Cruzbike cuervo&vendetta project 2011 internet

Page 1

virtual human engineering

vhe usecase a virtual human engineering project

cruzbike cuervo & vendetta

cruzbike inc. & virtual human engineering gmbh. 2011 01.02. - 01.06 2011 10.08. - 11.10

1


2

virtual human engineering


virtual human engineering

Copyrights: John Tolhurst FIMC CMC MBA BSc BA Design Director, Cruzbike Inc. Cruzbike, Inc., P.O. Box 2749, Lumberton, North Carolina 28359 USA www.cruzbike.com / ph: 888-225-CRUZ (2789) / fax: 800-482-0525 & László Ördögh Dipl.Des, Dipl Inf (UNI) CEO and owner Virtual Human Engineering GmbH. Scharrstraße 7. 70563 Stuttgart Germany 2011 01 08

3


4

virtual human engineering

Background Cruzbike Inc is the world’s only commercial supplier of pivoting boom, or moving bottom bracket front wheel drive bicycles and sells to a niche segment of 50 year old ‘outside-the-box’ thinkers and bicycle tinkerers. It is common knowledge that the ergonomics of a regular bicycle are severely compromised and there is a growing scientific body of knowledge now explicitly identifying the many health issues.

cruzbike vendetta

On the face of it, simply changing to a recumbent bicycle solves the ergonomic issues. However a proper understanding of how the body engages the bicycle frame to create power and produce work shows that recumbent bicycles isolate the upper body, back, shoulders and arms from the exercise activity. Recumbent bicycles therefore fail to capture the intensity and dynamics that the sport of cycling is famous for. Watching a world-class athlete climbing the Pyrenees brings home the fact that use of the back shoulders and arms is an integral part of the sport. Cruzbike recumbent bicycles are different, because as with a standard bike, the whole body is engaged in the cycling activity. For this reason we are the world’s only supplier of bicycles that are ergonomically safe and which still capture the cyclist’s athleticism.

New Design Question A new ergonomic analysis concerns a new product, Cruzbike Cuervo. We aim to integrate what we have learnt through developing and testing these bicycles over the past five years into the design of a low cost bicycle that is suited to a wide range of body sizes. The design is to be whittled down to the essential elements – dramatically reducing the parts count for the frameset while keeping full adjustability. By simplifying the design and lowering the cost, we aim to dramatically lower the age of our target segment. We aim to make the product available through youth oriented sport stores. The key design objective here is to: Specify the geometry of the frame (tube lengths and joint angles) such that one frame will accommodate the widest range of rider sizes possible, from the 5th percentile of Japanese woman, to the 95th percentile of US male. The following is a perspective rendering of the bicycle frame in medium fitment:

In 2007 we designed a model to be ridden with road bikes. This new model (Silvio) took several world records . cruzbike silvio

This year we are releasing a new model (Vendetta) designed to maximise speed and already with a prototype we have reset one of our records by a margin of 7.5%. We believe this demonstrates the advantages of adopting safe ergonomics in a structure that also captures the complete muscular development of the everyday cyclist.

cruzbike cuervo initial modell (solid works)


With any of our bikes, it is important to ensure the grips are positioned somewhat to either side the steering axis, to provide sufficient leverage over the front steering and drive-structure of the bicycle so it can be managed effectively. Also, it is important to ensure the arms are somewhat perpendicular to the trunk, so they can stabilise body when the rider is seeking higher performance. Frame Adjustments In all cruzbike front wheel drive designs the crank rotates around the front wheel to provide leg adjustment. The amount of adjustment is set by a telescoping tube (US Patent 7753388) connecting bottom bracket to handlebar.

The ability to pack into an OS1 sized box for economic shipping from warehouse to end customer is very important. In this design, the handlebar is welded directly to the slider. There is no clamp and no stem. When the telescoping tube adjusts, the handle bar angle also changes. Adjustments to the bicycle are performed by the following (in order of convenience): • The handlebar is connected to the crank by a slider (yellow) which houses a telescoping boom (green). This telescoping tube is the principle means of fitting riders of varying leg lengths. • The red slider can be positioned within the

virtual human engineering

5

slider clamp that connects it to the top of the fork steering tube, thereby changing the reach distance for the arms. • The seat back can be adjusted for tilt by a seat post (not shown) from low (almost touching the rear tire) to high. An angle of 47 degrees from the horizontal is typical. • A curved downtube supports the seat pan, which can be re-positioned further up or down the curve. • The slider clamp can be adjusted vertically up or down the fork steering tube


