworking Example 3 (0 Amps DC, 8 Amps pk-pk) %H = 25 .20 cm H DC = 0 A $ T cm %µ i = 1

From example 2,

B pk = 0 .5 (4r x 10-7) (1) (60) (100) (25 .2) = 0 .095T

(this compares to 0 .092T using Method 1)

%H = 25 .20 A $ T cm H DC = 0 A $ T cm %µ i = 1 -7 B pk = 0 .5 (4r x 10 ) (1) (60) (100) (25 .2) = 0 .095T (this compares to 0 .092T using Method 1)

20

MAGNETICS


Core Selection

Powder Core Loss Calculation 17 - old 2 - 12

Method 3, for small H, determine Bpk from biased inductance. Bpk==f(L,I) B can be rewritten in terms of inductance by considering Faraday’s equation and its effect on inductor current:

17 - old 2 - 12

dl " dB = L dl V L =NA dB =L dt dt- old NA 17 2 - 12 dB dl L V L =NA dt =L dt " dB = NA dl 17 - old 2 - 12 Ldl L %I DC %I L dl " dB B pk = 2NA %B = DC dB excitation = NA V L =NA NA L varies non-linearly with I. For small AC, L can be assumed constant throughout and is approximated by the biased dt =L dt e" AC inductance (LDC).

L DC %I L DC %I " B pk = 2NA NA e dB dl L dl V L =NA dt =L dt " dB = NA dB = L LdlDC %I L DC %I " B pk = 2NA dH %B NA= dH NA e

%B = 17 - old 2 - 12 "

dB

L

dl

" dH = NA Another way of looking at this is by rewriting between L DCdH dB the relationship dl L%I B and L as:L DC %I = =NA dl " B pk = 2NA V L = NA dt = L dt "%BdB NA e L dB I dB " dH =" N 2 Ae = L dl e dH NA dH

L %I %B = DC NA

L Ie " dB 2 A e L dl dH =L DC NdB %I " dH = " B pk = 2NA e NA dH le L DC % I %B = L DC Ie dB L Ie= L DC " = %B %H= NA 2 2 %H N" A e dH e N2 A e N A e

"

L DC %I %B pk = 2NA e

Substituting (dH/dI) with (N/le) and A with Ae:

"

L DC le L DC % I L DC %I %B = L DC Ie " %B pk = 2NA " L%B N 2 AdB Ie = N 2 A e %H= NA e e e dB = L dl%H " dH = N 2 A e dH NA dH L DC le L DC % I L DC %I %B = L DC Ie " %B pk = 2NA %H N 2 A e " %B = N 2 A e %H= NA e e

"

dB = L Ie dH N 2 A e

%B = L DC Ie %H N 2 A e

"

L le L DC % I %B = NDC 2 A e %H= NA e

"

L DC %I %B pk = 2NA e

L varies non-linearly with H. For small AC, the slope of the BH curve is assumed constant throughout AC excitation, and L is approximated by the biased inductance (LDC).

%B L DC Ie %H = N 2 A e

"

L le L DC % I %B = NDC 2 A e %H= NA e

"

L DC %I %B pk = 2NA e

www.mag-inc.com

21


Core Selection

Powder Core Loss Calculation 18 - old 2 - 13 18 - old 2 - 13 18 - old 2 - 13

Reworking Example 1:

L nl (no load) = (A L ) (N 2) = (75 nH/T 2) (20 2) = 30µH 2 2 LL load) = (A L )i)(N nH/T ) (20 ) = 30µH (L2nl)) ==(75 (0 .58) (30) = 17 .4µH nl (no DC (20A) = (%µ 2 2 2 -6 load) = (A ) = (75 nH/T ) (20 ) = 30µH L ) )(N (17 .4) (10 ) (2) L nlL(no (20A) = (%µ (L ) = (0 .58) (30) = 17 .4µH DC i nl " B pk = = 0 .013T (this compares to 0 .015T per Method1, 0 .014T per Method 2) . -6(10 -4 ) 2(20) (0 .654) L (20A) = (%µ ) (L ) = (0 .58) (30) = 17 .4µH (17 .4) (10 ) (2) DC i nl " B pk = = 0 .013T (this compares to 0 .015T per Method1, 0 .014T per Method 2) . 2(20) (0 .654) (2) -4) (17 .4) (10 -6)(10 = 0 .013T (this compares to 0 .015T per Method1, 0 .014T per Method 2) . " B pk = 2(20) (0 .654) (10 -4) Reworking Example 2:

From example 1, L DC = 17 .4µH (17 .4) (10 ) (8) From example 1, L = 17 .4µH " B pk = 2(20) (0 .654)-6(10 -4 = 0 .053T (this compares toDC0 .055T per Method1, 0 .055T per Method 2) . From example 1, L DC = 17 .4µH (17 .4) (10 ) (8) ) " B pk = = 0 .053T (this compares to 0 .055T per Method1, 0 .055T per Method 2) . 2(20) (0 .654) (8) -4) (17 .4) (10 -6)(10 " B pk = (this compares to 0 .055T per Method1, 0 .055T per Method 2) . -4 = 0 .053T 2(20) (0 .654) (10 ) -6

Reworking Example 3:

(30) (10 -6) (8) " B pk = 2(20) (0 .654) (10 -4) = 0 .092T (30) (10 -6) (8) " B pk = = 0 .092T 2(20) (10 -4) (30)(0 .654) (10 -6) (8) " B pk = 2(20) (0 .654) (10 -4) = 0 .092T

L DC = L nl = 30µH L DC = L nl = 30µH (this compares to 0 .092T per Method1, 0 .095T per Method 2) . L DC = L nl = 30µH (this compares to 0 .092T per Method1, 0 .095T per Method 2) . (this compares to 0 .092T per Method1, 0 .095T per Method 2) .

The plot below illustrates the difference between Method 1 and Method 2

60µ Kool Mµ DC Magnetization 0.47 0.45

Method 2 HDC - 25.2 2

Flux Density (Tesla)

0.43 0.41

Method 2 HDC

Method 2 HDC + 25.2 2

0.39 0.37 0.35 0.33

Method 1 HAC min

0.31 0.29

45

50

Method 1 HAC max 55

60

65

70

75

80

Magnetizing Force (A·T/cm)

HAC min H

µ

MAGNETICS µ

160

22

B


Core Selection

Core Selector Charts The core selector charts are a quick guide to finding the optimum permeability and smallest core size for DC bias applications. These charts are based on a permeability reduction of not more than 50% with DC bias, typical winding factors of 40% for toroids and 60% for shapes, and an AC current that is small relative to the DC current. These charts are based on the nominal core inductance and a current density 500-600 A/cm2.

For additional power handling capability, stacking of cores will yield a proportional increase in power handling. For example, double stacking of the 55908 core will result in doubled power handling capability to about 400 mH¡A2. Cores with increased heights are easily ordered. Contact Magnetics for more information.

If a core is being selected for use with a large AC current relative to any DC current, such as a flyback inductor or buck/boost inductor, frequently a larger core will be needed to limit the core losses due to AC flux. In other words, the design becomes loss-limited rather than bias-limited.

www.mag-inc.com

23


Core Selection

Core Selector Charts MPP Toroids 55336 p. 94

26µ

55735 p. 89

14µ 60µ

55102 p. 93 55777 p. 92

55908 p. 91

55868 p. 90

55617 p. 87

55110 p. 85

55726 p. 83

55192 p. 86

55716 p. 84

55090 p. 81

55439 p. 82

55083 p. 80

55076 p. 79 55071 p. 77

55586 p. 78

125µ

55930 p. 76

55350 p. 75 55206 p. 73

55310 p. 74

200µ

55377 p. 72

55117 p. 71 55127 p. 69

55047 p. 70

300µ

55035 p. 68

55285 p. 67

55275 p. 66

55405 p. 64

55025 p. 65

55265 p. 63

55235 p. 62

55015 p. 61

55175 p. 60

55145 p. 59

0.001

55164 p. 95

55135 p. 58

0.01

0.1

1

10

100

1,000

5,000

LI², (mH·A²)

High Flux Toroids

125 perm 90 100 75 60 60µ 50 40 25 26 125µ 14 147 173 160 200 250 300 500 550

58337 p. 94 58737 p. 89 58867 p. 90 58110 p. 85 58716 p. 84 58090 p. 81 58324 p. 79 58585 p. 78

160µ

58348 p. 75 58204 p. 73

26µ

58100 p. 93

58617 p. 87 58195 p. 86 58438 p. 82 58254 p. 80 58548 p. 77 58928 p. 76 58308 p. 74 58118 p. 71 58048 p. 70

58128 p. 69

58038 p. 68

58288 p. 67

58278 p. 66

58408 p. 64

58028 p. 65

58268 p. 63

58238 p. 62

58018 p. 61

0.01

0.1

1

10

LI², (mH·A²)

24

58165 p. 95

58907 p. 91

58378 p. 72

0.001

40µ

MAGNETICS

100

1,000

10,000


Core Selection

Core Selector Charts Kool Mµ® Toroids 77164 p. 95

77336 p. 94

26µ

14µ

77735 p. 89

77102 p. 93

40µ

77776 p. 92

77908 p. 91

77868 p. 90

77616 p. 87 77212 p. 85

77074 p. 88

60µ

77726 p. 83

77192 p. 86

77721 p. 84

77439 p. 82

77095 p. 81

77083 p. 80

77076 p. 79

77071 p. 77

77586 p. 78

160µ

77934 p. 76

77354 p. 75

77314 p. 74

125µ

77120 p. 71

77210 p. 73 77380 p. 72

77050 p. 70

77130 p. 69

77040 p. 68

77290 p. 67

77280 p. 66

77410 p. 64

77030 p. 65

77270 p. 63

77240 p. 62

77020 p. 61

77180 p. 60

77150 p. 59

77140 p. 58

0.0001

0.001

0.01

0.1

10

1

100

1,000

3,000

LI², (mH·A²)

XFlux® Toroids 78337 p. 94 78737 p. 89 78907 p. 91

75µ

78618 p. 87 78110 p. 85 78193 p. 86 78094 p. 81 78259 p. 80

125 perm 90 100 75 60 60µ 50 40 25 26 14 147 173 160 200 250 300 500 550

26µ

40µ

78100 p. 93 78777 p. 92 78867 p. 90 78072 p. 88 78729 p. 83 78720 p. 84 78443 p. 82 78329 p. 79

78590 p. 78

78553 p. 77

90µ

78934 p. 76

78354 p. 75

78314 p. 74

78210 p. 73

78384 p. 72

78224 p. 71

0.5

1

10

100

1,000

7,000

LI², (mH·A²) www.mag-inc.com

25


Core Selection

Core Selector Charts Kool Mµ® MAX Toroids 79337 p. 94

26µ

79102 p. 93

79735 p. 89 79908 p. 91 79868 p. 90

60µ

79617 p. 87

79074 p. 88 79110 p. 85

WAITING FOR CHART

79716 p. 84 79439 p. 82

79192 p. 86 79090 p. 81 79083 p. 80

79076 p. 79 79586 p. 78 79071 p. 77 79894 p. 76 79351 p. 75 79059 p. 74 79848 p. 73 79121 p. 71 79381 p. 72 79051 p. 70

0.1

1

10

100

1,000

2,000

LI², (mH·A²)

XFlux® E Cores

125 perm 90 100 75 60 26µ 50 40 25 26 14 147 173 160 200 250 300 500 550

X8044E026 p. 96

X6527E060 p. 96

X5530E060 p. 96

X4017E060 p. 96

X114LE060 p. 96

60µ

X8020E060 p. 96

X7228E060 p. 96

X5528E060 p. 96

X4022E060 p. 96 X4020E060 p. 96 X4317E060 p. 96 X3515E060 p. 96

0.1

1

10

100

LI², (mH·A²)

26

MAGNETICS

1,000

3,000

X1808E060 p. 96


Core Selection

Core Selector Charts Kool Mµ® E Cores K160LE026 p. 96

26µ

K130LE026 p. 96

40µ

K114LE040 p. 96

K8044E026 p. 96

K8020E040 p. 96

60µ

K6527E060 p. 96

K7228E060 p. 96

K5530E060 p. 96

K5528E060 p. 96

K4022E090 p. 96

K4017E060 p. 96

K4020E060 p. 96

90µ

K4317E090 p. 96

K3515E090 p. 96

K3007E090 p. 96

K2510E090 p. 96

K1808E090

0.1

1

10

100

1,000

3,000 p. 96

LI², (mH·A²)

Kool Mµ® U Cores

125 perm 90 100 75 60 50 40 25 26 14 147 173 160 200 250 300 500 550

K8020U026 p. 98

K7236U026 p. 98

K5529U026 p. 98

K4119U090 p. 98

K8038U026 p. 98

K6527U026 p. 98

26µ K6533U026 p. 98

K5527U026 p. 98

90µ K4111U090 p. 98

K4110U090 p. 98

1

10

100

1,000

K3112U090 p. 98

LI², (mH·A²) www.mag-inc.com 125 perm

27


Core Selection

Wire Table AWG Wire Size

Resistance /meter

Wire O.D. (cm) Heavy Build

Wire Area cm2

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

.00130 .00163 .00206 .00260 .00328 .00414 .00521 .00656 .00828 .01044 .01319 .01658 .02095 .02640 .03323 .04190 .05315 .06663 .08422 .10620 .13458 .16873 0.214 0.266 0.340 0.429 0.532 0.675 0.857 1.085 1.361 1.680 2.13 2.78 3.54 4.34 5.44 7.03 8.51 10.98 13.80 17.36 22.10 27.60

.421 .376 .336 .299 .267 .238 .213 .1902 .1715 .1529 .1369 .1224 .1095 .0980 .0879 .0785 .0701 .0632 .0566 .0505 .0452 .0409 .0366 .0330 .0295 .0267 .0241 .0216 .01905 .01702 .01524 .01397 .01245 .01092 .00965 .00864 .00762 .00686 .00635 .00546 .00498 .00452 .00394 .00353

0.1392 0.1110 0.0887 0.0702 0.0560 0.0445 0.0356 0.0284 0.0231 0.01840 0.01472 0.01177 0.00942 0.00754 0.00607 0.00484 0.00386 0.00314 0.00252 0.00200 0.00160 0.00131 0.00105 0.000855 0.000683 0.000560 0.000456 0.000366 0.000285 0.000228 0.000182 0.000153 0.000122 0.000094 0.000073 0.000059 0.000046 0.000037 0.000032 0.000023 0.000019 0.000016 0.000012 0.000010

28

Q

MAGNETICS

Current Capacity, Amps (listed by columns of Amps/cm2) 200

400

500

600

800

26.6 21.1 16.7 13.3 10.5 8.34 6.62 5.25 4.16 3.30 2.62 2.08 1.65 1.31 1.04 0.823 0.649 0.518 0.409 0.325 0.256 0.204 0.161 0.129 0.101 0.0803 0.0649 0.0511 0.0402 0.0318 0.0253 0.0205 0.0162 0.0124 0.00974 0.00795 0.00633 0.00490 0.00405 0.00314 0.00250 0.00199 0.00156 0.00125

53.2 42.2 33.5 26.5 21.0 16.7 13.2 10.5 8.33 6.61 5.23 4.16 3.29 2.61 2.08 1.65 1.30 1.04 0.819 0.649 0.512 0.409 0.322 0.259 0.203 0.161 0.130 0.102 0.0804 0.0636 0.0507 0.0410 0.0324 0.0248 0.0195 0.0159 0.0127 0.00981 0.00811 0.00628 0.00500 0.00397 0.00312 0.00250

66.5 52.8 41.8 33.2 26.3 20.8 16.5 13.1 10.4 8.26 6.54 5.20 4.11 3.27 2.59 2.06 1.62 1.29 1.0236 0.812 0.641 0.511 0.402 0.324 0.253 0.201 0.162 0.128 0.101 0.0795 0.0633 0.0513 0.0405 0.0310 0.0243 0.0199 0.0158 0.0123 0.0101 0.00785 0.00624 0.00497 0.00390 0.00312

79.8 63.3 50.2 39.8 31.6 25.0 19.8 15.8 12.5 9.91 7.85 6.24 4.94 3.92 3.11 2.47 1.95 1.55 1.23 0.974 0.769 0.613 0.483 0.388 0.304 0.241 0.195 0.153 0.121 0.0953 0.0760 0.0616 0.0486 0.0372 0.0292 0.0238 0.0190 0.0147 0.0122 0.00942 0.00749 0.00596 0.00467 0.00375

106 84.4 66.9 53.1 42.1 33.3 26.5 21.0 16.7 13.2 10.5 8.32 6.58 5.22 4.15 3.29 2.59 2.07 1.64 1.30 1.02 0.817 0.644 0.518 0.405 0.321 0.259 0.204 0.161 0.127 0.101 0.0821 0.0649 0.0497 0.0390 0.0318 0.0253 0.0196 0.0162 0.0126 0.00999 0.00795 0.00623 0.00499


Material Data

Permeability versus DC Bias Curves MPP Toroids 14µ - 200µ 100% 90%

70%

200µ

60%

173µ

14µ

26µ

60µ

160µ

125µ

50%

147µ

% Initial Permeability µi

80%

40% 30%

1

10

500

100

H (A·T/cm)

MPP Toroids 300µ & 550µ 100% 90%

70% 60% 50%

µ

µ

300

550

% Initial Permeability µi

80%

40% 30%

0.1

1

10

30

H (A·T/cm) www.mag-inc.com

29


Material Data

Permeability versus DC Bias Curves High Flux Toroids 100% 90%

14 µ

µ

µ

26

40

µ

60

12

µ 147

16

% Initial Permeability µi

80% 70% 60% 50% 40% 30% 100

10

1,000

H (A·T/cm)

Kool Mµ® Toroids 100% 90%

14µ

26µ

40µ

60µ

75µ

90µ

12

% Initial Permeability µi

80% 70% 60% 50% 40% 30% 1

100

10

600

H (A·T/cm)

