GeneWatch Vol. 25 No. 1-2

Page 14

revolutionize medicine. Microbes could be disabled through genetic engineering and plagues such as malaria, HIV, TB, measles and lethal bacterial infections were diminishing through a variety of vector-targeted genetically-based interventions. Drug manufacturing was closely linked to genomics and synthetic biology with many more efficacious and safer drugs and vaccines being manufactured using modified

bacteria and microbes. While it is true that doctors paid attention by 2030 to individual responses to drugs based upon pharmacogenomics studies, the real impact of genetics was being felt outside the realm of human genomes. The self-conceit of earlier decades that human genes because they are in humans ought to occupy the attention of efforts to apply new genetic knowledge had collapsed. Understanding

and changing the genomes of other species proved far more productive in improving health and well-being. nnn Arthur L. Caplan, PhD, is the Emmanuel and Robert Hart Director of the Center for Bioethics and the Sydney D Caplan Professor of Bioethics at the University of Pennsylvania in Philadelphia. He writes a regular column on bioethics for MSNBC.com.

The $10 Genome Dr. Paul Billings spoke with GeneWatch about the future of genomic medicine. Paul Billings, MD, PhD, is Vice Chair of the Board of Directors of the Council for Responsible Genetics and Chief Medical Officer of Life Technologies, Corp. The following is excerpted from an interview and represents Dr. Billings’ own views rather than those of Life Technologies. Genomic medicine: To the extent that one’s genomic DNA is stable—and I believe that the vast proportion of anyone’s DNA at any particular time is in fact stable, and does in fact basically reflect what you inherited at the time of conception—the analysis of that over the next 20 years will become increasingly simple and very inexpensive. And to the extent that this information is a reliable, quantitative, and identifiable component of disease diagnosis, therapeutic selection, et cetera, I believe that information will become an integral part of everybody’s medical record, probably from conception and certainly from birth. 14 GeneWatch

Genomic DNA information has very distinct advantages: it is measurable, I believe it will be highly reliable, and it is for the most part stable. Epigenomics, post-translational variability and environmental influences can be important and do modify the genomic information. And of course disease states like cancer are characterized by finding more genomic mutations than in non-cancerous cell genomes. But the overall impact of the genome should be reliable and accessible. We’ll figure out how to use that over the next 20 years, along with environmental impacts and other kinds of more variable components of our biology, to make more accurate, more reliable diagnoses, and to make more biologically formed choices about treatments and prevention. The fundamental thing that will be different in 20 years is that our medical records will be built more significantly on genetic and genomic information, and will be verifiable in a way that our current medical systems are not. That is not to say that genetics

or genomics is the be-all and end-all of risk—it’s clearly not. Genetic risk is highly environmentally modifiable, and even though the genome is for the most part stable, mutation does occur and modification of the expression of mutation can be significant. The genomes of cancer cells are somatically mutated at an amazing rate, and clearly there are epigenomic effects and modifications that can influence the power of a particular germline-inherited pattern. You still have a certain set of genes at conception, and we can elucidate very accurately and cheaply what those genes are, along with many January-February 2012


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.