6

virtual human engineering

Design Data 1. Crank length 170 mm 2. Pedal offset is the distance between the sole of the foot and the pedal axis, and is 15mm 3. Sufficient Knee Clearance: 40mm clearance between knee and handlebar is sufficient 4. X-Seam is calculated as per the following :

5. Seat Back to Crank Center is : x-seam - crank length + pedal offset 6. Comfortable Arm Reach means that the distance from shoulder to handlebar is correct. The correct distance is when the wrist of the straight arm reaches the middle of the handlebar grip. 7. Grip Angle is the angle of the grip measured from the longitudinal axis of the forearm. This angle should be near 60 degrees. 8. Slider Clamp is the connection point underneath the Slider to the fork neck. 9. Grip Offset is the distance from the middle of


virtual human engineering

the grip to the transverse section of the handlebar, as measured on the sagittal plane. 10. Handlebar Offset is the distance from the handlebar to the fork neck, measure from transverse section of the handlebar at right angles to an extension of the fork neck. Indicative Fitting Procedure There are four seat positions as follows: 1. Position Seat as follows: P1 Shortest rider P2 ‌ P3 ‌ P4 Tallest rider

2. Let the seat back be an angle of 47 degrees from the horizontal. 3. Rotate Chainstay to provide correct x-seam. 4. Adjust slider to give Sufficient Knee Clearance under the handlebar, rotate the slider and boom around the crank to create a gap between the slider and the top of the fork neck of 20mm. Note the Handlebar Offset. 5. Lift handlebars by extending slider further if needed to give Comfortable Arm Reach.

6. What is the ideal placement of the Slider Clamp? 7. What is the Grip Angle? Is there a fixed placement of the Handlebar on the end of the Slider and a fixed handlebar design that gives a grip angle of 120 degrees +/- 10 degrees? 8. To ensure Sufficient Knee Clearance for all riders, what is the minimum Grip Offset? 9. What is the total adjustment range of slider and boom that is needed?

7


8

virtual human engineering

Working environment: CAD: Solid Works Import format: .3DS Ergonomics symulation: CharAT Ergonomics V6.1 Visualisation system: 3DS MAX 2010 Export format: DWG Communication via e-mail and SugarSync Timezone information: Sharp World Clock Project time: 2011 01 02 - 2011 01 06


virtual human engineering

9


10

virtual human engineering

Testpopulation: JAPAN FEMININ 5%

#!CATBODY 2 # JAPAN database # feminin Adult PC 5 47 kg # unit: mm #

MNr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

P05 1516.0 1401.0 1382.0 0.0 1269.0 0.0 1214.1 0.0 1203.0 1105.1 1070.0 898.2 883.0 789.0 757.0 377.2 335.0 0.0 0.0 230.0 212.0 237.5 306.0 0.0 187.0 147.1 145.1 173.0 178.0 919.1 1396.2 760.1 758.1 657.3 581.1 840.2 824.1 710.0 0.0 586.0 519.0 380.0

Stature--------------------Eye height-----------------Tragion height-------------Mouth height---------------Height of cervical vertebra7 Initial neck height--------Sternal height-------------Shoulder height lateral----Shoulder height acromial---Subaxillary height---------Mamillary height-----------Waist height---------------Iliocristal height---------Iliospinal height----------Trochanter height ---------Shoulder breadth, bideltoidShoulder breadth, biacromi-Shoulder breadth, unilateral Shoulder breadth, lifted arm Thorax breadth-------------Waist breadth--------------Pelvis breadth-------------Hip breadth----------------Body depth-----------------Depth back - chest---------Depth dorsal vertebra-ster-Depth of waist-------------Biggest de-torso below che-Biggest depth of buttock---Shoulder girth-------------Torso girth, vertical------Chest girth----------------Anthropological chest girthThorax girth---------------Waist girth----------------Seat girth-----------------Height sitting plane- vertex Height sitting plane- eye--Height sitting plane- mouthHeight sitting plane-cervi-Sitt-shoulder height, acromi Height of lower scapula/sitt