30

MAGNETICS 125 perm


Material Data

Permeability versus DC Bias Curves XFlux® Toroids 100% 90%

70% 60% 26µ

40µ

60µ

75µ

90µ

% Initial Permeability µi

80%

50% 40% 30% 100

10

600

H (A·T/cm)

Kool Mµ® MAX Toroids 125 perm 90 75 60 40 26 14 147 173 160 200 250 300 500 550

100%

80% 70% 60% µ 26

µ

60

% Initial Permeability µi

90%

50% 40% 30% 10

H (A·T/cm)

100

www.mag-inc.com

400

31


Material Data

Permeability versus DC Bias Curves MPP THINZ® 100%

80% 0µ

70%

16

20

25

% Initial Permeability µi

90%

125

µ

60% 50% 40% 30%

5

10

60

H (A·T/cm)

Kool Mµ® Shapes 100%

80% 70% 60% 26µ

40µ

50%

60µ

90µ

% Initial Permeability µi

90%

40% 30%

10

32

H (A·T/cm)

MAGNETICS

100

300


Material Data

Permeability versus DC Bias Curves XFlux® Shapes 100%

% Initial Permeability µi

90% 80% 70% 60% 50%

10

H (A·T/cm)

100

26µ

30%

40µ

60µ

40%

600

www.mag-inc.com

33


Material Data

Permeability versus DC Bias Curves Fit Formula % initial permeability =

MPP

Kool Mµ

®

High Flux

XFlux®

Kool Mµ® MAX Kool Mµ® Shapes

XFlux Shapes ®

1 (a + bHc)

Units in A•T/cm

Perm

a

b

c

14µ

0.01

2.435E-09

2.596

26µ

0.01

1.931E-08

2.505

60µ

0.01

2.033E-07

2.436

125µ

0.01

1.963E-06

2.253

147µ

0.01

1.588E-06

2.430

160µ

0.01

1.677E-06

2.477

173µ

0.01

1.451E-06

2.563

200µ

0.01

2.635E-06

2.477

300µ

0.01

1.852E-05

2.216

550µ

0.01

8.271E-04

1.710

14µ

0.01

8.220E-08

1.990

26µ

0.01

7.979E-07

1.819

40µ

0.01

3.213E-06

1.704

60µ

0.01

5.184E-06

1.749

75µ

0.01

1.272E-05

1.664

90µ

0.01

2.698E-05

1.558

125µ

0.01

6.345E-05

1.462

14µ

0.01

4.550E-08

1.948

26µ

0.01

7.178E-08

2.069

40µ

0.01

3.192E-08

2.409

60µ

0.01

2.582E-07

2.166

125µ

0.01

1.458E-06

2.108

147µ

0.01

1.964E-06

2.131

160µ

0.01

2.749E-06

2.094

26µ

0.01

1.014E-07

1.976

40µ

0.01

9.786E-08

2.188

60µ

0.01

4.795E-08

2.511

75µ

0.01

2.073E-07

2.306

90µ

0.01

8.021E-07

2.150

26µ

0.01

5.700E-08

2.205

60µ

0.01

9.344E-07

2.000

26µ

0.01

6.615E-07

1.874

40µ

0.01

3.627E-06

1.656

60µ

0.01

1.108E-05

1.555

90µ

0.01

1.115E-05

1.744

26µ

0.01

5.560E-08

2.054

40µ

0.01

3.206E-07

1.932

60µ

0.01

3.570E-07

2.047

Note: all numbers calculated using A•T/cm Fit valid only for range shown on graph

34

MAGNETICS


Material Data

Core Loss Density Curves MPP 14µ 5,000 z

300 kH

Hz

200 k

1,000

z

Core Loss (mW/cm3)

100 kH

50 kHz z 40 kH

100

z 20 kH z

10 kH 5 kHz

10

2 kHz

1 kHz 500 Hz

1 0.01

0.1

1

Flux Density (Tesla)

MPP 26µ 5,000

Core Loss (mW/cm3)

1,000

100

300 khz 200 khz 100 khz 50 khz 40 khz 25 khz 20 khz 10 khz 5 khz 2 khz 1 khz 100 hz 60 hz 500 hz

PL = 115.9B2.5f1.87 kHz 300 kHz 200 kHz

100

Hz 50 k z H k 40 Hz 20 k Hz k 10 z

5 kH

z

2 kH

10

z

1 kH 500

Hz

1 0.01

0.1

1

Flux Density (Tesla)

300 khz 200 khz

www.mag-inc.com

35


Material Data

Core Loss Density Curves MPP 60µ 5,000 300

kHz

1,000

100

kHz

Hz 50 k z H k 40

3

Core Loss (mW/cm )

kHz

200

100

Hz

20 k

Hz

10 k

z

5 kH

10

z

2 kH

z

1 kH 500

1 0.01

Hz

0.1

1

Flux Density (Tesla)

300 khz 200 khz 100 khz 50 khz 40 khz 25 khz 20 khz 10 khz 5 khz 2 khz 1 khz 100 hz 60 hz 500 hz

MPP 125µ, 147µ, 160µ, 173µ 5,000

1,000 kHz

kHz

200

3

Core Loss (mW/cm )

300

100

kHz

100

z

5 kH

kHz 50 z H k 40

10

PL = 115.9B2.5f1.87

z

2 kH

z

1 kH

Hz

20 k

500

Hz

Hz

10 k

1 0.01

0.1

Flux Density (Tesla)

36

MAGNETICS

300 khz 200 khz

1


Material Data

Core Loss Density Curves MPP 200µ, 300µ 5,000

1,000 kHz

Core Loss (mW/cm3)

300

kHz

200

100

kHz

100

Hz

5k

kHz 50 z kH 0 4

10 20

10

z

2 kH

z

1 kH

kHz

500

Hz

kHz

1 0.01

0.1

1

Flux Density (Tesla)

MPP 550µ 5,000

1,000

300

kHz

kHz

Core Loss (mW/cm3)

200

kHz

100

100

300 khz 200 khz 100 khz 50 khz 40 khz 25 khz 20 khz 10 khz 5 khz 2 khz 1 khz 100 hz 60 hz 500 hz

PL = 115.9B2.5f1.87

Hz 50 k z H k 0 4

z

2 kH

z

1 kH

Hz

20 k

10

500

Hz

Hz

10 k

z

5 kH

1 0.01

0.1

1

Flux Density (Tesla)

300 khz 200 khz

www.mag-inc.com

37


Material Data

Core Loss Density Curves High Flux 14µ 5,000

1,000 kHz

z 50 kH z 40 kH

3

Core Loss (mW/cm )

100

100

Hz

20 k

z

10 kH

z

500 H

z 5 kH

10

2 kHz

z

100 H

1 kHz

60 Hz

1 0.01

0.1

1

Flux Density (Tesla)

High Flux 26µ 5,000

3

Core Loss (mW/cm )

1,000

kHz

100

100

kHz 50 Hz k 40

300 khz 200 khz 100 khz 50 khz 40 khz 25 khz 20 khz 10 khz 5 khz 2 khz 1 khz 100 hz 60 hz 500 hz

PL = 115.9B2.5f1.87

z

1 kH 500

Hz

Hz

20 k 10

10

kHz

100

z

60

5 kH

Hz

Hz

z

2 kH

1 0.01

0.1

Flux Density (Tesla)

38

MAGNETICS

300 khz 200 khz

1


Material Data

Core Loss Density Curves High Flux 40µ 5,000

Core Loss (mW/cm3)

1,000

100

100

kHz

z

1 kH 500

kHz 50 Hz k 40

20

kHz 100

z 0 kH

10

1

60

Hz

Hz

Hz

z

5 kH

z

2 kH

1 0.01

0.1

1

Flux Density (Tesla)

300 khz 200 khz 100 khz 50 khz 40 khz 25 khz 20 khz 10 khz 5 khz 2 khz 1 khz 100 hz 60 hz 500 hz

High Flux 60µ, 125µ 5,000

Core Loss (mW/cm3)

1,000

100

100

kHz

Hz 50 k Hz k 0 4

PL = 115.9B2.5f1.87

z

1 kH

Hz

20 k

z

H 10 k

10

500

Hz

100

Hz

z

5 kH

z 2 kH

z

60 H

1 0.01

0.1

1

Flux Density (Tesla)

300 khz 200 khz

www.mag-inc.com

39


Material Data

Core Loss Density Curves High Flux 147µ, 160µ 5,000

3

Core Loss (mW/cm )

1,000

100

100

kHz

z

1 kH

kHz 50 z H k 40

20

10

500

Hz

kHz Hz

10 k

100

z

60

5 kH

Hz

Hz

z

2 kH

1 0.01

0.1

1

Flux Density (Tesla)

Kool Mµ® 14µ 5,000

z

500 kH

z 300 kH z 200 kH

1,000

z

3

Core Loss (mW/cm )

100 kH

50 kHz 40 kHz

100

300 khz 200 khz 100 khz 50 khz 40 khz 25 khz 20 khz 10 khz 5 khz 2 khz 1 khz

PL = 115.9B2.5f1.87

500 hz 100 hz 60 hz

20 kHz 10 kHz

5 kHz

10

2 kHz 1 kHz

1 0.01

0.1

Flux Density (Tesla)

40

MAGNETICS

500 khz 300 khz 200 khz

1


Material Data

Core Loss Density Curves Kool Mµ® 26µ, 40µ 5,000

500

1,000

kHz

kHz

Core Loss (mW/cm3)

300

kHz

200

100

100

kHz

Hz 50 k Hz k 0 4 Hz

10

20 k

z

2 kH

z 0 kH

1

z

1 kH

z 5 kH

1 0.01

0.1

1

Flux Density (Tesla)

Kool Mµ® 60µ 5,000

1,000

500

kHz

kHz

Core Loss (mW/cm3)

300

kHz

200

100

kHz

100

500 khz 300 khz 200 khz 100 khz 50 khz 40 khz 25 khz 20 khz 10 khz 5 khz 2 khz 1 khz

PL = 115.9B2.5f1.87

500 hz 100 hz 60 hz

Hz 50 k z H k 40

Hz

20 k

10

z

2 kH

Hz

10 k

z

1 kH

z

5 kH

1 0.01

0.1

1

Flux Density (Tesla) 500 khz 300 khz 200 khz

www.mag-inc.com

41


Material Data

Core Loss Density Curves Kool Mµ® 75µ, 90µ 5,000

kHz

500

kHz

300

kHz

200

3

Core Loss (mW/cm )

1,000

100

kHz

100

Hz 50 k Hz k 0 4

10

Hz

2 kH

Hz

1 kH

z

20 k

z

10 k

z

5 kH

1 0.01

0.1

1

Flux Density (Tesla)

Kool Mµ® 125µ 5,000

500

1,000

kHz

kHz kHz

200

3

Core Loss (mW/cm )

300

z 0 kH

100

10

500 khz 300 khz 200 khz 100 khz 50 khz 40 khz 25 khz 20 khz 10 khz 5 khz 2 khz 1 khz

PL = 115.9B2.5f1.87

500 hz 100 hz 60 hz

Hz 50 k z H k 0 4 Hz

10

20 k

z

2 kH

Hz

z

10 k

1 kH

z

5 kH

1 0.01

0.1

Flux Density (Tesla)

42

MAGNETICS

500 khz 300 khz 200 khz

1


Material Data

Core Loss Density Curves XFlux® 26µ 5,000

1,000

kHz

Core Loss (mW/cm3)

200

kHz

100

Hz 50 k Hz k 40

100

Hz

20 k

500

Hz

Hz

10 k

10

z

5 kH

z

z

60 H

2 kH

z

1 kH

1 0.01

0.1

1

Flux Density (Tesla)

XFlux® 40µ 5,000

1,000 kHz

Core Loss (mW/cm3)

200

kHz

100

Hz 50 k Hz k 0 4

100

500 khz 300 khz 200 khz 100 khz 50 khz 40 khz 25 khz 20 khz 10 khz 5 khz 2 khz 1 khz

PL = 115.9B2.5f1.87

500 hz 100 hz 60 hz

Hz

20 k

500

Hz

Hz 10 k z H k 5

10

z

2 kH

z

60 H

z

1 kH

1 0.01

0.1

1

Flux Density (Tesla) 500 khz 300 khz 200 khz

www.mag-inc.com

43


Material Data

Core Loss Density Curves XFlux® 60µ 5,000

1,000 kHz

3

Core Loss (mW/cm )

200

kHz

100

100

Hz 50 k Hz 40 k Hz

20 k

500

z

H 10 k

10

Hz

z

5 kH

z

2 kH

z

60 H

z

1 kH

1 0.01

0.1

1

Flux Density (Tesla)

XFlux® 75µ, 90µ 5,000

1,000

100

3

Core Loss (mW/cm )

200

kHz

kHz

Hz 50 k Hz k 0 4

100

500 khz 300 khz 200 khz 100 khz 50 khz 40 khz 25 khz 20 khz 10 khz 5 khz 2 khz 1 khz

PL = 115.9B2.5f1.87

500 hz 100 hz 60 hz

Hz

20 k

500

Hz

10 k

10

Hz

z

5 kH

z

2 kH

z

60 H

z 1 kH

1 0.01

0.1

Flux Density (Tesla)

44

MAGNETICS

500 khz 300 khz 200 khz

1


Material Data

Kool Mµ MAX Core Loss Density

Core Loss Density Curves Kool Mµ® MAX 26µ, 60µ 5,000 300

Core Loss (mW/cm3)

1,000

kHz

200

kHz

100

kHz

Hz

50 k

Hz

40 k

Hz

25 k

Hz

10 k

z

5 kH

100 Hz 1k

10

1

0.01

0.1

1

Flux Density (Tesla)

www.mag-inc.com

45


Material Data

Core Loss Density Curves Fit Formula P = a(Bb)(fc)

MPP

High Flux

Kool Mµ®

XFlux®

Kool Mµ® MAX

46

(B in Tesla, f in kHz)

Perm

freq:

a

b

c

14µ

> 10kHz

21.06

1.074

1.38

14µ

< 10kHz

64.02

1.074

1.11

26µ

> 10kHz

109.17

2.000

1.37

26µ

< 10kHz

361.62

2.000

1.08

60µ

> 10kHz

31.32

1.585

1.37

60µ

< 10kHz

80.12

1.585

1.04

125µ-173µ

> 10kHz

87.07

2.222

1.56

125µ-173µ

< 10kHz

254.26

2.222

1.17

200µ, 300µ

> 10kHz

115.52

2.322

1.59

200µ, 300µ

< 10kHz

320.32

2.322

1.19

500µ

> 10kHz

96.89

1.999

1.54

500µ

< 10kHz

303.43

1.999

1.09

14µ

all

181.14

1.386

1.21

26µ

> 25kHz

532.55

2.170

1.35

26µ

< 25kHz

1550.54

2.170

1.05

40µ

> 25kHz

1707.09

2.280

1.14

40µ

< 25kHz

2021.58

2.280

1.05

60µ, 125µ

> 25kHz

47.51

1.585

1.43

60µ, 125µ

< 25kHz

151.44

1.585

1.09

147µ-160µ

> 25kHz

203.61

2.163

1.52

147µ-160µ

< 25kHz

883.51

2.163

1.09

14µ

> 10kHz

21.49

1.000

1.33

14µ

< 10kHz

40.18

1.000

1.22

26µ, 40µ

> 10kHz

45.48

1.774

1.46

26µ, 40µ

< 10kHz

170.17

1.774

1.03

60µ

> 9kHz

62.65

1.781

1.36

60µ

< 9kHz

136.93

1.781

1.12

75µ, 90µ

> 10kHz

146.81

2.022

1.33

75µ, 90µ

< 10kHz

338.51

2.022

1.05

125µ

> 10kHz

71.93

1.928

1.47

125µ

< 10kHz

228.46

1.928

1.05

26µ

> 25kHz

761.36

1.977

1.21

26µ

< 25kHz

1187.96

1.977

1.05

40µ

> 9kHz

804.88

1.934

1.14

40µ

< 9kHz

1274.93

1.934

1.06

60µ

> 10kHz

454.56

1.909

1.19

60µ

< 10kHz

670.26

1.909

1.06

75µ, 90µ

> 9kHz

566.54

2.018

1.17

75µ, 90µ

< 9kHz

862.34

2.018

1.02

26µ, 60µ

>10kHz

86.00

1.998

1.40

26µ, 60µ

<10kHz

94.67

1.998

1.40

MAGNETICS


Material Data

DC Magnetization Curves MPP 14µ-300µ 0.6

173µ

0.4 200 µ

160µ

30

0.3

147µ 125µ

60 µ

Flux Density (Tesla)

0.5

0.2 26µ

0.1

0.0

14µ

1

10

100

600

Magnetizing Force (A·T/cm) 0µ

55

MPP 550µ

Flux Density (Tesla)

0.3

0.2 550µ

0.1

0.0

1

2

3

4

5

6

7

8

9

Magnetizing Force (A·T/cm)

www.mag-inc.com

47


Material Data

DC Magnetization Curves High Flux 0.9 0.8 160

Flux Density (Tesla)

µ

0.7 0.6 147µ

0.5 0.4

125µ

µ

60

0.3

40µ

0.2

26µ

0.1 0.0

14µ

1

10

100

1,000

Magnetizing Force (A·T/cm)

Kool Mµ®

55

125 µ

0.5

µ 90

µ

75

µ

0.3

60

Flux Density (Tesla)

0.4

0.2

µ

40

26µ

0.1

14µ

0.0

1

10

100

500

Magnetizing Force (A·T/cm)

MAGNETICS 0µ

48


Material Data

DC Magnetization Curves XFlux® 0.9 0.8

0.6 0.5 µ

0.4

90

Flux Density (Tesla)

0.7

µ

75

0.3

µ

60

0.2

40µ

26µ

0.1 0.0

1

10

100

400

Magnetizing Force (A·T/cm)

Kool Mµ® MAX

55

1000

0.8 0.7

Flux Density (Tesla)

0.6 0.5 0.4 0.3

µ

60

0.2 26µ

0.1 0.0

1

10

100

500

Magnetizing Force (A·T/cm)

www.mag-inc.com

49


Material Data

DC Magnetization Curves 41- old 3 - 35 Fit Formula

B=#

a + bH + cH 2 &x Units:B in Tesla; H in A $ Turns/cm 1+ dH + eH 2 where:

MPP

Kool Mµ®

High Flux

XFlux®

Kool Mµ® MAX

Perm

a

b

c

d

e

x

14µ

1.106E-01

1.275E-02

6.686E-04

1.308E-01

6.381E-04

1.876

26µ

1.112E-01

1.369E-02

7.979E-04

8.732E-02

7.647E-04

1.907

60µ

7.871E-02

1.893E-02

9.356E-04

5.847E-02

8.919E-04

1.724

125µ

2.429E-02

2.184E-02

1.287E-03

5.362E-02

1.144E-03

1.258

147µ

1.707E-02

2.077E-02

1.310E-03

4.408E-02

1.246E-03

1.152

160µ

1.458E-02

2.140E-02

1.436E-03

4.367E-02

1.389E-03

1.124

173µ

1.221E-02

2.147E-02

1.468E-03

3.965E-02

1.435E-03

1.089

200µ

7.098E-03

2.201E-02

1.516E-03

3.398E-02

1.517E-03

1.022

300µ

0.000E+00

2.808E-02

1.373E-03

1.612E-02

1.905E-03

0.906

550µ

0.000E+00

7.907E-02

0.000E+00

1.016E-01

2.109E-03

1.013

14µ

1.105E-01

1.301E-02

6.115E-04

1.386E-01

5.735E-04

1.760

26µ

1.008E-01

1.452E-02

7.846E-04

1.035E-01

7.573E-04

1.754

40µ

5.180E-02

2.132E-02

7.941E-04

8.447E-02

7.652E-04

1.756

60µ

5.214E-02

2.299E-02

8.537E-04

7.029E-02

8.183E-04

1.658

75µ

4.489E-02

2.593E-02

7.949E-04

6.463E-02

7.925E-04

1.595

90µ

4.182E-02

2.990E-02

7.826E-04

6.542E-02

7.669E-04

1.569

125µ

1.414E-02

2.851E-02

1.135E-03

7.550E-02

1.088E-03

1.274

14µ

1.060E-01

1.305E-02

5.119E-04

1.497E-01

3.616E-04

1.617

26µ

1.098E-01

1.421E-02

7.332E-04

1.123E-01

5.217E-04

1.695

40µ

9.617E-02

1.690E-02

8.908E-04

8.503E-02

6.628E-04

1.784

60µ

8.049E-02

1.887E-02

9.733E-04

7.198E-02

6.927E-04

1.660

125µ

4.235E-02

2.235E-02

1.330E-03

5.798E-02

8.447E-04

1.324

147µ

3.315E-02

2.308E-02

1.454E-03

5.459E-02

9.259E-04

1.242

160µ

2.616E-02

2.332E-02

1.537E-03

5.408E-02

9.642E-04

1.186

26µ

1.093E-01

1.478E-02

6.629E-04

1.085E-01

4.429E-04

1.683

40µ

8.539E-02

1.772E-02

8.617E-04

8.744E-02

6.280E-04

1.753

60µ

1.220E-01

1.471E-02

0.000E+00

9.272E-03

5.418E-06

1.837

75µ

1.081E-01

1.882E-02

1.834E-04

1.999E-02

1.408E-04

1.778

90µ

5.668E-02

2.116E-02

1.088E-03

5.968E-02

7.969E-04

1.497

26µ

8.741E-02

1.634E-02

7.844E-04

1.044E-01

6.576E-04

1.814

60µ

6.944E-02

2.004E-02

8.924E-04

6.666E-02

7.314E-04

1.666

Note: all numbers calculated using A•T/cm

50

MAGNETICS


Material Data

Permeability versus Temperature Curves MPP 14µ-300µ 3% 00µ -3 µ 173 µ7 4 1 µ 125

+/- % Initial Permeability µi

µ 200

2%

60µ 26µ 14µ

1%

0%

-1% -60

-40

-20

0

20

40

60

80

100

120

140

160

180

200

Temperature (˚C)

125 perm 90 75 60 40 26 14 147 173 160 200 250 300 500 550

MPP 550µ 18% 16%

+/- % Initial Permeability µi

14% 12%

14µ

10% 8%

µ

550

6% 4% 2% -0% -2% -4%

-60

-40

-20

0

20

40

60

80

100

120

140

160

180

200

Temperature (˚C)

www.mag-inc.com

51

125 perm 90 75 60


Material Data

Permeability versus Temperature Curves High Flux 8%

+/- % Initial Permeability µi

6%

160µ 147µ

4%

125µ

2%

26µ - 40µ 14µ

60µ

0%

-2% -4% -60

-40

-20

0

20

40

60

80

100

120

140

160

180

200

Temperature (˚C) 125 perm 90 75 60 40 26 14 147 173 160 200 250 300 500 550

Kool Mµ® 2%

-2%

26µ

-8%

90µ

75µ

-6%

60µ 40µ

-4%

125

µ

+/- % Initial Permeability µi

0%

-10% -12%

-60

-40

-20

0

20

40

60

80

100

120

140

160

180

Temperature (˚C)

52

MAGNETICS

125 perm 90 75 60

200


Material Data

Permeability versus Temperature Curves XFlux® 5.0%

+/- % Initial Permeability µi

4.0% 3.0% 60µ

2.0% 26µ

1.0% 0.0% -1.0% -2.0%

-50

0

50

100

150

200

Temperature (˚C)

60µ XFLUX Toroid:

[% change in µi] = -4.010x10-3 + (1.553x10-4)(T) + (1.875x10-8)(T2) + (3.907x10-9)(T3) + (1.213x10-11)(T4)

26µ XFLUX Toroid:

[% change in µi] = -3.879x10-3 + (1.356x10-4)(T) + (1.228x10-7)(T2) + (1.739x10-9)(T3) + (4.35x10-12)(T4)

www.mag-inc.com

125 perm 90 75 60 40 26 14 147 173 160 200 250 300 500 550

53


Material Data

Permeability versus Temperature Curves 44 - old 3 - 35 Fit Formula Change compared with µ 25˚C =

µ T - µ 25˚C 2 µ 25˚C = a + bT + cT

where: Perm

a

b

c

14µ

-1.300E-03

4.750E-05

1.300E-07

26µ

-1.431E-03

5.265E-05

1.837E-07

60µ

-1.604E-03

Change compared with µ = 125µ -1.939E-0325˚C

MPP

147µ where:

-2.308E-03

8.497E-05

2.943E-07

160µ

-2.308E-03

8.497E-05

2.943E-07

173µ

-2.308E-03

8.497E-05

2.943E-07

200µ

-2.528E-03

9.211E-05

3.601E-07

-2.528E-03

9.211E-05

3.601E-07

550µ

-1.309E-02

4.716E-04

2.086E-06

14µ

-2.500E-03

9.670E-05

5.560E-08

44 - old300µ 3 - 35

High Flux

1.875E-07 µ T - µ 25˚C 5.945E-05 2 3 = a + bT + cT + dT + eT 4 7.013E-05 2.967E-07 µ 25˚C

26µ -3.300E-03µ T - µ 25˚C 1.290E-04 = a + bT + cT 2 Change60µcompared with µ-4.400E-03 25˚C = µ 1.740E-04

3.800E-08 4.090E-08

where:125µ

-6.000E-03

2.400E-04

3.220E-08

147µ

-7.900E-03

3.140E-04

7.310E-08

160µ

-9.200E-03

3.670E-04

1.750E-08

25˚C

Change compared with µ 25˚C =

µ T - µ 25˚C 2 3 4 µ 25˚C = a + bT + cT + dT + eT

where:

Kool Mµ®

XFlux®

54

Perm

a

b

c

d

e

26µ

-4.289E-03

2.521E-04

-3.557E-06

1.384E-08

-2.066E-11

40µ

-5.034E-03

3.521E-04

-6.797E-06

3.193E-08

-4.916E-11

6­­0µ

-8.841E-03

5.197E-04

-7.064E-06

1.667E-08

8.820E-12

75µ

-1.174E-02

6.653E-04

-8.195E-06

1.411E-08

3.032E-11

90µ

-1.369E-02

7.705E-04

-9.385E-06

1.812E-08

2.524E-11

125µ

-1.647E-02

9.306E-04

-1.132E-05

1.623E-08

5.722E-11

26µ

-3.879E-03

1.356E-04

1.228E-07

-1.739E-09

4.35E-12

60µ

-4.010E-03

1.553E-04

-1.875E-08

3.907E-09

-1.213E-11

MAGNETICS


Material Data

Permeability versus Frequency Curves MPP 0 14µ 26µ

-5%

60

+/- % Initial Permeability µi

µ

-10% 125

µ

-15%

147

2

µ 173 µ160 00µ

µ

-20% 0µ

30

-25% µ

550

-30% 0.01

0.1

Frequency (MHz)

1

10

High Flux 0% 60µ

+/- % Initial Permeability µi

-10%

147 µ

- 16

125 µ

14µ 26µ

125 perm 90 75 60 40 26 14 147 173 160 200 250 300 500 550

-20%

-30%

-40%

-50% 0.01

0.1

Frequency (MHz)

1

www.mag-inc.com

10

55

125 perm 90 75


Material Data

Permeability versus Frequency Curves Kool Mµ® 0% 26µ

+/- % Initial Permeability µi

-5%

75µ 125

- 90

µ

60µ

40µ

µ

-10% -15%

-20% -25%

-30% 0.1

10

1

Frequency (MHz)

XFlux® 0% -5%

26µ

+/- % Initial Permeability µi

-10% 60µ

-15% -20%

125 perm 90 75 60 40 26 14 147 173 160 200 250 300 500 550

-25% -30% -35% -40% -45% -50% 0.1

56

1

10

Frequency (MHz)

MAGNETICS

125 perm 90 75 60


Material Data

Permeability versus Frequency Curves 52 - old 3 - 24 Fit Formula ! µ i = a + bf + cf 2 + df 3 + ef 4 Units: f in MHz where:

MPP

High Flux

Kool Mµ®

XFlux®

Perm

a

b

c

d

e

14µ

0

-2.320E-03

7.630E-04

-5.070E-04

3.170E-05

26µ

0

-1.560E-02

5.190E-03

-1.160E-03

6.230E-05

60µ

0

-1.820E-02

4.320E-03

-9.780E-04

5.360E-05

125µ

0

-8.430E-02

1.590E-02

-2.270E-03

1.080E-04

147µ

0

-1.110E-01

2.040E-02

-2.810E-03

1.300E-04

160µ

0

-1.290E-01

2.390E-02

-3.080E-03

1.410E-04

173µ

0

-1.290E-01

2.390E-02

-3.080E-03

1.410E-04

200µ

0

-1.610E-01

3.820E-02

-5.170E-03

2.160E-04

300µ

0

-2.590E-01

5.570E-02

-6.530E-03

2.780E-04

550µ

0

--4.590E-01

-3.3E+00

8.14E+00

-5.73E+00

14µ

0

-1.070E-02

5.960E-04

-4.920E-04

3.070E-05

26µ

0

-2.560E-02

3.430E-03

-7.340E-04

3.990E-05

60µ

0

-3.870E-02

3.050E-03

-5.490E-04

2.690E-05

125µ

0

-8.600E-02

1.140E-02

-1.370E-03

6.050E-05

147µ

0

-8.170E-02

7.330E-03

-6.400E-04

2.390E-05

160µ

0

-8.590E-02

7.220E-03

-5.530E-04

1.880E-05

26µ

0

-5.500E-03

1.400E-03

-6.200E-04

3.700E-05

40µ

0

-7.300E-03

8.400E-04

-5.900E-04

3.700E-05

60µ

0

-1.100E-02

1.600E-03

-7.100E-04

4.400E-05

75µ

0

-2.000E-02

3.500E-03

-9.500E-04

5.500E-05

90µ

0

-1.500E-02

6.900E-04

-4.800E-04

3.100E-05

125µ

0

-3.000E-02

-5.500E-03

2.400E-04

4.500E-06

26µ

3.000E-04

-3.132E-02

4.902E-03

-1.015E-03

5.543E-05

60µ

6.805E-03

-7.575E-02

1.206E-02

-1.607E-03

7.524E-05

www.mag-inc.com

57


0.140” 0.070”

Core Data

3.56 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

3.56 mm/0.140 in

1.78 mm/0.070 in

1.52 mm/0.060 in

After Finish (limits)

4.20 mm/0.165 in

1.27 mm/0.050 in

2.16 mm/0.085 in

Kool Mµ AL ± 15%

60 75 90 125 147 160 173 200 300

13 16 19 26 31 33 36 42 62

55140A2

Part Number

AL ± 8%

Permeability (µ)

0.060"

MPP 55140 55139 55138 55134 55137 55135

High Flux -

Physical Characteristics

Kool Mµ® 77141 77445 77444 77140 -

XFlux® -

Kool Mµ® MAX -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107

Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

1.27 mm2 1.30 mm2 8.06 mm 10.5 mm3 0.094 g 0.065 g 1.65 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

Length/Turn (mm) 7.24 7.56 7.65 7.70 7.81 7.89 7.98 8.08 8.27 8.48

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

4.30 mm 2.56 mm 4.95 mm 2.74 mm

Surface Area Unwound Core 40% Winding Factor

60 mm2 70 mm2

Kool Mµ AL vs. DC Bias 28

FOR PLACEMENT ONLY

24

AL (nH/ T 2)

20 16 12 8 4 0

0

58

10

20

30

A·T MAGNETICS

40

50

60


3.94 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

3.94 mm/0.155 in

2.24 mm/0.088 in

2.54 mm/0.100 in

After Finish (limits)

4.58 mm/0.180 in

1.72 mm/0.068 in

3.18 mm/0.125 in

Permeability (µ)

0.100”

55150A2

Part Number

AL ± 8% Kool Mµ AL ± 15%

60 75 90 125 147 160 173 200 300

Core Data

0.155” 0.088”

MPP 55150 55149 55148 55144 55147 55145

17 21 25 35 41 45 48 56 84

High Flux -

Physical Characteristics

Kool Mµ® 77151 77155 77154 77150 -

XFlux® -

Kool Mµ® MAX -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107

Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

2.32 mm2 2.11 mm2 9.42 mm 19.9 mm3 0.17 g 0.12 g 4.90 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

Length/Turn (mm) 9.20 9.64 9.76 9.84 9.98 10.1 10.2 10.3 10.6 10.9

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

4.85 mm 3.73 mm 5.77 mm 4.75 mm

Surface Area Unwound Core 40% Winding Factor

90 mm2 110 mm2

Kool Mµ AL vs. DC Bias 35 30

AL (nH/ T 2)

25 20 15 10 5 0

0

10

20

30

40

50

A·T www.mag-inc.com

60

70

59


0.183” 0.093”

Core Data

4.65 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

4.65 mm/0.183 in

2.36 mm/0.093 in

2.54 mm/0.100 in

After Finish (limits)

5.29 mm/0.208 in

1.85 mm/0.073 in

3.18 mm/0.125 in

Kool Mµ AL ± 15%

60 75 90 125 147 160 173 200 300

20 25 30 42 49 53 57 67 99

MPP 55181 55180 55179 55178 55174 55177 55175

High Flux -

Physical Characteristics Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

55180A2

Part Number

AL ± 8%

Permeability (µ)

0.100”

Kool Mµ® 77181 77185 77184 77180 -

XFlux® -

Kool Mµ® MAX -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107 2.69 mm 2.85 mm2 10.6 mm 30.3 mm3 0.25 g 0.18 g 7.66 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

2

Length/Turn (mm) 9.79 10.3 10.4 10.5 10.6 10.7 10.9 11.0 11.3 11.6

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

5.56 mm 3.73 mm 6.65 mm 4.94 mm

Surface Area Unwound Core 40% Winding Factor

110 mm2 130 mm2

Kool Mµ AL vs. DC Bias 45

FOR PLACEMENT ONLY

40 35

AL (nH/ T 2)

30 25 20 15 10 5 0

0

60

10

20

30

40

50

A·T MAGNETICS

60

70

80

90


6.35 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

6.35 mm/0.250 in

2.79 mm/0.110 in

2.79 mm/0.110 in

After Finish (limits)

6.99 mm/0.275 in

2.28 mm/0.090 in

3.43 mm/0.135 in

Kool Mµ AL ± 12%

14 26 60 75 90 125 147 160 173 200 300 550

MPP 55023 55022 55021 55020 55019 55018 55014 55017 55015 55016

6 10 24 30 36 50 59 64 69 80 120 220

High Flux 58023 58022 58021 58020 58019 58018 -

Physical Characteristics Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

0.110”

55020A2

Part Number

AL ± 8%

Permeability (µ)

Core Data

0.250” 0.110”

Kool Mµ® 77021 77825 77824 77020 -

XFlux® -

Kool Mµ® MAX -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107 4.08 mm2 4.70 mm2 13.6 mm 64.0 mm3 0.59 g 0.55 g 0.39 g 19.2 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

Length/Turn (mm) 11.6 12.2 12.3 12.4 12.6 12.8 12.9 13.1 13.4 13.9

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

Surface Area

7.34 mm 4.12 mm 8.81 mm 5.38 mm

Unwound Core 40% Winding Factor

170 mm2 200 mm2

Kool Mµ AL vs. DC Bias 50 45 40

AL (nH/ T 2)

35 30 25 20 15 10 5 0

0

10

20

30

40

50

60

70

80

A·T www.mag-inc.com

90

100

61


0.260” 0.105”

Core Data

6.60 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

6.60 mm/0.260 in

2.67 mm/0.105 in

2.54 mm/0.100 in

After Finish (limits)