Koerperhoehe---------------Augenhoehe-----------------Tragionhoehe---------------Mundhoehe------------------Halswirbelhoehe------------Halsansatzhoehe------------Sternalhoehe---------------Schulterhoehe lateral------Schulterhoehe akromial-----Unterachselhoehe-----------Brustwarzenhoehe-----------Taillenhoehe---------------Darmbeinkammhoehe----------Darmbeinstachelhoehe-------Trochanterhoehe------------Schulterbreite >Oberarme<--Schulterbreite >Akromien<--Einseitige Schulterbreite--Schulterbreite bei erh-Armen Brustkorbbreite------------Taillenbreite--------------Beckenbreite---------------Hueftbreite----------------Koerpertiefe---------------Brusttangente--------------Brustkorbtiefe-------------Taillentiefe---------------Gr- Rumpftiefe u-Brustkorb-Gesaesstangente------------Schulterumfang-------------Rumpfumfang vertikal-------Brustkorbumfang------------Anthropologischer Brustumfan Thoraxumfang---------------Taillenumfang--------------Gesaessumfang--------------Koerpersitzhoehe ----------Augenhoehe von Sitzflaeche-Mundhoehe von Sitzflaeche--Cervicalhoehe--------------Schulterhoehe akromial-----Untere Schulterblatthoehe---


virtual human engineering 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

204.0 58.0 330.1 185.0 1464.0 0.0 760.1 695.1 606.0 1847.1 0.0 1923.1 0.0 561.3 644.1 721.0 908.1 265.0 624.0 0.0 485.1 387.0 283.0 0.0 87.0 0.0 226.0 49.5 326.0 140.0 141.1 212.0 223.1 1168.0 0.0 206.1 171.0 0.0 225.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.5 12.0 0.0

Height of pelvis/sitting---Height seat-trochanter-----Biggest hip breadth sittingSagittal diamet-abdomen/sitt Span of arms---------------Span of grip axes----------Elbow span-----------------Forward reach, (fingertips)Forward reach, (grip axis)-Vertical reach, (fingertips) Vertical reach, (grip axis)Max-vertical reach(fingertp) Maximal vertical grip reachMiddle fingertip height----Height of grip axes--------Wrist height---------------Elbow height---------------Upper arm length-----------Projected arm length-------Functional arm length------Arm length without hand----Length elbow - fingertips--Length elbow - grip axes---Length bend of elbow-fingert Diameter of initial uppera-Forearm thickness----------Forearm length without han-Breadth of elbow-----------Widest breadth for both elbo Wrist girth----------------Smallest forearm girth-----Biggest forearm girth------Biggest upper arm girth----Vertic-fingertip reach/sittVertical grip reach, sitting Elbow height, sitting------Hand girth without thumb---Grip girth-----------------Fist girth-----------------Little finger girth--------Ring finger girth ---------Middle finger girth--------Forefinger girth-----------Thumb girth----------------Breadth little finger prox-Breadth little finger dist-Breadth ring finger proxim-Breadth ring finger distal-Breadth middle finger prox-Breadth middle finger dist-Breadth forefinger proxima-Breadth forefinger distal--Breadth of thumb distal-----

Beckenhoehe----------------Trochanterhoehe------------Koerpersitzbreite----------Sagittaler Abdomendurchmesse Spannweite der Arme -------Griffachsenspannweite------Ellenbogenspannweite-------Reichweite vorn(Fingerspitz) Reichweite vorn(Griffachse)Reichweite oben(Fingerspitz) Reichweite oben(Griffachse)Max Reichweite oben (Fspitz) Max Reichweite oben (Griff-) Fingerspitzenhoehe---------Griffachsenhoehe-----------Handgelenkshoehe-----------Ellenbogenhoehe------------Oberarmlaenge--------------Projektivische ganze Armlaen Funktionelle Armlaenge-----Armlaenge ohne Hand--------Ellenbogen > Fingerspitzen-Ellenbogen > Griffachse----Ellenbeuge > Fingerspitzen-Armansatzbreite------------Unterarmdicke--------------Unterarmlaenge ohne Hand---Ellenbogenbreite-----------Breite ueber Ellenbogen----Handgelenkumfang-----------Kleinster Unterarmumfang---Groesster Unterarmumfang---Groesster Oberarmumfang----Reichweite nach oben-------Reichweite nach oben (Griff) Ellenbogenhoehe------------Handumfang ohne Daumen-----Griffumfang----------------Faustumfang----------------Kleinfingerumfang----------Ringfingerumfang-----------Mittelfingerumfang---------Zeigefingerumfang----------Daumenumfang---------------Kleinfingerbreite handnah--Kleinfingerbreite handfern-Ringfingerbreite handnah--Ringfingerbreite handfern-Mittelfingerbreite handnah-Mittelfingerbreite handfer-Zeigefingerbreite handnah--Zeigefingerbreite handfern-Daumenbreite koerperfern----

11


12

virtual human engineering 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

0.0 0.0 67.0 0.0 0.0 0.0 60.5 53.0 94.0 163.0 84.0 68.0 22.0 0.0 0.0 0.0 0.0 0.0 0.0 640.0 660.1 0.0 372.1 68.0 56.0 215.8 121.0 84.5 55.5 217.0 472.2 319.0 307.1 187.1 446.2 362.1 384.1 511.0 0.0 879.0 125.0 82.1 181.1 218.0 0.0 113.0 122.0 156.0 179.0 107.0 43.0 53.0 115.0

Length little finger-------Length ring finger---------Length middle finger-------Midd-fing-prox-phalanx lengt Midd-fing-middle phal-length Midd-fing-distal phal-length Length of forefinger-------Length of thumb------------Length of palm-------------Length of hand-------------Breadth of hand with thumb-Breadth of hand without th-Thickness of hand----------Radius of fingertips-------Grip dia-thumb/middle fg-tip Grip dia-thumb/forefingertip Gr-dia-foref-tip/dist-thumb Gr-dia-foref-tip/prox-thumb Circular reach-through dimen Projective leg (+foot) lengt Crotchheight inside leg+fo-Gluteal height-------------Knee joint height----------Medial ankle height--------Lateral ankle height ------Length of foot-------------Length of forefoot---------Projective foot breadth ---Breadth of heel------------Breadth of ball of the footGirth of shank-------------Girth of knee--------------Girth of calf--------------Girth of ankle-------------Height knee-sole of the foot Height of sitting plane----Length buttock to calf/sitti Length buttock to knee/sitti Max-sitt-depth/buttock-tipto Length buttock-sole, sitting Height of shank------------Breadth of single knee-----Breadth oth knees closed/sit Height of head-------------Height of face (chin-front-Eye-vertex height----------Ear height, tragion-vertex-Nose-vertex height---------Mouth-vertex height--------Distance root of nose - chin Nose height, subnasal-nasion Auricular height-----------Breadth initial neck--------

Kleinfingerlaenge----------Ringfingerlaenge-----------Mittelfingerlaenge---------Mittelfingergrundgliedlaenge Mittelfingermittelgliedlaeng Mittelfingerendgliedlaenge-Zeigefingerlaenge----------Daumenlaenge---------------Handflaechenlaenge---------Handlaenge-----------------Handbreite mit Daumen------Handbreite ohne Daumen-----Handdicke------------------Fingerkuppenradius---------Greifdurchmesser 1---------Greifdurchmesser 2---------Greifdurchmesser 3---------Greifdurchmesser 4---------Kreisfoermige Durchgreifgroe Projektivische Beinlaenge--Schritthoehe---------------Gesaessfaltenhoehe---------Kniegelenkhoehe------------Fussknoechelhoehe medial---Fussknoechelhoehe lateral--Fusslaenge-----------------Vorderfusslaenge-----------Fussbreite.----------------. Fersenbreite---------------Fussballenumfang-----------Oberschenkelumfang---------Knieumfang-----------------Wadenumfang----------------. Fesselumfang---------------Kniehoehe > Fussohle-------Sitzflaechenhoehe ---------Koerpersitztiefe bis Wade-Sitztiefe einschliessl.KnieSitztiefe > Fusszehen------Gesaess (Ruecken)-Beinlaenge Oberschenkelhoehe----------Kniebreite eines Knies-----Kniebreite beider(geschloss) Kopfhoehe------------------Gesichtshoehe(Kinn-Stirnmi-Augen-Scheitel-Hoehe-------Ohr-Scheitel-Hoehe---------Nasen-Scheitel-Hoehe-------Mund-Scheitel-Hoehe--------Abstand Nasenwurzel - Kinn-Nasenhoehe-----------------Ohrmuschellaenge-----------Halsansatzbreite------------


virtual human engineering 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

99.2 30.0 26.0 133.0 132.1 30.0 55.0 84.1 103.0 145.0 166.2 168.0 182.0 153.0 75.2 526.0 291.0 341.0 289.0 287.0 361.1 0.0