7.24 mm/0.285 in

2.15 mm/0.085 in

3.18 mm/0.125 in

Kool Mµ AL ± 12%

14 26 60 75 90 125 147 160 173 200 300 550

MPP 55243 55242 55241 55240 55239 55238 55234 55237 55235 55236

6 11 26 32 39 54 64 69 75 86 130 242

High Flux 58243 58242 58241 58240 58239 58238 -

Kool Mµ® 77241 77245 77244 77240 -

XFlux® -

Kool Mµ® MAX -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107

Physical Characteristics Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

55240A2

Part Number

AL ± 8%

Permeability (µ)

0.100”

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

3.63 mm² 4.76 mm² 13.6 mm 64.9 mm³ 0.58 g 0.55 g 0.40 g 17.3 mm4

Length/Turn (mm) 11.4 12.0 12.2 12.3 12.4 12.6 12.7 12.9 13.2 13.6

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

7.41 mm 3.87 mm 9.12 mm 5.13 mm

Surface Area Unwound Core 40% Winding Factor

170 mm² 190 mm²

Kool Mµ AL vs. DC Bias 55

FOR PLACEMENT ONLY

50 45

AL (nH/ T 2)

40 35 30 25 20 15 10 5 0

0

62

10

20

30

40

50

60

A·T MAGNETICS

70

80

90

100

110


6.60 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

6.60 mm/0.260 in

2.67 mm/0.105 in

4.78 mm/0.188 in

After Finish (limits)

7.24 mm/0.285 in

2.15 mm/0.085 in

5.42 mm/0.213 in

Kool Mµ AL ± 12%

14 26 60 75 90 125 147 160 173 200 300 550

MPP 55273 55272 55271 55270 55269 55268 55264 55267 55265 55266

12 21 50 62 74 103 122 132 144 165 247 466

High Flux 58273 58272 58271 58270 58269 58268 -

Physical Characteristics Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

0.188”

55270A2

Part Number

AL ± 8%

Permeability (µ)

Core Data

0.260” 0.105”

Kool Mµ® 77271 77875 77874 77270 -

XFlux® -

Kool Mµ® MAX -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107 3.63 mm 9.20 mm2 13.6 mm 125 mm3 1.1 g 1.0 g 0.77 g 33.4 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

2

Length/Turn (mm) 16.2 16.7 16.9 17.0 17.1 17.3 17.4 17.6 17.9 18.3

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

7.41 mm 6.11 mm 9.17 mm 7.42 mm

Surface Area Unwound Core 40% Winding Factor

230 mm2 260 mm2

Kool Mµ AL vs. DC Bias 110 100 90

AL (nH/ T 2)

80 70 60 50 40 30 20 10 0

0

10

20

30

40

50

60

70

80

A·T www.mag-inc.com

90

100

110

63


0.270” 0.156”

Core Data

6.86 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

6.86 mm/0.270 in

3.96 mm/0.156 in

5.08 mm/0.200 in

After Finish (limits)

7.50 mm/0.295 in

3.45 mm/0.136 in

5.72 mm/0.225 in

Kool Mµ AL ± 12%

14 26 60 75 90 125 147 160 173 200 300

55410A2

Part Number

AL ± 8%

Permeability (µ)

0.200”

MPP 55413 55412 55411 55410 55409 55408 55404 55407 55405

8 14 33 42 50 70 81 89 95 112 166

High Flux 58413 58412 58411 58410 58409 58408 -

Physical Characteristics

Kool Mµ® 77411 77415 77414 77410 -

XFlux® -

Kool Mµ® MAX -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107

Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

9.35 mm² 7.25 mm² 16.5 mm 120 mm³ 1.0 g 0.94 g 0.74 g 67.8 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

Length/Turn (mm) 15.5 16.4 16.6 16.8 17.0 17.3 17.5 17.8 18.3 18.9

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

8.06 mm 6.84 mm 9.60 mm 10.0 mm

Surface Area Unwound Core 40% Winding Factor

260 mm2 330 mm2

AL (nH/ T 2)

Kool Mµ AL vs. DC Bias 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0

0

64

20

40

60

80

A·T MAGNETICS

100

120

140


7.87 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

7.87 mm/0.310 in

3.96 mm/0.156 in

3.18 mm/0.125 in

After Finish (limits)

8.51 mm/0.335 in

3.45 mm/0.136 in

3.81 mm/0.150 in

Kool Mµ AL ± 12%

14 26 60 75 90 125 147 160 173 200 300 550

0.125”

55030A2

Part Number

AL ± 8%

Permeability (µ)

Core Data

0.310” 0.156”

6 11 25 31 37 52 62 66 73 83 124 229

MPP 55033 55032 55031 55030 55029 55028 55024 55027 55025 55026

High Flux 58033 58032 58031 58030 58029 58028 -

Physical Characteristics

Kool Mµ® 77031 77835 77834 77030 -

XFlux® -

Kool Mµ® MAX -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107

Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

9.35 mm² 5.99 mm² 17.9 mm 107 mm³ 0.92 g 0.87 g 0.68 g 56.0 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

Length/Turn (mm) 12.7 13.6 13.8 14.0 14.3 14.5 14.7 15.0 15.5 16.1

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

9.07 mm 4.93 mm 11.0 mm 6.73 mm

Surface Area Unwound Core 40% Winding Factor

240 mm2 310 mm2

Kool Mµ AL vs. DC Bias 55 50 45

AL (nH/ T 2)

40 35 30 25 20 15 10 5 0

0

20

40

60

80

100

120

A·T www.mag-inc.com

140

160

65


0.380” 0.188”

Core Data

9.65 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

9.65 mm/0.380 in

4.78 mm/0.188 in

3.18 mm/0.125 in

After Finish (limits)

10.3 mm/0.405 in

4.26 mm/0.168 in

3.81 mm/0.150 in

Kool Mµ AL ± 12%

14 26 60 75 90 125 147 160 173 200 300 550

55280A2

Part Number

AL ± 8%

Permeability (µ)

0.125”

6 11 25 32 38 53 63 68 74 84 128 232

MPP 55283 55282 55281 55280 55279 55278 55274 55277 55275 55276

High Flux 58283 58282 58281 58280 58279 58278 -

Physical Characteristics

Kool Mµ® 77281 77885 77884 77280 -

XFlux® -

Kool Mµ® MAX -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107

Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

14.3 mm² 7.52 mm² 21.8 mm 164 mm³ 1.4 g 1.3 g 1.0 g 107 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

Length/Turn (mm) 13.6 14.7 15.0 15.3 15.6 15.9 16.2 16.5 17.2 17.9

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

11.0 mm 5.17 mm 13.4 mm 7.44 mm

Surface Area Unwound Core 40% Winding Factor

310 mm2 410 mm2

Kool Mµ AL vs. DC Bias 55 50 45

AL (nH/ T 2)

40 35 30 25 20 15 10 5 0

0

66

20

40

60

80

A·T MAGNETICS

100

120

140

160


9.65 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

9.65 mm/0.380 in

4.78 mm/0.188 in

3.96 mm/0.156 in

After Finish (limits)

10.3 mm/0.405 in

4.26 mm/0.168 in

4.60 mm/0.181 in

Kool Mµ AL ± 12%

14 26 60 75 90 125 147 160 173 200 300 550

7 14 32 40 48 66 78 84 92 105 159 290

MPP 55293 55292 55291 55290 55289 55288 55284 55287 55285 55286

High Flux 58293 58292 58291 58290 58289 58288 -

Physical Characteristics Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

0.156”

55290A2

Part Number

AL ± 8%

Permeability (µ)

Core Data

0.380” 0.188”

Kool Mµ® 77291 77295 77294 77290 -

XFlux® -

Kool Mµ® MAX -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107 14.3 mm 9.45 mm2 21.8 mm 206 mm3 1.8 g 1.7 g 1.4 g 135 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

2

Length/Turn (mm) 15.2 16.4 16.6 16.9 17.2 17.4 17.8 18.1 18.7 19.5

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

11.0 mm 5.96 mm 13.4 mm 8.20 mm

Surface Area Unwound Core 40% Winding Factor

350 mm² 450 mm²

Kool Mµ AL vs. DC Bias 70 65 60 55

AL (nH/ T 2)

50 45 40 35 30 25 20 15 10 5 0

0

20

40

60

80

100

120

140

A·T www.mag-inc.com

160

180

67


0.400” 0.200”

Core Data

10.2 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

10.2 mm/0.400 in

5.08 mm/0.200 in

3.96 mm/0.156 in

After Finish (limits)

10.8 mm/0.425 in

4.57 mm/0.180 in

4.60 mm/0.181 in

Kool Mµ AL ± 12%

14 26 60 75 90 125 147 160 173 200 300 550

7 14 32 40 48 66 78 84 92 105 159 290

MPP 55043 55042 55041 55040 55039 55038 55034 55037 55035 55036

High Flux 58043 58042 58041 58040 58039 58038 -

Physical Characteristics Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

55040A2

Part Number

AL ± 8%

Permeability (µ)

0.156”

Kool Mµ® 77041 77845 77844 77040 -

XFlux® -

Kool Mµ® MAX -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107 16.4 mm² 9.57 mm² 23.0 mm 220 mm³ 1.9 g 1.8 g 1.5 g 156 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

Length/Turn (mm) 15.4 16.6 16.9 17.1 17.5 17.8 18.1 18.4 19.2 20.0

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

11.5 mm 5.96 mm 14.1 mm 8.46 mm

Surface Area Unwound Core 40% Winding Factor

370 mm2 480 mm2

Kool Mµ AL vs. DC Bias 70 65 60 55

AL (nH/ T 2)

50 45 40 35 30 25 20 15 10 5 0

0

68

20

40

60

80

100

A·T MAGNETICS

120

140

160

180


11.2 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

11.2 mm/0.440 in

6.35 mm/0.250 in

3.96 mm/0.156 in

After Finish (limits)

11.9 mm/0.465 in

5.84 mm/0.230 in

4.60 mm/0.181 in

Kool Mµ AL ± 12%

14 26 60 75 90 125 147 160 173 200 300

MPP 55133 55132 55131 55130 55129 55128 55124 55127 55125

6 11 26 32 38 53 63 68 74 85 127

High Flux 58133 58132 58131 58130 58129 58128 -

Physical Characteristics Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

55130A2

Part Number

AL ± 8%

Permeability (µ)

0.156”

Kool Mµ® 77131 77335 77334 77130 -

XFlux® -

Kool Mµ® MAX -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107 26.8 mm² 9.06 mm² 26.9 mm 244 mm² 2.1 g 2.0 g 1.5 g 243 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

Length/Turn (mm) 15.2 16.7 17.0 17.4 17.8 18.1 18.6 19.0 19.9 20.9

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

12.9 mm 6.53 mm 15.7 mm 8.97 mm

Surface Area Unwound Core 40% Winding Factor

420 mm2 600 mm2

Kool Mµ AL vs. DC Bias 60 55 50 45

AL (nH/ T 2)

40 35 30 25 20 15 10 5 0

0

20

40

60

80

100

120

140

160

A·T www.mag-inc.com

180

200

220

69

Core Data

0.440” 0.250”


0.500” 0.300”

Core Data

12.7 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

12.7 mm/0.500 in

7.62 mm/0.300 in

4.75 mm/0.187 in

After Finish (limits)

13.5 mm/0.530 in

6.98 mm/0.275 in

5.52 mm/0.217 in

Permeability (µ)

AL ± 8%

14 26 40 60 75 90 125 147 160 173 200 300 550

6.4 12 18 27 34 40 56 67 72 79 90 134 255

0.187”

55050A2

Part Number MPP 55053 55052 55051 55050 55049 55048 55044 55047 55045 55046

High Flux 58053 58052 58051 58050 58049 58048 -

Kool Mµ® 77052 77051 77055 77054 77050 -

XFlux® 78052 78056 78051 78055 78054 -

Kool Mµ® MAX 79052 79051 -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107

Physical Characteristics Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

38.3 mm 10.9 mm2 31.2 mm 340 mm3 3.1 g 2.9 g 2.2 g 2.5 g 2.2 g 417 mm4 2

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

14.6 mm 7.66 mm 18.2 mm 11.5 mm

Length/Turn (mm) 17.5 19.3 19.8 20.1 20.7 21.1 21.7 22.1 23.2 24.5

Surface Area Unwound Core 40% Winding Factor

560 mm2 800 mm2

Kool Mµ AL vs. DC Bias 60 55 50 45

AL (nH/ T 2)

40 35 30 25 20 15 10 5 0

0

70

20

40

60

80

100

120

140

160

A·T MAGNETICS

180

200

220

240

260

280

300


16.6 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

16.6 mm/0.653 in

10.2 mm/0.400 in

6.35 mm/0.250 in

After Finish (limits)

17.3 mm/0.680 in

9.52 mm/0.375 in

7.12 mm/0.280 in

Permeability (µ)

AL ± 8%

14 26 40 60 75 90 125 147 160 173 200 300 550

8 15 24 35 43 52 72 88 92 104 115 173 317

55120A2

Part Number MPP 55123 55122 55121 55120 55119 55118 55114 55117 55115 55116

High Flux 58123 58122 58121 58120 58119 58118 -

Physical Characteristics Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

0.250”

Kool Mµ® 77121 77225 77224 77120 -

XFlux® 78122 78113 78121 78225 78224 -

Kool Mµ® MAX 79122 79121 -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107 71.2 mm 19.2 mm2 41.2 mm 791 mm3 6.8 g 6.3 g 5.0 g 5.6 g 4.9 g 1,370 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

2

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

18.8 mm 10.1 mm 23.7 mm 15.2 mm

Length/Turn (mm) 22.1 24.6 25.2 25.6 26.4 27.0 27.7 28.4 29.8 31.5

Surface Area Unwound Core 40% Winding Factor

920 mm2 1,300 mm2

AL (nH/ T 2)

Kool Mµ AL vs. DC Bias 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0

0

30

60

90

120

150

180

210

240

A·T www.mag-inc.com

270

300

330

71

Core Data

0.653” 0.400”


0.680” 0.380”

Core Data

17.3 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

17.3 mm/0.680 in

9.65 mm/0.380 in

6.35 mm/0.250 in

After Finish (limits)

18.1 mm/0.710 in

9.01 mm/0.355 in

7.12 mm/0.280 in

Permeability (µ)

AL ± 8%

14 26 40 60 75 90 125 147 160 173 200 300

10 19 28 43 53 64 89 105 114 123 142 214

55380A2

Part Number MPP 55383 55382 55381 55380 55379 55378 55374 55377 55375

High Flux 58383 58382 58381 58380 58379 58378 -

Physical Characteristics Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

0.250”

Kool Mµ® 77381 77385 77384 77380 -

XFlux® 78382 78386 78381 78385 78384 -

Kool Mµ® MAX 79382 79381 -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107 63.8 mm 23.2 mm2 41.4 mm 960 mm3 8.2 g 7.7 g 5.9 g 7.2 g 5.9 g 1,480 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

2

Length/Turn (mm) 23.2 25.6 26.2 26.6 27.4 28.0 28.6 29.3 30.8 32.4

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

19.6 mm 10.1 mm 24.9 mm 16.3 mm

Surface Area Unwound Core 40% Winding Factor

990 mm2 1,400 mm2

Kool Mµ AL vs. DC Bias 90 80 70

AL (nH/ T 2)

60 50 40 30 20 10 0

0

72

40

80

120

160

200

A·T MAGNETICS

240

280

320

360


20.3 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

20.3 mm/0.800 in

12.7 mm/0.500 in

6.35mm/0.250 in

After Finish (limits)

21.1 mm/0.830 in

12.0 mm/0.475 in

7.12 mm/0.280 in

Permeability (µ)

AL ± 8%

14 26 40 60 75 90 125 147 160 173 200 300 550

7.8 14 21 32 41 49 68 81 87 96 109 163 320

Core Data

0.800” 0.500”

0.250”

55206A2

Part Number MPP 55209 55208 55848 55206 55205 55204 55200 55203 55201 55202

High Flux 58209 58208 58848 58206 58205 58204 -

Physical Characteristics

Kool Mµ® 77847 77848 77211 77210 77206 -

XFlux® 78208 78847 78848 78211 78210 -

Kool Mµ® MAX 79208 79848 -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107

Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

114 mm 22.1 mm2 50.9 mm 1,120 mm3 9.4 g 8.9 g 7.1 g 7.9 g 7.2 g 2,520 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

2

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

22.9 mm 10.7 mm 29.2 mm 17.4 mm

Length/Turn (mm) 23.3 26.4 27.2 27.8 28.8 29.5 30.5 31.3 33.2 35.4

Surface Area Unwound Core 40% Winding Factor

1,200 mm² 1,900 mm²

Kool Mµ AL vs. DC Bias 70 60

AL (nH/ T 2)

50 40 30 20 10 0

0

50

100

150

200

250

300

350

400

450

500

A·T www.mag-inc.com

550

600

650

73


0.900” 0.550”

Core Data

22.9 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

22.9 mm/0.900 in

14.0 mm/0.550 in

7.62 mm/0.300 in

After Finish (limits)

23.7 mm/0.930 in

13.3 mm/0.525 in

8.39 mm/0.330 in

Permeability (µ)

AL ± 8%

14 26 40 60 75 90 125 147 160 173 200 300 550

9.9 19 29 43 54 65 90 106 115 124 144 216 396

MPP 55313 55312 55059 55310 55309 55308 55304 55307 55305 55306

High Flux 58313 58312 58059 58310 58309 58308 -

139 mm 31.7 mm2 56.7 mm 1,800 mm3 16 g 15 g 12 g 13 g 12 g 4,430 mm4

XFlux® 78312 78316 78059 78315 78314 -

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

Wound Coil Dimensions OD HT Max OD Max HT

Completely Full Window

Kool Mµ® 77312 77316 77059 77315 77314 77310 -

Kool Mµ® MAX 79312 79059 -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107 2