Breadth of lower jaw angle-Breadth of nose, lateral---Auricular breadth- --------Horizontal ear-head distance Zygomatic face breadth-----Breadth of root of the noseInterpupillary breadth-----Breadth of upper face------Smallest forehead breadth--Breadth of head------------Breadth of head with ears--Head length/glabel-opistho-Length nosetip-opisthocranio Length ectocanthus-opisthocr Length tragion-opisthocranio Horizontal head girth -----Sagittal head curve--------Transversal head curve,tragi Lower head curve,ear-chin-ea Girth of neck--------------Initial neck girth---------Bodyweight------------------

Unterkieferwinkelbreite----Nasenbreite----------------Ohrmuschelbreite-----------Ohrmuschelabstand----------Jochbogenbreite------------Nasenwurzelbreite----------Pupillenabstand------------Obergesichtsbreite---------Kleinste Stirnbreite-------Kopfbreite-----------------Kopfbreite mit Ohren-------Kopftiefe------------------Kopftiefe ab Nasenspitze---Kopftiefe ab Augenwinkel---Kopftiefe ab Tragion-------Kopfumfang-----------------Sagittaler Kopfbogen-------Transversaler Kopfbogen----Ohr-Kinn-Ohr-Bogen---------Halsumfang-----------------Halsansatzumfang-----------Kรถrpergewicht---------------

13


14

virtual human engineering

Testpopulation: BODYSPACE USA 95%

#!CATBODY 2 # BODYSPACE database usa_adult # masculin 25 years old PC 95 100 kg # unit: mm #

MNr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

P95 1872.2 1725.5 1748.0 1675.8 1616.3 1574.9 1533.6 1568.8 1550.6 1389.6 1368.2 1162.3 1133.5 1084.6 997.5 516.2 434.6 161.7 419.6 313.0 315.2 314.1 356.6 327.8 295.3 261.3 271.5 325.6 293.0 1373.3 1707.7 1186.5 1180.3 1161.4 1079.3 1119.7 974.4 857.8 772.4 690.2 652.8 498.1

Stature--------------------Eye height-----------------Tragion height-------------Mouth height---------------Height of cervical vertebra7 Initial neck height--------Sternal height-------------Shoulder height lateral----Shoulder height acromial---Subaxillary height---------Mamillary height-----------Waist height---------------Iliocristal height---------Iliospinal height----------Trochanter height ---------Shoulder breadth, bideltoidShoulder breadth, biacromi-Shoulder breadth, unilateral Shoulder breadth, lifted arm Thorax breadth-------------Waist breadth--------------Pelvis breadth-------------Hip breadth----------------Body depth-----------------Depth back - chest---------Depth dorsal vertebra-ster-Depth of waist-------------Biggest de-torso below che-Biggest depth of buttock---Shoulder girth-------------Torso girth, vertical------Chest girth----------------Anthropological chest girthThorax girth---------------Waist girth----------------Seat girth-----------------Height sitting plane- vertex Height sitting plane- eye--Height sitting plane- mouthHeight sitting plane-cervi-Sitt-shoulder height, acromi Height of lower scapula/sitt

Koerperhoehe---------------Augenhoehe-----------------Tragionhoehe---------------Mundhoehe------------------Halswirbelhoehe------------Halsansatzhoehe------------Sternalhoehe---------------Schulterhoehe lateral------Schulterhoehe akromial-----Unterachselhoehe-----------Brustwarzenhoehe-----------Taillenhoehe---------------Darmbeinkammhoehe----------Darmbeinstachelhoehe-------Trochanterhoehe------------Schulterbreite >Oberarme<--Schulterbreite >Akromien<--Einseitige Schulterbreite--Schulterbreite bei erh-Armen Brustkorbbreite------------Taillenbreite--------------Beckenbreite---------------Hueftbreite----------------Koerpertiefe---------------Brusttangente--------------Brustkorbtiefe-------------Taillentiefe---------------Gr- Rumpftiefe u-Brustkorb-Gesaesstangente------------Schulterumfang-------------Rumpfumfang vertikal-------Brustkorbumfang------------Anthropologischer Brustumfan Thoraxumfang---------------Taillenumfang--------------Gesaessumfang--------------Koerpersitzhoehe ----------Augenhoehe von Sitzflaeche-Mundhoehe von Sitzflaeche--Cervicalhoehe--------------Schulterhoehe akromial-----Untere Schulterblatthoehe---