40% Winding Factor

55310A2

Part Number

Physical Characteristics Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

0.300”

25.7 mm 12.4 mm 32.6 mm 19.8 mm

Length/Turn (mm) 27.0 30.5 31.3 32.0 33.1 33.9 34.9 35.9 38.0 40.4

Surface Area Unwound Core 40% Winding Factor

1,600 mm2 2,400 mm2

Kool Mµ AL vs. DC Bias 90 80 70

AL (nH/ T 2)

60 50 40 30 20 10 0

0

74

100

200

300

400

500

A·T MAGNETICS

600

700

800

900

1000


23.6 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

23.6 mm/0.928 in

14.4 mm/0.567 in

8.89 mm/0.350 in

After Finish (limits)

24.4 mm/0.958 in

13.7 mm/0.542 in

9.66 mm/0.380 in

Permeability (µ)

AL ± 8%

14 26 40 60 75 90 125 147 160 173 200 300

12 22 34 51 62 76 105 124 135 146 169 253

55350A2

Part Number MPP 55353 55352 55351 55350 55349 55348 55344 55347 55345

High Flux 58353 58352 58351 58350 58349 58348 -

Physical Characteristics Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

0.350”

Kool Mµ® 77352 77356 77351 77355 77354 77350 -

XFlux® 78352 78356 78351 78355 78354 -

Kool Mµ® MAX 79352 79351 -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107 149 mm 38.8 mm2 58.8 mm 2,280 mm3 20 g 19 g 14 g 16 g 14 g 5,770 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

2

Length/Turn (mm) 29.8 33.4 34.2 35.0 36.1 36.9 38.0 38.9 41.1 43.6

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

26.7 mm 14.2 mm 33.5 mm 21.4 mm

Surface Area Unwound Core 40% Winding Factor

1,800 mm2 2,700 mm2

Kool Mµ AL vs. DC Bias 110 100 90

AL (nH/ T 2)

80 70 60 50 40 30 20 10 0

0

100

200

300

400

500

600

700

800

A·T www.mag-inc.com

900

1000

1100

75

Core Data

0.928” 0.567”


1.060”

Core Data

26.9 mm OD Core Dimensions

0.580”

OD(max) ID(min) HT(max)

Before Finish (nominal)

26.90 mm/1.060 in

14.7 mm/0.580 in

11.2 mm/0.440 in

After Finish (limits)

27.69 mm/1.090 in

14.1 mm/0.555 in

12.0 mm/0.470 in

Permeability (µ)

AL ± 8%

14 26 40 60 75 90 125 147 160 173 200 300 550

18 32 50 75 94 113 157 185 201 217 251 377 740

0.440”

55930A2

Part Number MPP 55933 55932 55894 55930 55929 55928 55924 55927 55925 55926

High Flux 58933 58932 58894 58930 58929 58928 -

Physical Characteristics

Kool Mµ® 77932 77936 77894 77935 77934 77930 -

XFlux® 78932 78936 78894 78935 78934 -

Kool Mµ® MAX 79932 79894 -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107

Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

156 mm 65.4 mm2 63.5 mm 4,150 mm3 36 g 34 g 26 g 29 g 26 g 10,200 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

2

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

30.0 mm 16.5 mm 37.3 mm 24.0 mm

Length/Turn (mm) 37.5 41.1 41.9 42.8 43.8 44.6 45.7 46.6 48.8 51.3

Surface Area Unwound Core 40% Winding Factor

2,400 mm2 3,500 mm2

AL (nH/ T 2)

Kool Mµ AL vs. DC Bias 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

0

76

100

200

300

400

500

600

A·T MAGNETICS

700

800

900

1000

1100

1200


32.8 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

32.8 mm/1.291 in

20.1 mm/0.791 in

10.7 mm/0.420 in

After Finish (limits)

33.66 mm/1.325 in

19.4 mm/0.766 in

11.5 mm/0.450 in

Permeability (µ)

AL ± 8%

14 26 40 60 75 90 125 147 160 173 200 300 550

14 28 41 61 76 91 127 150 163 176 203 305 559

MPP 55551 55550 55071 55548 55547 55546 55542 55545 55543 55544

High Flux 58551 58550 58071 58548 58547 58546 -

297 mm 65.6 mm2 81.4 mm 5,340 mm3 47 g 44 g 34 g 38 g 34 g 19,500 mm4

XFlux® 78550 78555 78071 78553 78552 -

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

Wound Coil Dimensions OD HT Max OD Max HT

Completely Full Window

Kool Mµ® 77550 77555 77071 77553 77552 77548 -

Kool Mµ® MAX 79550 79071 -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107 2

40% Winding Factor

55548A2

Part Number

Physical Characteristics Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

0.420”

36.8 mm 17.8 mm 46.7 mm 28.0 mm

Length/Turn (mm) 37.4 42.4 43.5 44.7 46.1 47.2 48.8 50.1 53.2 56.7

Surface Area Unwound Core 40% Winding Factor

3,100 mm2 4,900 mm2

Kool Mµ AL vs. DC Bias 140 130 120 110

AL (nH/ T 2)

100 90 80 70 60 50 40 30 20 10 0

0

150

300

450

600

750

900

1050

1200

A·T www.mag-inc.com

1350

1500

77

Core Data

1.291” 0.791”


1.350” 0.920”

Core Data

34.3 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

34.30 mm/1.350 in

23.4 mm/0.920 in

8.89 mm/0.350 in

After Finish (limits)

35.18 mm/1.385 in

22.5 mm/0.888 in

9.78 mm/0.385 in

Permeability (µ)

AL ± 8%

14 26 40 60 75 90 125 147 160 173 200 300 550

9 16 25 38 47 57 79 93 101 109 126 190 348

MPP 55588 55587 55586 55585 55584 55583 55579 55582 55580 55581

High Flux 58588 58587 58586 58585 58584 58583 -

399 mm 46.4 mm2 89.5 mm 4,150 mm3 35 g 33 g 25 g 29 g 26 g 18,500 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

Wound Coil Dimensions OD HT Max OD Max HT

Completely Full Window

Kool Mµ® 77587 77591 77586 77590 77589 77585 -

XFlux® 78587 78591 78586 78590 78589 -

Kool Mµ® MAX 79587 79586 -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107 2

40% Winding Factor

55585A2

Part Number

Physical Characteristics Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

0.350”

40.5 mm 16.8 mm 50.1 mm 29.0 mm

Length/Turn (mm) 32.2 38.1 39.6 40.6 42.5 44.0 45.6 47.3 50.8 54.9

Surface Area Unwound Core 40% Winding Factor

2,900 mm2 5,500 mm2

AL (nH/ T 2)

Kool Mµ AL vs. DC Bias 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0

0

78

200

400

600

800

1000

A·T MAGNETICS

1200

1400

1600

1800


35.8 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

35.80 mm/1.410 in

22.4 mm/0.880 in

10.5 mm/0.412 in

After Finish (limits)

36.71 mm/1.445 in

21.5 mm/0.848 in

11.4 mm/0.447 in

Permeability (µ)

AL ± 8%

14 26 40 60 75 90 125 147 160 173 200 300 550

13 24 37 56 70 84 117 138 150 162 187 281 515

MPP 55327 55326 55076 55324 55323 55322 55318 55321 55319 55320

High Flux 58327 58326 58076 58324 58323 58322 -

364 mm 67.8 mm2 89.8 mm 6,090 mm3 52 g 49 g 37 g 43 g 38 g 24,700 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

Wound Coil Dimensions OD HT Max OD Max HT

Completely Full Window

Kool Mµ® 77326 77330 77076 77329 77328 77324 -

XFlux® 78326 78330 78076 78329 78328 -

Kool Mµ® MAX 79326 79076 -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107 2

40% Winding Factor

55324A2

Part Number

Physical Characteristics Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

0.412”

40.2 mm 18.4 mm 51.1 mm 29.6 mm

Length/Turn (mm) 37.9 43.5 44.8 46.0 47.6 48.9 50.6 52.0 55.5 59.3

Surface Area Unwound Core 40% Winding Factor

3,400 mm2 5,700 mm2

Kool Mµ AL vs. DC Bias 120 110 100 90

AL (nH/ T 2)

80 70 60 50 40 30 20 10 0

0

200

400

600

800

1000

1200

1400

A·T www.mag-inc.com

1600

1800

79

Core Data

1.410” 0.880”


1.570” 0.950”

Core Data

39.9 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

39.90 mm/1.570 in

24.1 mm/0.950 in

14.5 mm/0.570 in

After Finish (limits)

40.77 mm/1.605 in

23.3 mm/0.918 in

15.4 mm/0.605 in

Permeability (µ)

AL ± 8%

14 26 40 60 75 90 125 147 160 173 200 300 550

19 35 54 81 101 121 168 198 215 233 269 403 740

MPP 55257 55256 55083 55254 55253 55252 55248 55251 55249 55250

High Flux 58257 58256 58083 58254 58253 58252 -

427 mm 107 mm2 98.4 mm 10,600 mm3 92 g 87 g 65 g 78 g 65 g 45,800 mm4

XFlux® 78256 78260 78083 78259 78258 -

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

Wound Coil Dimensions OD HT Max OD Max HT

Completely Full Window

Kool Mµ® 77256 77260 77083 77259 77258 77254 -

Kool Mµ® MAX 79256 79083 -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107 2

40% Winding Factor

55254A2

Part Number

Physical Characteristics Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

0.570”

44.3 mm 22.4 mm 56.4 mm 35.2 mm

Length/Turn (mm) 48.2 54.3 55.8 57.0 58.8 60.2 62.1 63.7 67.3 71.5

Surface Area Unwound Core 40% Winding Factor

4,800 mm2 7,300 mm2

AL (nH/ T 2)

Kool Mµ AL vs. DC Bias 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

0

80

200

400

600

800

1000

A·T MAGNETICS

1200

1400

1600

1800

2000


46.7 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

46.70 mm/1.840 in

28.70 mm/1.130 in

15.2 mm/0.600 in

After Finish (limits)

47.63 mm/1.875 in

27.88 mm/1.098 in

16.2 mm/0.635 in

Permeability (µ)

AL ± 8%

14 26 40 60 75 90 125 147 160 173 200 300

20 37 57 86 107 128 178 210 228 246 285 427

55089A2

Part Number MPP 55092 55091 55090 55089 55088 55087 55082 55086 55084

High Flux 58092 58091 58090 58089 -

Physical Characteristics Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

0.600”

Kool Mµ® 77091 77095 77090 77094 77093 77089 -

XFlux® 78091 78095 78090 78094 78093 -

Kool Mµ® MAX 79091 79090 -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107 610 mm 134 mm2 116 mm 15,600 mm3 130 g 120 g 96 g 110 g 100 g 81,800 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

2

Length/Turn (mm) 52.0 59.1 61.0 62.2 64.5 66.4 68.2 70.4 74.7 79.5

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

52.0 mm 24.9 mm 66.3 mm 39.8 mm

Surface Area Unwound Core 40% Winding Factor

6,100 mm2 9,800 mm2

AL (nH/ T 2)

Kool Mµ AL vs. DC Bias 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

0

200

400

600

800

1000

1200

1400

A·T www.mag-inc.com

1600

1800

81

Core Data

1.840” 1.130”


1.840” 0.950”

Core Data

46.7 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

46.70 mm/1.840 in

24.1 mm/0.950 in

18.0 mm/0.710 in

After Finish (limits)

47.63 mm/1.875 in

23.3 mm/0.918 in

19.0 mm/0.745 in

Permeability (µ)

AL ± 8%

14 26 40 60 75 90 125 147 160 173 200 300

32 59 90 135 169 202 281 330 360 390 450 674

55438A2

Part Number MPP 55441 55440 55439 55438 55437 55436 55432 55435 55433

High Flux 58441 58440 58439 58438 58437 -

Physical Characteristics Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

0.710”

Kool Mµ® 77440 77431 77439 77443 77442 77438 -

XFlux® 78440 78431 78439 78443 78442 -

Kool Mµ® MAX 79440 79439 -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107 427 mm2 199 mm2 107 mm 21,300 mm3 180 g 170 g 130 g 150 g 130 g 85,900 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

Length/Turn (mm) 62.1 68.2 69.7 70.9 72.7 74.1 76.0 77.6 81.2 85.4

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

51.2 mm 26.0 mm 63.8 mm 38.7 mm

Surface Area Unwound Core 40% Winding Factor

6,900 mm2 9,600 mm2

Kool Mµ AL vs. DC Bias 280 260 240 220

AL (nH/ T 2)

200 180 160 140 120 100 80 60 40 20 0

0

82

200

400

600

800

1000

1200

A·T MAGNETICS

1400

1600

1800

2000

2200


50.5 mm OD Core Dimensions

OD(max) ID(min) HT(max)

0.830”

Before Finish (nominal)

50.55 mm/1.990 in

24.89 mm/0.980 in

21.08 mm/0.830 in

After Finish (limits)

51.31 mm/2.020 in

23.88 mm/0.940 in

21.59 mm/0.850 in

Permeability (µ)

AL ± 8%

14 26 40 60 75 90 125

41 76 117 175 219 263 366

Core Data

1.990” 0.980”

55725A2

Part Number MPP 55728 55727 55726 55725

High Flux 58728 58727 58726 58725

Physical Characteristics

Kool Mµ® 77727 77733 77726 77729 77730 77725

XFlux® 78727 78733 78726 78729 78730 -

Kool Mµ® MAX 79727 79726 -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107

Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

452 mm2 262 mm2 1,135 mm 29,700 mm3 250 g 230 g 185 g 210 g 200 g 118,000 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

Length/Turn (mm) 131 137 138 140 142 143 145 147 150 155

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

64.0 mm 39.6 mm 72.0 mm 42.0 mm

Surface Area Unwound Core 40% Winding Factor

23,310 mm2 33,600 mm2

Kool Mµ AL vs. DC Bias 400 350

AL (nH/ T 2)

300 250 200 150 100 50 0

0

500

1000

1500

2000

A·T www.mag-inc.com

2500

3000

83


2.000” 1.250”

Core Data

50.8 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

50.80 mm/2.000 in

31.80 mm/1.250 in

13.5 mm/0.530 in

After Finish (limits)

51.69 mm/2.035 in

30.93 mm/1.218 in

14.4 mm/0.565 in

Permeability (µ)

AL ± 8%

14 26 40 60 75 90 125 147 160 173 200 300

17 32 49 73 91 109 152 179 195 210 243 365

55715A2

Part Number MPP 55718 55717 55716 55715 55714 55713 55709 55712 55710

High Flux 58718 58717 58716 58715 58714 -

Physical Characteristics Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

0.530”

Kool Mµ® 77717 77721 77716 77720 77719 77715 -

XFlux® 78717 78721 78716 78720 78719 -

Kool Mµ® MAX 79717 79716 -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107 751 mm2 125 mm2 127 mm 15,900 mm3 140 g 130 g 98 g 110 g 98 g 94,000 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

Length/Turn (mm) 49.5 57.4 59.6 61.0 63.5 65.5 67.7 70.1 74.9 80.3

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

56.6 mm 24.2 mm 72.4 mm 40.6 mm

Surface Area Unwound Core 40% Winding Factor

6,400 mm2 11,000 mm2

AL (nH/ T 2)

Kool Mµ AL vs. DC Bias 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

0

84

200

400

600

800

1000

A·T MAGNETICS

1200

1400

1600

1800

2000


57.2 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

57.20 mm/2.250 in

35.60 mm/1.400 in

14.0 mm/0.550 in

After Finish (limits)

58.04 mm/2.285 in

34.74 mm/1.368 in

14.9 mm/0.585 in

Permeability (µ)

AL ± 8%

14 26 40 60 75 90 125 147 160 173 200 300

18 33 50 75 94 112 156 185 200 218 250 374

0.550”

55109A2

Part Number MPP 55112 55111 55110 55109 55108 55107 55103 55106 55104

High Flux 58112 58111 58110 58109 -

Physical Characteristics

Kool Mµ® 77111 77212 77110 77214 77213 77109 -

XFlux® 78111 78212 78110 78214 78213 -

Kool Mµ® MAX 79111 79110 -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107

Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

948 mm 144 mm2 143 mm 20,700 mm3 180 g 170 g 130 g 150 g 130 g 137,000 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

2

Length/Turn (mm) 53.0 61.9 64.3 65.8 68.7 71.0 73.2 76.0 81.3 87.1

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

63.5 mm 25.9 mm 81.3 mm 44.4 mm

Surface Area Unwound Core 40% Winding Factor

7,700 mm2 13,000 mm2

AL (nH/ T 2)

Kool Mµ AL vs. DC Bias 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

A·T www.mag-inc.com

2400

2600

2800

85

Core Data

2.250” 1.400”


2.250” 1.039”

Core Data

57.2 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

57.20 mm/2.250 in

26.40 mm/1.039 in

15.2 mm/0.600 in

After Finish (limits)

58.04 mm/2.285 in

25.57 mm/1.007 in

16.2 mm/0.635 in

Permeability (µ)

AL ± 8%

14 26 40 60 75 90 125 147 160 173 200

32 60 92 138 172 207 287 306 333 360 417

0.600”

55195A2

Part Number MPP 55190 55191 55192 55195 55196 55197 55198 55199

High Flux 58190 58191 58192 58195 -

Physical Characteristics

Kool Mµ® 77191 77189 77192 77193 77194 77195 -

XFlux® 78191 78189 78192 78193 78194 -

Kool Mµ® MAX 79191 79192 -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107

Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

514 mm 229 mm2 125 mm 28,600 mm3 240 g 230 g 180 g 200 g 175 g 118,000 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

2

Length/Turn (mm) 64.6 71.2 72.9 74.1 76.3 77.8 79.8 81.6 85.6 90.1

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

62.0 mm 24.0 mm 75.7 mm 34.0 mm

Surface Area Unwound Core 40% Winding Factor

8,500 mm2 12,000 mm2

AL (nH/ T 2)

Kool Mµ AL vs. DC Bias 320 300 280 260 240 220 200 180 160 140 120 100 80 60 40 20 0

0

86

200

400

600

800

1000

1200

A·T MAGNETICS

1400

1600

1800

2000

2200

2400


2.440”

Core Dimensions

1.283”

OD(max) ID(min) HT(max)

Before Finish (nominal)

62.00 mm/2.440 in

32.60 mm/1.283 in

25.0 mm/0.984 in

After Finish (limits)

62.91 mm/2.477 in

31.69 mm/1.248 in

25.91 mm/1.020 in

Permeability (µ)

AL ± 8%

14 26 40 60 75 90 125

44 82 126 189 237 284 394

55620A2

Part Number MPP 55614 55615 55617 55620

High Flux 58614 58615 58616 58617 58620

Physical Characteristics Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

0.984”

Kool Mµ® 77614 77615 77616 77617 77618 77619 77620

XFlux® 78615 78616 78617 78618 78619 -

Kool Mµ® MAX 79615 79617 -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107 789 mm 360 mm2 144 mm 51,800 mm3 460 g 440 g 340 g 380 g 350 g 284,000 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

2

Length/Turn (mm) 83.0 91.3 93.4 94.9 97.5 99.5 102 104 109 115

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

75.3 mm 39.7 mm 81.4 mm 47.4 mm

Surface Area Unwound Core 40% Winding Factor

12,000 mm2 21,000 mm2

Kool Mµ AL vs. DC Bias 400 360 320

AL (nH/ T 2)

280 240 200 160 120 80 40 0

0

500

1000

1500

2000

2500

3000

A·T www.mag-inc.com

3500

4000

87

Core Data

62.0 mm OD


2.677” 1.417”

Core Data

68.0 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

68.00 mm/2.677 in

35.99 mm/1.417 in

19.99 mm/0.787 in

After Finish (limits)

69.42 mm/2.733 in

34.67 mm/1.365 in

21.41 mm/0.843 in

Permeability (µ)

AL ± 8%

14 26 40 60 75 90 125

35 65 100 143 187 225 312

55070A2

Part Number MPP 55075 55074 55072 55070

High Flux 58075 58074 58073 58072 58070

Physical Characteristics Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

0.787”

Kool Mµ® 77075 77074 77073 77072 77069 77068 77070

XFlux® 78074 78073 78072 78069 78068 -

Kool Mµ® MAX 79074 79072 -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107 945 mm 314 mm2 158 mm 49,700 mm3 440 g 420 g 320 g 360 g 360 g 297,000 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

2

Length/Turn (mm) 77.7 86.6 89.0 90.5 93.4 95.7 97.9 100.1 106.0 112.0

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

79.3 mm 37.2 mm 89.2 mm 45.4 mm

Surface Area Unwound Core 40% Winding Factor

12,700 mm2 18,400 mm2

Kool Mµ AL vs. DC Bias 350 300

AL (nH/ T 2)

250 200 150 100 50 0

0

88

500

1000

1500

2000

2500

A·T MAGNETICS

3000

3500

4000

4500


74.1 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

74.10 mm/2.917 in

45.30 mm/1.783 in

35.00 mm/1.378 in

After Finish (limits)

75.01 mm/2.953 in

44.39 mm/1.748 in

35.92 mm/1.414 in

Permeability (µ)

AL ± 8%

14 26 40 60 75 90 125

48 88 136 204 255 306 425

1.378”

55740A2

Part Number MPP 55734 55735 55737 55740

High Flux 58734 58735 58736 58737 -

Physical Characteristics

Kool Mµ® 77734 77735 77736 77737 77738 77739 77740

XFlux® 78735 78736 78737 78738 78739 -

Kool Mµ® MAX 79735 79737 -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107

Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

1,550 mm 497 mm2 184 mm 91,400 mm3 790 g 750 g 570 g 660 g 580 g 769,000 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

2

Length/Turn (mm) 102 114 117 119 122 125 129 132 139 147

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

91.0 mm 55.2 mm 102 mm 65.7 mm

Surface Area Unwound Core 40% Winding Factor

19,000 mm2 33,000 mm2

Kool Mµ AL vs. DC Bias 450 400 350

AL (nH/ T 2)

300 250 200 150 100 50 0

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

A·T www.mag-inc.com

3000

3250

3500

89

Core Data

2.917” 1.783”


3.063” 1.938”

Core Data

77.8 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

77.80 mm/3.063 in

49.20 mm/1.938 in

12.7 mm/0.500 in

After Finish (limits)

78.95 mm/3.108 in

48.20 mm/1.898 in

13.9 mm/0.545 in

Permeability (µ)

AL ± 8%

14 26 40 60 75 90 125

16 30 45 68 85 102 142

55866A2

Part Number MPP 55869 55868 55867 55866

High Flux 58869 58868 58867 58866

Physical Characteristics Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

0.500”

Kool Mµ® 77869 77868 77872 77867 77866

XFlux® 78868 78872 78867 78871 78870 -

Kool Mµ® MAX 79868 79867 -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107 1,820 mm 176 mm2 196 mm 34,500 mm3 290 g 270 g 210 g 240 g 210 g 321,000 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

2

Length/Turn (mm) 58.4 70.9 74.1 76.3 80.4 83.5 86.7 90.4 98.1 107

Wound Coil Dimensions 40% Winding Factor Completely Full Window

OD HT Max OD Max HT

86.6 mm 29.1 mm 112 mm 54.3 mm

Surface Area Unwound Core 40% Winding Factor

11,000 mm2 23,000 mm2

Kool Mµ AL vs. DC Bias 140 120

AL (nH/ T 2)

100 80 60 40 20 0

0

90

250

500

750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 4250 4500 4750 5000 5250 5500

A·T MAGNETICS


77.8 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

77.80 mm/3.063 in

49.20 mm/1.938 in

15.9 mm/0.625 in

After Finish (limits)

78.95 mm/3.108 in

48.20 mm/1.898 in

17.1 mm/0.670 in

Permeability (µ)

AL ± 8%

14 26 40 60 75 90 125

20 37 57 85 106 128 177

55906A2

Part Number MPP 55909 55908 55907 55906

High Flux 58909 58908 58907 58906

Physical Characteristics Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

0.625”

Kool Mµ® 77909 77908 77912 77907 77906

XFlux® 78908 78912 78907 78911 78910 -

Kool Mµ® MAX 79908 79907 -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107 1,820 mm 221 mm2 196 mm 43,400 mm3 380 g 360 g 280 g 320 g 280 g 403,000 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

2

Length/Turn (mm) 64.7 77.2 80.5 82.7 86.8 89.9 93.1 96.8 104 113

Wound Coil Dimensions 40% Winding Factor Completely Full Window

OD HT Max OD Max HT

86.6 mm 32.3 mm 113 mm 57.7 mm

Surface Area Unwound Core 40% Winding Factor

13,000 mm2 24,000 mm2

AL (nH/ T 2)

Kool Mµ AL vs. DC Bias 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

0

250

500

750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 4250 4500 4750 5000 5250 5500

A·T www.mag-inc.com

91

Core Data

3.063” 1.938”


3.063” 1.549”

Core Data

77.8 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

77.80 mm/3.063 in

39.34 mm/1.549 in

25.85 mm/1.018 in

After Finish (limits)

78.95 mm/3.108 in

38.34 mm/1.509 in

26.85 mm/1.057 in

Permeability (µ)

AL ± 8%

14 26 40 60 125

47 88 135 205 425

55778A2

Part Number MPP 55774 55775 55777 55778

High Flux 58774 58775 58776 58777 58778

Physical Characteristics Window Area Cross Section Path Length Volume Weight - MPP Weight - High Flux Weight - Kool Mµ Weight - XFlux Weight - Kool Mµ MAX Area Product

1.018”

Kool Mµ® 77774 77775 77776 77777 77778

XFlux® 78775 78776 78777 -

Kool Mµ® MAX -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107 1,150 mm 478 mm2 170 mm 81,500 mm3 700 g 640 g 550 g 550 g 550,000 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

2

Length/Turn (mm) 94.3 104 107 109 112 114 117 120 126 132

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

91.0 mm 45.4 mm 117 mm 69.3 mm

Surface Area Unwound Core 40% Winding Factor

19,000 mm2 32,000 mm2

Kool Mµ AL vs. DC Bias 450 400 350

AL (nH/ T 2)

300 250 200 150 100 50 0

0

92

500

1000

1500

2000

2500

A·T MAGNETICS

3000

3500

4000

4500

4000


101.6 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

101.6 mm/4.000 in

57.20 mm/2.252 in

16.5 mm/0.650 in

After Finish (limits)

103.0 mm/4.055 in

55.75 mm/2.195 in

17.9 mm/0.705 in

Permeability (µ)

AL ± 8%

14 26 40 60 75 90 125

26 48 74 111 138 167 232

Core Data

4.000” 2.252”

0.650”

55102A2

Part Number MPP 55101 55102 55099 55098

High Flux 58101 58102 58100 58099 -

Physical Characteristics

Kool Mµ® 77101 77102 77100 77099 77098

XFlux® 78102 78100 78099 78159 78096 -

Kool Mµ® MAX 79102 79099 -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107

Window Area Cross Section Path Length Volume Weight - MPP* Weight - High Flux* Weight - Kool Mµ* Weight - XFlux Weight - Kool Mµ MAX Area Product

2,470 mm 358 mm2 243 mm 86,900 mm3 650 g 610 g 470 g 620 g 490 g 885,000 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

2

*26µ, see p.11

Length/Turn (mm) 82.2 96.8 100 103 108 111 116 120 128 139

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

112 mm 34.9 mm 136 mm 55.1 mm

Surface Area Unwound Core 40% Winding Factor

20,000 mm2 36,000 mm2

Kool Mµ AL vs. DC Bias 250

AL (nH/ T 2)

200

150

100

50

0

0

1000

2000

3000

4000

5000

A·T www.mag-inc.com

6000

7000

93


5.219” 3.094”

Core Data

132.6 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

132.6 mm/5.219 in

78.60 mm/3.094 in

25.4 mm/1.000 in

After Finish (limits)

134.0 mm/5.274 in

77.19 mm/3.039 in

26.8 mm/1.055 in

Permeability (µ)

AL ± 8%

14 19 26 40 60 125 147

37 50 68 105 158 329 380

55337A2

Part Number MPP 55336 55337 55339 55340 55341

High Flux 58336 58337 58338 58339 -

Physical Characteristics Window Area Cross Section Path Length Volume Weight - MPP* Weight - High Flux* Weight - Kool Mµ* Weight - XFlux Weight - Kool Mµ MAX Area Product

1.000”

Kool Mµ® 77336 77337 77338 77339 -

XFlux® 78342 78337 78338 -

Kool Mµ® MAX 79337 -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107 4,710 mm 678 mm2 324 mm 220,000 mm3 1,700 g 1,500 g 1,200 g 1,400 g 3,190,000 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

2

*26µ, see p. 11

Length/Turn (mm) 110 130 135 139 145 150 156 162 173 187

Wound Coil Dimensions OD HT Max OD Max HT

40% Winding Factor Completely Full Window

146 mm 50.7 mm 179 mm 78.8 mm

Surface Area Unwound Core 40% Winding Factor

36,000 mm2 65,000 mm2

Kool Mµ AL vs. DC Bias 160 140

AL (nH/ T 2)

120 100 80 60 40 20 0

0

94

1000

2000

3000

4000

5000

A·T MAGNETICS

6000

7000

8000

9000


165.1 mm OD Core Dimensions

OD(max) ID(min) HT(max)

Before Finish (nominal)

165.1 mm/6.500 in

102.4 mm/4.032 in

31.75 mm/1.250 in

After Finish (limits)

166.5 mm/6.555 in

101.0 mm/3.977 in

33.15 mm/1.305 in

Permeability (µ)

AL ± 8%

14 26 40 60

42 78 120 180

55165A2

Part Number MPP 55164 55165 55167

High Flux 58164 58165 -

Physical Characteristics Window Area Cross Section Path Length Volume Weight - MPP* Weight - High Flux* Weight - Kool Mµ* Weight - XFlux Weight - Kool Mµ MAX Area Product

1.250”

Kool Mµ® 77164 77165 -

XFlux® -

Kool Mµ® MAX -

Winding Turn Length * Reference General Winding Data pgs. 103 - 107 8,030 mm2 987 mm2 412 mm 407,000 mm3 3,000 g 2,800 g 2,200 g 7,920,000 mm4

Winding Factor 0% 20% 25% 30% 35% 40% 45% 50% 60% 70%

*26µ, see p.11

Length/Turn (mm) 132 158 164 170 178 184 192 199 215 233

Wound Coil Dimensions 40% Winding Factor Completely Full Window

OD HT Max OD Max HT

182 mm 63.2 mm 228 mm 103 mm

Surface Area Unwound Core 40% Winding Factor

55,000 mm2 102,000 mm2

Kool Mµ AL vs. DC Bias 80 70

AL (nH/ T 2)

60 50 40 30 20 10 0

0

1000

2000

3000

4000

5000

6000

7000

8000

A·T www.mag-inc.com

9000

10000

95

Core Data

6.500” 4.032”


Material Data

B

E Core Data

A

C

L E

F M D

PART NO

A

B

C

D(min)

E(min)

F

L(nom)

M(min)

00_1808E*** (EI-187)

mm in

19.3±0.305 0.760±0.012

8.10±0.178 0.319±0.007

4.78±0.152 0.188±0.006

5.53 0.218

13.9 0.548

4.78±0.127 0.188±0.005

2.39 0.094

4.64 0.183

00_2510E*** (E-2425)

mm in

25.4±0.381 1.000±0.015

9.53±0.178 0.375±0.007

6.35±0.102 0.250±0.004

6.22 0.245

18.7 0.740

6.35±0.127 0.250±0.005

3.18 0.125

6.24 0.246

00_3007E*** (DIN 30/7)

mm in

30.10±0.457 1.185±0.018

15.0±0.229 0.591±0.009

7.06±0.152 0.278±0.006

9.55 0.376

19.8 0.782

6.96±0.203 0.274±0.008

5.11 0.201

6.32 0.249

00_3515E*** (EI-375)

mm in

34.54±0.508 1.360±0.020

14.2±0.229 0.557±0.009

9.35±0.178 0.368±0.007

9.60 0.378

25.2 0.995

9.32±0.203 0.367±0.008

4.45 0.175

7.87 0.310

00_4017E*** (EE 42/11)

mm in

42.85±0.635 1.687±0.025

21.1±0.305 0.830±0.012

10.8±0.254 0.424±0.010

14.9 0.587

30.30 1.195

11.9±0.254 0.468±0.010

5.94 0.234

9.27 0.365

00_4020E*** (DIN 42/15)

mm in

42.85±0.635 1.687±0.025

21.1±0.330 0.830±0.013

15.4±0.254 0.608±0.010

14.9 0.587

30.35 1.195

11.9±0.254 0.468±0.010

5.94 0.234

9.27 0.365

00_4022E*** (DIN 42/20)

mm in

42.85±0.635 1.687±0.025

21.1±0.330 0.830±0.013

20.0±0.254 0.788±0.010

14.9 0.587

30.35 1.195

11.9±0.254 0.468±0.010

5.94 0.234

9.27 0.365

00_4317E*** (EI-21)

mm in

40.87±0.610 1.609±0.024

16.5±0.279 0.650±0.011

12.5±0.178 0.493±0.007

10.3 0.409

28.32 1.115

12.5±0.300 0.493±0.008

6.05 0.238

7.87 0.310

00_5528E*** (DIN 55/21)

mm in

54.86±0.813 2.160±0.032

27.56±0.406 1.085±0.016

20.6±0.381 0.812±0.015

18.5 0.729

37.49 1.476

16.8±0.381 0.660±0.015

8.38 0.330

10.2 0.405

00_5530E*** (DIN 55/25)

mm in

54.86±0.813 2.160±0.032

27.56±0.406 1.085±0.016

24.6±0.381 0.969±0.015

18.5 0.729

37.49 1.476

16.8±0.381 0.660±0.015

8.38 0.330

10.2 0.405

00_6527E*** (Metric E65)

mm in

65.15±1.27 2.565±0.050

32.51±0.381 1.280±0.015

27.00±0.406 1.063±0.016

22.1 0.874

44.19 1.740

19.7±0.356 0.774±0.014

10.0 0.394

12.0 0.476

00_7228E*** (F11)

mm in

72.39±1.09 2.85±0.043

27.94±0.508 1.100±0.020

19.1±0.381 0.750±0.015

17.7 0.699

52.62 2.072

19.1±0.381 0.750±0.015

9.53 0.375

16.8 0.665

00_8020E*** (Metric E80)

mm in

80.01±1.19 3.150±0.047

38.10±0.635 1.500±0.025

19.8±0.381 0.780±0.015

28.01 1.103

59.28 2.334

19.8±0.381 0.780±0.015

9.91 0.390

19.8 0.780

00_8024E***

mm in

80.01±1.19 3.150±0.047

24.05±0.635 0.950±0.025

29.72±0.381 1.170±0.015

14.02 0.552

59.28 2.334

19.8±0.381 0.780±0.015

9.91 0.390

19.8 0.780

00_8044E***

mm in

80.01±1.19 3.150±0.047

44.58±0.635 1.755±0.025

19.8±0.381 0.780±0.015

34.36 1.353

59.28 2.334

19.8±0.381 0.780±0.015

9.91 0.390

19.8 0.780

00_114LE***

mm in

114.3±0.762 4.500±0.030

46.18±0.381 1.818±0.015

34.93±0.381 1.375±0.015

28.60 1.126

79.50 3.13

35.10±0.381 1.382±0.015

17.2 0.676

22.1 0.874

00_130LE***

mm in

130.3±3.81 5.130±0.150

32.51±0.305 1.280±0.012

53.85±1.27 2.120±0.050

22.1 0.874

108.4 4.270

20.0±0.762 0.788±0.030

10.0 0.394

44.22 1.741

00_160LE***

mm in

160.0±2.54 6.300±0.100

38.10±0.635 1.500±0.025

39.62±1.27 1.560±0.050

28.14 1.108

138.2 5.440

19.8±0.762 0.780±0.030

9.91 0.390

59.28 2.334

For material code see p. 12. Add permeability code*** to part number, e.g. for 26µ Kool Mµ the complete part number is 00K4022E026.

96

MAGNETICS


E Core Data

A

C

L

Material Core Data Data

B

E

F M D

AL nH/T²± 8%

PART NO

26µ 40µ 60µ 90µ

Path Length Ie (mm)

Cross Section Ae (mm2)

Volume Ve (mm³)

00_1808E***

26

35

48

69

40.1

22.8

914

00_2510E***

39

52

70

100

48.5

38.5

1,870

00_3007E***

33

46

71

92

65.6

60.1

3,940

00_3515E***

56

75

102

146

69.4

84.0

5,830

00_4017E***

56

76

105

151

98.4

128

12,600

00_4020E***

80

108

150

217

98.4

183

18,000

00_4022E***

104

140

194

281

98.4

237

23,300

00_4317E***

88

119

163

234

77.5

152

11,800

00_5528E***

116

157

219

322

123

350

43,100

00_5530E***

138

187

261

338

123

417

51,300

00_6527E***

162

230

300

-

147

540

79,400

00_7228E***

130

173

235

-

137

368

50,400

00_8020E***

103

145

190

-

185

389

72,000

00_8024E***

200

275

370

-

131.4

600

78,840

00_8044E***

91

113

170

-

208

389

80,900

00_114LE***

235

335

445

-

215

1,220

262,000

00_130LE***

254

-

-

-

219

1,080

237,000

00_160LE***

180

-

-

-

273

778

212,000

For material code see p. 12. Add permeability code*** to part number, e.g. for 26µ Kool Mµ the complete part number is 00K4022E026.

Blocks PART NO

A

B

C

Volume Ve(mm3)

00_4741B***

mm in

47.50±0.61 1.870±0.024

41.00±0.51 1.614±0.020

27.51±0.41 1.083±0.016

53,600

00_5030B***

mm in

50.50±0.51 1.988±0.02

30.30±0.30 1.193±0.12

15.0±0.26 0.591±0.01

23,000

00_5528B***

mm in

54.86±0.64 2.160±0.025

27.56±0.41 1.085±0.016

20.6±0.39 0.812±0.015

31,200

00_6030B***

mm in

60.00±0.51 2.362±0.02

30.00±0.25 1.181±0.01

15.0±0.25 0.591±0.01

27,000

00_7020B***

mm in

70.5±0.51 2.776±0.020

20.3±0.25 0.799±0.010

20.0±0.25 0.787±0.010

28,600

00_7030B***

mm in

70.5±0.5 3.169±0.02

30.3±0.25 1.193±0.02

20.0±0.2 0.787±0.008

42,800

00_8030B***

mm in

80.49±0.51 3.169±0.020

30.30±0.51 1.193±0.020

20.00±0.21 0.787±0.008

48,800

00_9541B***

mm in

95.00±0.61 3.740±0.024

41.00±0.51 1.614±0.020

27.51±0.41 1.083±0.016

107,200

For material code see p. 12. Add permeability code*** to part number, e.g. for 26µ Kool Mµ the complete part number is 00K6030B026. Standard blocks are available in 26µ. For other permeabilities, contact Magnetics. Note: Inductance is tested in standard picture frame arrangements.

www.mag-inc.com

97


C

Core Data

B L

U Core Data

E

A D

PART NO

A

B

C

D(min)

E(min)

L(nom)

00_3112U***

mm in

31.24±0.51 1.230±0.020

11.2±0.26 0.440±0.010

12.1±0.39 0.475±0.015

2.54 0.100

14.2 0.560

8.26 0.325

00_4110U***

mm in

40.64±0.51 1.600±0.020

11.2±0.51 0.440±0.020

9.53±0.39 0.375±0.015

2.54 0.100

23.6 0.930

8.38 0.330

00_4111U***

mm in

40.64±0.51 1.600±0.020

11.2±0.26 0.440±0.010

12.1±0.39 0.475±0.015

2.54 0.100

23.6 0.930

8.38 0.330

00_4119U***

mm in

40.64±0.51 1.600±0.020

11.2±0.26 0.440±0.010

19.1±0.39 0.750±0.015

2.54 0.100

23.6 0.930

8.38 0.330

00_5527U***

mm in

54.86±0.64 2.160±0.025

27.56±0.51 1.085±0.020

16.3±0.39 0.643±0.015

16.7 0.660

33.78 1.330

10.5 0.415

00_5529U***

mm in

54.86±0.64 2.160±0.025

27.56±0.51 1.085±0.020

23.2±0.39 0.912±0.015

16.5 0.650

33.02 1.300

10.5 0.415

00_6527U***

mm in

65.15±1.4 2.565±0.053

32.51±0.31 1.280±0.012

27.00±0.41 1.063±0.016

22.1 0.874

44.22 1.741

10.0 0.394

00_6533U***

mm in

65.15±1.4 2.565±0.053

32.51±0.31 1.280±0.012

20.0±0.41 0.788±0.016

19.6 0.772

39.24 1.545

12.5 0.493

00_7236U***

mm in

72.39±0.89 2.850±0.035

35.56±0.64 1.400±0.025

20.9±0.39 0.821±0.015

21.3 0.841

43.68 1.720

13.9 0.547

00_8020U***

mm in

80.01±0.89 3.150±0.035

38.10±0.64 1.500±0.025

19.8±0.39 0.780±0.015

28.14 1.108

59.28 2.334

9.91 0.390

00_8038U***

mm in

80.01±0.89 3.150±0.035

38.10±0.64 1.500±0.025

23.0±0.39 0.907±0.015

22.4 0.883

49.27 1.940

15.4 0.605

AL nH/T2± 8% 26µ

40µ

60µ

90µ

Path Length Ie (mm)

Cross Section Ae (mm2)

Volume Ve (mm3)

00_3112U***

-

92

111

179

65.6

101

6,630

00_4110U***

-

56

78

109

85.2

80

6,820

00_4111U***

-

72

95

138

85.2

101

8,600

00_4119U***

-

110

151

218

85.2

159

13,600

00_5527U***

67

-

-

-

168

172

28,900

00_5529U***

85

-

-

-

168

244

41,000

00_6527U***

89

-

-

-

219

270

59,100

00_6533U***

82

-

-

-

199

250

49,800

00_7236U***

87

-

-

-

219

290

63,500

00_8020U***

64

-

-

-

273

195

53,200

00_8038U***

97

-

-

-

237

354

83,900

PART NO

For material code see p. 12. Add permeability code*** to part number, e.g., for 26µ Kool Mµ, the complete part number is 00K6527U026.

98

MAGNETICS


Core Data

MPP THINZ® Core Data

BA C

THINZ are available in four permeabilities, 125µ, 160µ, 200µ, and 250µ, but the product is designed to be easily customized to any permeability up to 250. The most critical parameter of a power inductor material is its ability to provide inductance, or permeability, under DC bias. The distributed air gap of MPP results in a soft inductance versus DC bias curve.

This swinging inductance is often desirable since it maximizes power handling for a given package size; improves efficiency; accommodates a wide operating range; and provides automatic fault or overload protection.

MPP THINZ DC Bias

Special core heights are available, consult Magnetics.

PART NO

A nom

B nom

C nom

A max

B min

C max

00M0301T***

mm in

3.05 0.120

1.78 0.070

0.81 0.032

3.18 0.125

1.70 0.067

0.89 0.035

00M0302T***

mm in

3.55 0.140

1.78 0.070

0.81 0.032

3.69 0.145

1.70 0.067

0.89 0.035

00M0402T***

mm in

3.94 0.155

2.23 0.088

0.81 0.032

4.07 0.160

2.13 0.084

0.89 0.035

00M0502T***

mm in

4.60 0.181

2.36 0.093

0.81 0.032

4.73 0.186

2.26 0.089

0.89 0.035

00M0603T***

mm in

6.35 0.250

2.79 0.110

0.81 0.032

6.48 0.255

2.67 0.105

0.89 0.035

00M0804T***

mm in

7.87 0.310

3.96 0.156

0.81 0.032

8.03 0.316

3.83 0.151

0.89 0.035

AL nH/T2± 15% 125µ

160µ

200µ

250µ

Path Length Ie (mm)

Cross Section Ae (mm²)

Volume Ve (mm³)

00M0301T***

8.4

10.8

13.5

16.9

7.04

0.40

2.8

00M0302T***

11.6

14.8

18.7

23.4

8.06

0.60

4.8

00M0402T***

9.6

12.3

15.4

19.3

9.44

0.58

5.5

00M0502T***

11.7

15.0

18.7

23.4

10.6

0.79

8.3

00M0603T***

14.9

19.1

24.0

30.0

13.6

1.30

17.7

00M0804T***

12.6

16.2

20.2

25.3

17.9

1.45

25.9

PART NO

Add permeability code*** to part number, e.g., for 125µ the complete part number is 00M0502T125

www.mag-inc.com

99


Hardware

E Core Hardware assembled by bonding the mating surfaces or taping around the perimeter of the core set. Caution is advised if metal clamps are considered, since eddy current heating can occur in conductive material that is very close to the surface of low permeability powder core material.

Magnetics has bobbins available for use with Kool MÂľ cores. Refer to Magnetics Ferrite Cores catalog for a complete listing of available bobbins. The cores are standard industry sizes that will fit standard bobbins available from many sources. Core pieces can be

Core Number

Bobbin Number

Number of Pins

Winding Area

Length Per Turn

2

(mm )

(mm)

1808E

PCB1808B1

8

31.6

40.5

(EI-187)

00B180801

-

34.2

39.4

PCB2510V1

10

40.6

54.2

2510E

PCB2510V2

10

20.3

54.2

00B251001

-

51

45.4

PCB3007T1

10

83.3

55

PCB3515M1

12

94.8

73.4

PCB3515M2

12

47.4

73.4

00B351501

-

113

72

4020E

PCB4020N1

12

194

91.4

(DIN 42/15)

00B402021

-

207

97.5

PCB4022N1

12

194

102.1

(E-2425) 3007E (DIN 30/7) 3515E (EI-375)

4022E (DIN 42/20) 4317E

PCB4317M1

12

101

85.6

(EI-21)

00B4317B1

-

122

86

5528E

PCB5528WC

14

302

107.3

(DIN55/25)

00B5528B1

-

302

107.3

5530E

PCB5530FA

14

289

133.8

6527E

00B6527B1

-

490

166

(Metric E65)

00B652701

-

440

168

00B722801

-

408

149

00B8020B1

-

806

165

OOB114LB1

-

945

230

7228E (F11) 8020E (Metric E80) 114LE

100

MAGNETICS


Hardware

Toroid Hardware TVB22066A For use with toroids from 12.7 mm through 22.2 mm

Material

6 Pins

A Nom.

B Nom.

C Nom.

D Nom.

E Ref.

F Typ.

G Typ.

H Ref.

J Ref.

Phenolic rated UL94V0

CP wire 0.99 mm

19.0 mm

5.44 mm

10.8 mm

3.51 mm

4.80 mm

6.00 mm

7.49 mm

2.01 mm

5.49 mm

TVB2908TA For use with toroids from 20.5 mm through 31.8 mm

Material

10 Pins

A Nom.

B Nom.

C Nom.

D Nom.

E Ref.

F Typ.

G Typ.

H Ref.

J Ref.

Phenolic rated UL94V0

CP wire 0.99 mm

27.0 mm

7.49 mm

19.0 mm

5.00 mm

11.0 mm

15.0 mm

5.00 mm

3.51 mm

8.13 mm

TVB3610FA For use with toroids from 28.6 mm through 38.1 mm

Material 14 Pins Phenolic rated UL94V0

CP wire 0.99 mm

A Nom.

B Nom.

C Nom.

D Nom.

E Ref.

F Typ.

G1 Typ.

G2 Typ.

H Ref.

J Ref.

35.8 mm

7.59 mm

20.8 mm

5.00 mm

12.3 mm

16.0 mm

5.00 mm

6.30 mm

4.5 mm

9.75 mm

TVH22064A For use with toroids from 12.7 mm through 25.4 mm

Material

4 Pins

A Nom.

B Nom.

C Nom.

E Ref.

F Typ.

G Typ.

H Ref.

J Ref.

Nylon 6/6 rated UL94V0

CP wire 1.02 mm

19.1 mm

3.94 mm

10.8 mm

9.78 mm

6.35 mm

15.2 mm

3.30 mm

3.81 mm

www.mag-inc.com

101


Hardware

Toroid Hardware TV-H4916-4A

TVH25074A

Usable with toroids from1.500" (38.1m m) through 2.500" (63.5mm).

C E

A

B J F

G

Material

4 Pins

Nylon 6/6 rated UL94V0

CP wire 1.21 mm

A Nom.

Material

4 Pins

Nylon, rated UL94V0

0.050" CP wire

25.4 mm

B B Nom. Nom. A

Nom.

1.400" 35.6mm

0.200" 5.1mm

5.08 mm

TV-H4916-4A

TVH38134A

C

E C Ref. Nom.

Nom.

0.900" 22.9mm

0.810" 20.6mm

F

Typ. 0.700" 17.8mm

15.2 mm

G ETyp. Ref.

F Typ.

G Typ.

H Ref.

J Ref.

10.2 mm

20.3 mm

2.29 mm

5.08 mm

F Typ.

G Typ.

H Ref.

J Ref.

15.2 mm

22.9 mm

2.29 mm

5.08 mm

0.200" 5.1mm

F Typ.

G Typ.

H Ref.

J Ref.

17.8 mm

30.5 mm

2.29 mm

5.08 mm

F Typ.

G Typ.

H Ref.

J Ref.

22.9 mm

38.1 mm

2.29 mm

5.08 mm

H

J

Typ.

1.200" 30.5mm

Typ.

0.090" 2.3mm

13.0 mm

0.200" 5.1mm

Usable with toroids from1.500" (38.1m m) through 2.500" (63.5mm).

C E

A

Top View

H

For use with toroids from 25.4 mm (1.000”) through 40.6 mm

B J F

G

Material

4 Pins

Nylon 6/6 rated UL94V0

CP wire 1.27 mm

A Nom.

Material

4 Pins

Nylon, rated UL94V0

0.050" CP wire

27.9 mm

TV-H4916-4A

B B Nom. Nom. A

Nom.

1.400" 35.6mm

0.200" 5.1mm

5.08 mm

C

C E Ref. Nom.

Nom.

0.900" 22.9mm

0.810" 20.6mm

F

Typ. 0.700" 17.8mm

20.3 mm

EG Typ. Ref.

H

J

Typ.

1.200" 30.5mm

Typ.

0.090" 2.3mm

18.0 mm

0.200" 5.1mm

Usable with toroids from1.500" (38.1m m) through 2.500" (63.5mm).

C E

A

TVH49164A

Top View

H

For use with toroids from 38.1 mm through 63.5 mm

B J F

G

Material

4 Pins

Nylon 6/6 rated UL94V0

CP wire 1.27 mm

A Nom.

Material

4 Pins

Nylon, rated UL94V0

0.050" CP wire

35.6 mm

TV-H4916-4A

TVH61134A

B Nom. B Nom. A

Nom.

1.400" 35.6mm

0.200" 5.1mm

5.08 mm

C Ref. E Nom.

C

Nom.

0.900" 22.9mm

0.810" 20.6mm

F

Typ. 0.700" 17.8mm

22.9 mm

ETyp. G Ref.

1.200" 30.5mm

H

J

Typ.

Typ.

0.090" 2.3mm

20.6 mm

Usable with toroids from1.500" (38.1m m) through 2.500" (63.5mm).

C E

A

Top View

H

For use with toroids from 44.4 mm through 71.1 mm

B J F

G

Material

4 Pins

Nylon 6/6 rated UL94V0

CP wire 1.27 mm

102

Top View

H

For use with toroids from 20.5 mm (0.810”) through 30.5 mm

A Nom.

Material

4 Pins

Nylon, rated UL94V0

0.050" CP wire

43.2 mm

MAGNETICS

B B Nom. Nom. A

Nom.

1.400" 35.6mm

0.200" 5.1mm

5.08 mm

C

C E Ref. Nom.

Nom.

0.900" 22.9mm

0.810" 20.6mm

27.9 mm

F

Typ. 0.700" 17.8mm

EG Typ. Ref.

1.200" 30.5mm

25.7 mm

H

Typ. 0.090" 2.3mm

J

Typ.

0.200" 5.1mm


Winding Tables

Winding Tables 3.56 mm OD (140 size)

6.35 mm OD (020 size)

6.86 mm OD (410 size)

AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

10 11 13 15 17 20 23 25 28 33 38 43 49 55 59 69 76 85 98 109

0.0286 0.0392 0.0567 0.0821 0.119 0.172 0.246 0.328 0.461 0.704 1.03 1.42 2.01 2.91 3.76 5.65 7.80 11.0 16.0 22.2

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

12 14 16 18 21 23 26 30 34 39 44 48 54 62 71 80 91 101 110 128

0.0216 0.0312 0.0446 0.0617 0.0910 0.125 0.173 0.252 0.367 0.518 0.729 0.977 1.39 2.07 3.00 4.13 5.87 8.40 11.1 16.6

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

12 14 16 18 20 23 26 29 33 37 41 47 53 60 67 74 83 96 109 122

0.0116 0.0168 0.0239 0.0334 0.0465 0.0663 0.0942 0.129 0.187 0.262 0.358 0.518 0.752 1.05 1.47 1.99 2.82 4.24 6.11 8.37

3.94 mm OD (150 size) AWG Wire Size

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

6.60 mm OD (240 size) AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

11 13 15 17 19 22 25 28 32 35 40 46 53 59 68 76 82 96 105 117

0.0251 0.0364 0.0529 0.0749 0.103 0.149 0.218 0.300 0.427 0.574 0.826 1.23 1.80 2.44 3.52 5.06 6.60 9.93 13.6 19.1

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

11 13 15 17 19 22 25 28 32 36 41 45 51 58 67 75 85 95 103 121

0.0196 0.0287 0.0414 0.0577 0.0815 0.118 0.165 0.233 0.342 0.473 0.672 0.907 1.30 1.92 2.80 3.84 5.43 7.82 10.3 15.5

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

12 14 16 18 20 23 26 29 33 37 41 47 53 60 67 74 83 96 109 122

0.00988 0.0142 0.0201 0.0281 0.0390 0.0556 0.0787 0.108 0.156 0.218 0.298 0.430 0.623 0.870 1.21 1.65 2.33 3.50 5.04 6.90

4.65 mm OD (180 size) AWG Wire Size

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

7.87 mm OD (030 size)

Single Layer Turns

Single Layer RDC (Ohms, Ω)

6.60 mm OD (270 size)

Single Layer Turns

Single Layer RDC (Ohms, Ω)

AWG Wire Size

11 12 14 16 18 20 23 27 31 34 38 43 50 57 64 73 81 88 103 113

0.0212 0.0289 0.0414 0.0597 0.0838 0.114 0.165 0.249 0.352 0.481 0.661 0.942 1.42 2.05 2.82 4.01 5.73 7.52 11.3 15.6

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

9.65 mm OD (280 size)

Single Layer Turns

Single Layer RDC (Ohms, Ω)

AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

11 13 15 17 19 22 25 28 32 36 41 45 51 58 67 75 85 95 103 121

0.0266 0.0390 0.0566 0.0790 0.112 0.163 0.228 0.322 0.474 0.658 0.936 1.26 1.81 2.68 3.92 5.37 7.61 11.0 14.4 21.8

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

12 13 15 18 20 23 26 29 33 37 42 47 52 58 67 75 84 92 104 119

0.00684 0.00914 0.0131 0.0194 0.0268 0.0383 0.0541 0.0747 0.107 0.147 0.212 0.297 0.404 0.568 0.844 1.17 1.63 2.19 3.13 4.66

www.mag-inc.com

103


Winding Tables

Winding Tables 12.7 mm OD (050 size)

9.65 mm OD (290 size) AWG Wire Size

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Single Layer Turns

Single Layer RDC (Ohms, Ω)

AWG Wire Size

12 13 15 18 20 23 26 29 33 37 42 47 52 58 67 75 84 92 104 119

0.00747 0.0100 0.0144 0.0213 0.0295 0.0421 0.0596 0.0825 0.118 0.163 0.234 0.328 0.448 0.630 0.937 1.29 1.81 2.44 3.48 5.18

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

20.3 mm OD (206 size)

Single Layer Turns

Single Layer RDC (Ohms, Ω)

AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

12 14 16 19 21 24 28 31 35 40 45 50 56 63 71 79 87 98 112 125

0.00364 0.00520 0.00733 0.0107 0.0147 0.0207 0.0302 0.0413 0.0582 0.0829 0.117 0.161 0.227 0.315 0.451 0.629 0.854 1.21 1.79 2.46

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

12 14 16 18 21 24 27 31 35 39 45 50 56 63 71 80 89 100 111 125

0.00163 0.00232 0.00324 0.00449 0.00644 0.00909 0.0126 0.0179 0.0251 0.0347 0.0498 0.0692 0.0962 0.135 0.191 0.270 0.374 0.529 0.725 1.04

16.5 mm OD (120 size)

10.2 mm OD (040 size)

22.9 mm OD (310 size)

AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

13 15 17 19 22 25 28 31 36 40 45 50 56 63 72 81 91 99 112 128

0.00818 0.0117 0.0165 0.0227 0.0328 0.0463 0.0650 0.0893 0.130 0.178 0.254 0.354 0.488 0.693 1.02 1.42 1.99 2.66 3.80 5.65

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

12 14 16 18 21 24 27 30 34 39 44 49 56 63 70 78 87 98 108 121

0.00234 0.00336 0.00471 0.00654 0.00940 0.0133 0.0185 0.0255 0.0359 0.0516 0.0722 0.101 0.143 0.203 0.280 0.393 0.542 0.775 1.07 1.48

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

12 14 16 18 21 24 27 31 35 39 44 50 56 63 70 79 89 99 111 123

0.00148 0.00212 0.00296 0.00409 0.00589 0.00830 0.0116 0.0164 0.0230 0.0319 0.0446 0.0632 0.0888 0.124 0.173 0.244 0.345 0.479 0.677 0.927

17.3 mm OD (380 size)

11.2 mm OD (130 size)

23.6 mm OD (350 size)

AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

10 11 13 15 17 20 23 25 29 33 37 41 46 52 59 65 72 81 93 104

0.00272 0.00366 0.00532 0.00756 0.0106 0.0153 0.0220 0.0295 0.0426 0.0602 0.0845 0.116 0.164 0.228 0.328 0.453 0.618 0.877 1.30 1.79

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

11 13 15 17 20 22 25 29 32 37 41 46 52 59 66 74 82 92 102 114

0.00223 0.00324 0.00460 0.00644 0.00933 0.0127 0.0179 0.0258 0.0354 0.0512 0.0704 0.099 0.139 0.199 0.277 0.391 0.535 0.764 1.06 1.47

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

11 13 15 17 19 22 25 28 32 36 41 46 51 58 65 73 82 92 102 115

0.00120 0.00173 0.00244 0.00340 0.00467 0.00668 0.00938 0.0130 0.0184 0.0258 0.0365 0.0510 0.0705 0.101 0.140 0.197 0.277 0.392 0.542 0.770

104

MAGNETICS


Winding Tables

Winding Tables 26.9 mm OD (930 size) AWG Wire Size

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

46.7 mm OD (089 size)

35.8 mm OD (324 size)

Single Layer Turns

Single Layer RDC (Ohms, Ω)

AWG Wire Size

11 13 15 17 20 22 25 29 33 37 42 47 53 60 66 75 84 94 105 117

0.00141 0.00205 0.00292 0.00407 0.00592 0.00808 0.0114 0.0164 0.0232 0.0324 0.0459 0.0640 0.0902 0.128 0.176 0.251 0.352 0.497 0.693 0.975

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

33.0 mm OD (548 size)

Single Layer Turns

Single Layer RDC (Ohms, Ω)

AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

16 19 22 25 28 32 36 41 46 52 58 65 73 82 93 103 116 130 146 162

0.00169 0.00246 0.00351 0.00491 0.00677 0.00955 0.0133 0.0188 0.0263 0.0369 0.0514 0.0718 0.1 0.141 0.201 0.277 0.392 0.551 0.78 1.08

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

22 26 29 33 38 42 47 54 60 68 76 86 96 108 121 135 151 170 190 211

0.00296 0.00432 0.00596 0.00840 0.0120 0.0164 0.0229 0.0327 0.0455 0.0641 0.0897 0.127 0.177 0.249 0.352 0.490 0.690 0.975 1.37 1.91

39.9 mm OD (254 size)

50.5 mm OD (725 size)

AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

14 17 19 22 25 28 32 36 41 46 52 58 65 74 83 92 103 116 131 145

0.00147 0.00218 0.00299 0.00427 0.00598 0.00826 0.0117 0.0163 0.0232 0.0322 0.0455 0.0632 0.0883 0.126 0.177 0.245 0.344 0.485 0.691 0.954

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

18 21 24 27 31 35 39 44 50 56 63 71 80 90 101 112 126 141 158 175

0.00229 0.00329 0.00464 0.00646 0.00917 0.0128 0.0178 0.0250 0.0354 0.0493 0.0695 0.0978 0.138 0.194 0.274 0.379 0.536 0.753 1.06 1.47

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

19 22 25 28 32 36 40 46 51 58 65 73 82 92 104 116 130 146 163 181

0.0033 0.0047 0.0067 0.0093 0.0132 0.0185 0.026 0.037 0.051 0.073 0.102 0.144 0.202 0.28 0.41 0.57 0.80 1.13 1.59 2.21

34.3 mm OD (585 size) AWG Wire Size

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

46.7 mm OD (438 size)

Single Layer Turns

Single Layer RDC (Ohms, Ω)

AWG Wire Size

17 20 23 26 30 34 38 43 48 54 61 69 77 87 98 109 122 137 153 170

0.00160 0.00229 0.00323 0.00449 0.00636 0.00887 0.0123 0.0172 0.0238 0.0332 0.0467 0.0657 0.0913 0.1287 0.1821 0.2519 0.354 0.497 0.699 0.969

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

50.8 mm OD (715 size)

Single Layer Turns

Single Layer RDC (Ohms, Ω)

AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

18 21 24 27 31 35 39 44 50 56 63 71 80 90 101 112 126 141 158 175

0.00280 0.00405 0.00573 0.00801 0.0114 0.0160 0.0223 0.0314 0.0446 0.0622 0.0878 0.124 0.175 0.246 0.349 0.483 0.683 0.961 1.36 1.88

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

25 29 33 37 42 47 53 60 67 76 85 95 107 120 135 150 168 189 211 234

0.00324 0.00463 0.00651 0.00904 0.0127 0.0176 0.0247 0.0348 0.0486 0.0685 0.0959 0.134 0.189 0.265 0.375 0.520 0.732 1.03 1.46 2.02

www.mag-inc.com

105


Winding Tables

Winding Tables 68.0 mm OD (070 size)

57.2 mm OD (195 size)

77.8 mm OD (906 size)

AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

20 23 26 30 34 39 43 49 55 62 70 78 88 99 111 124 138 156 174 193

0.00322 0.00458 0.00642 0.00921 0.0130 0.0185 0.0254 0.0362 0.0508 0.0714 0.101 0.141 0.199 0.281 0.398 0.555 0.777 1.10 1.56 2.16

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

22 25 29 33 37 42 48 54 60 68 76 85 96 108 120 135 152 169 189 212

0.0027 0.0038 0.0054 0.0077 0.0107 0.0151 0.022 0.030 0.042 0.059 0.083 0.116 0.165 0.23 0.32 0.46 0.65 0.90 1.27 1.79

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

41 47 53 60 67 76 85 95 107 120 135 151 169 189 212 236 264 296 331 367

0.00660 0.00937 0.0131 0.0184 0.0256 0.0361 0.0504 0.0703 0.0991 0.139 0.195 0.274 0.383 0.538 0.761 1.06 1.49 2.10 2.96 4.11

57.2 mm OD (109 size)

74.1 mm OD (740 size)

77.8 mm OD (778 size)

AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

29 33 37 42 48 54 60 68 76 85 96 108 120 135 152 169 189 212 238 263

0.00397 0.00558 0.00773 0.0109 0.0154 0.0215 0.0297 0.0420 0.0586 0.0816 0.115 0.162 0.225 0.318 0.451 0.625 0.880 1.24 1.76 2.43

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

29 33 38 43 49 55 62 70 78 88 98 110 124 139 155 174 195 217 243 273

0.00450 0.00632 0.00907 0.0128 0.0182 0.0255 0.0358 0.0505 0.0706 0.0997 0.139 0.196 0.277 0.390 0.546 0.769 1.09 1.52 2.14 3.03

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

32 37 41 47 53 60 67 75 84 95 106 119 133 150 168 187 209 235 263 291

0.0071 0.0102 0.0141 0.0202 0.0284 0.0401 0.056 0.079 0.111 0.156 0.219 0.309 0.432 0.61 0.87 1.21 1.70 2.40 3.40 4.71

Ω

62.0 mm OD (620 size)

101.6 mm OD (102 size)

77.8 mm OD (866 size)

AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

20 23 26 30 34 38 43 49 54 61 69 78 87 98 110 123 138 154 172 194

0.00260 0.00368 0.00517 0.00741 0.0104 0.0146 0.0205 0.0291 0.0402 0.0568 0.0805 0.114 0.159 0.225 0.316 0.444 0.629 0.878 1.24 1.75

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

41 47 53 60 67 76 85 95 107 120 135 151 169 189 212 236 264 296 331 367

0.00607 0.00860 0.0120 0.0169 0.0234 0.0329 0.0459 0.0640 0.0901 0.126 0.178 0.248 0.348 0.487 0.689 0.958 1.35 1.90 2.68 3.72

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

38 43 49 55 62 70 79 89 99 112 125 140 157 176 197 221 248 275 308 345

0.00489 0.00682 0.00965 0.0135 0.0189 0.0266 0.0373 0.0524 0.0730 0.103 0.145 0.202 0.285 0.400 0.561 0.790 1.12 1.55 2.19 3.09

106

MAGNETICS


Winding Tables

Winding Tables 132.6 mm OD (337 size) AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

54 61 69 78 87 99 111 124 138 155 174 195 218 244 273 306 343 381 426 478

0.00890 0.0124 0.0175 0.0247 0.0344 0.0489 0.0685 0.0956 0.133 0.188 0.265 0.371 0.522 0.733 1.03 1.45 2.05 2.85 4.02 5.68

165.1 mm OD (165 size) AWG Wire Size

Single Layer Turns

Single Layer RDC (Ohms, Ω)

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

72 81 91 103 115 130 145 163 182 204 228 256 286 320 358 401 449 499 558 625

0.0139 0.0193 0.0272 0.0384 0.0536 0.0759 0.106 0.149 0.209 0.293 0.412 0.579 0.814 1.14 1.61 2.26 3.21 4.46 6.29 8.86

www.mag-inc.com

107


Other Products from Magnetics Ferrites

Tape Wound Cores

Magnetics’ ferrite cores are manufactured for a wide variety of applications. Magnetics produces the leading MnZn ferrite materials for power transformers, power inductors, wideband transformers, common mode chokes, and many other applications. In addition to offering the leading materials, other advantages of ferrites from Magnetics include the full range of standard planar E, ER, and I cores; the widest range of toroid sizes in power and high permeability materials; standard gapping to precise inductance or mechanical dimension; a wide range of available coil formers and assembly hardware; and superior toroid coatings available in several options. Power Materials Five low loss materials are engineered for optimum frequency and temperature performance in power applications. Magnetics’ R, P, F, L, and T materials provide superior saturation, high temperature performance, low losses and product consistency. Shapes: E cores, Planar E cores, ER cores, ETD, EC, U cores, I cores, PQ, Planar PQ, RM, Toroids, Pot cores, RS (round-slab), DS (double slab), EP, Special Shapes. Applications: Telecom power supplies, computer power supplies, commercial power supplies, consumer power supplies, automotive, DC-DC converters, telecom data interfaces, impedance matching transformers, handheld devices, high power control (gate drive), computer servers, distributed power (DC-DC), EMI filters, aerospace, and medical. High Permeability Materials Three high permeability materials (5,000µ J material, 10,000µ W material, and 15,000µ M material) are engineered for optimum frequency and impedance performance in signal, choke and filter applications. These Magnetics materials provide superior loss factor, frequency response, temperature performance, and product consistency. Shapes: Toroids, E cores, U cores, RM, Pot cores, RS (round-slab), DS (double slab), EP, Special Shapes. Applications: common mode chokes, EMI filters, other filters, pulse transformers, current transformers, broadband transformers, current sensors, telecom data interfaces, impedance matching interfaces, handheld devices, spike suppression, and gate drive transformers.

108

MAGNETICS

Magnetics strip wound cores are made from high permeability magnetic strip alloys of nickel-iron (80% or 50% nickel), and silicon-iron. The alloys are know as Orthonol®, Permalloy 80, 48 Alloy and Magnesil®. Tape Wound Cores are produced as small as 0.438” OD in hundreds of sizes. For a wide range of frequency applications, materials are produced in thicknesses from 1/2 mil (0.013 mm) through 4 mils (0.102 mm). Cases are robust nylon and aluminum boxes, rated for 200°C continuous operation and 2,000 minimum voltage breakdown. Applications: aerospace applications, radar installations, jet engine controls, power supplies, current transformers and other high reliability applications. Bobbin Cores Magnetics bobbin cores are miniature tape cores made from ultra-thin (0.000125” to 0.001” thick) strip material wound on nonmagnetic stainless steel bobbins. Bobbin Cores are generally manufactured from Permalloy 80 and Orthonol®. Covered with protective caps and then epoxy coated, Bobbin Cores can be made as small as 0.05” ID and with strip widths down to 0.032”. Bobbin Cores can switch from positive to negative saturation in a few microseconds or less, making them ideal for analog logic elements, magnetometers, and pulse transformers. Applications: high frequency magnetic amplifiers, flux gate magnetometers, harmonic generators, oscillators, pulse transformers, current transformers, analog counters and timers and inverters.


Visit

www.mag-inc.com

Design with Magnetics Cores From novice to experienced designers, our informative website has all the tools you need get your design started. Design Software for Inductors, Common Mode Filters, Current Transformers and MagAmps Competitor Part Number Cross Reference Technical Documents Core Selection Guide

Find Magnetics Cores Whether you need a specific part number or are looking for ways to narrow your core search, our multiple search functions can guide you in the right direction. Part Number Search Parametric Search (by material, size, shape, inductance) Competitor Part Number Cross Reference Distributor Stock Check

Buy Magnetics Cores The easiest way to get Magnetics cores is to request a MyMagnetics account. MyMagnetics is your secure gateway to managing your customer account online. Pricing and Availability Place New Orders Review Existing Orders Track Orders View Invoices Sample Request


Headquarters 110 Delta Drive P.O. Box 11422 Pittsburgh, PA 15238 • USA Phone: 1.800.245.3984 +1.412.696.1333 e-mail: magnetics@spang.com

Magnetics International 13/F 1-3 Chatham Road South Tsim Sha Tsui Kowloon, Hong Kong Phone: +852.3102.9337 +86.139.1147.1417 e-mail: asiasales@spang.com

www.mag-inc.com

Š2017 Magnetics


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.