virtual human engineering 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

263.8 87.0 409.5 263.2 1948.6 1667.3 1034.2 933.8 842.8 2475.5 2212.0 2391.6 2299.9 724.3 832.7 925.9 1199.0 399.6 849.4 728.9 664.7 514.7 391.2 457.9 129.5 55.2 292.1 75.4 485.1 181.5 191.0 292.9 335.4 1384.6 1284.7 1192.4 242.2 153.1 331.4 65.1 73.1 76.5 74.3 80.1 19.4 18.2 22.9 19.4 24.0 20.4 24.0 21.7 26.2

Height of pelvis/sitting---Height seat-trochanter-----Biggest hip breadth sittingSagittal diamet-abdomen/sitt Span of arms---------------Span of grip axes----------Elbow span-----------------Forward reach, (fingertips)Forward reach, (grip axis)-Vertical reach, (fingertips) Vertical reach, (grip axis)Max-vertical reach(fingertp) Maximal vertical grip reachMiddle fingertip height----Height of grip axes--------Wrist height---------------Elbow height---------------Upper arm length-----------Projected arm length-------Functional arm length------Arm length without hand----Length elbow - fingertips--Length elbow - grip axes---Length bend of elbow-fingert Diameter of initial uppera-Forearm thickness----------Forearm length without han-Breadth of elbow-----------Widest breadth for both elbo Wrist girth----------------Smallest forearm girth-----Biggest forearm girth------Biggest upper arm girth----Vertic-fingertip reach/sittVertical grip reach, sitting Elbow height, sitting------Hand girth without thumb---Grip girth-----------------Fist girth-----------------Little finger girth--------Ring finger girth ---------Middle finger girth--------Forefinger girth-----------Thumb girth----------------Breadth little finger prox-Breadth little finger dist-Breadth ring finger proxim-Breadth ring finger distal-Breadth middle finger prox-Breadth middle finger dist-Breadth forefinger proxima-Breadth forefinger distal--Breadth of thumb distal-----

Beckenhoehe----------------Trochanterhoehe------------Koerpersitzbreite----------Sagittaler Abdomendurchmesse Spannweite der Arme -------Griffachsenspannweite------Ellenbogenspannweite-------Reichweite vorn(Fingerspitz) Reichweite vorn(Griffachse)Reichweite oben(Fingerspitz) Reichweite oben(Griffachse)Max Reichweite oben (Fspitz) Max Reichweite oben (Griff-) Fingerspitzenhoehe---------Griffachsenhoehe-----------Handgelenkshoehe-----------Ellenbogenhoehe------------Oberarmlaenge--------------Projektivische ganze Armlaen Funktionelle Armlaenge-----Armlaenge ohne Hand--------Ellenbogen > Fingerspitzen-Ellenbogen > Griffachse----Ellenbeuge > Fingerspitzen-Armansatzbreite------------Unterarmdicke--------------Unterarmlaenge ohne Hand---Ellenbogenbreite-----------Breite ueber Ellenbogen----Handgelenkumfang-----------Kleinster Unterarmumfang---Groesster Unterarmumfang---Groesster Oberarmumfang----Reichweite nach oben-------Reichweite nach oben (Griff) Ellenbogenhoehe------------Handumfang ohne Daumen-----Griffumfang----------------Faustumfang----------------Kleinfingerumfang----------Ringfingerumfang-----------Mittelfingerumfang---------Zeigefingerumfang----------Daumenumfang---------------Kleinfingerbreite handnah--Kleinfingerbreite handfern-Ringfingerbreite handnah--Ringfingerbreite handfern-Mittelfingerbreite handnah-Mittelfingerbreite handfer-Zeigefingerbreite handnah--Zeigefingerbreite handfern-Daumenbreite koerperfern----

15


16

virtual human engineering 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

68.4 84.8 87.9 29.3 28.3 31.5 81.4 79.3 118.4 207.5 122.2 98.3 36.6 9.2 50.3 51.4 37.6 25.1 92.6 896.8 864.9 846.9 535.2 84.2 77.6 288.1 210.5 109.9 72.9 267.7 649.6 435.4 423.9 306.8 602.8 492.9 554.5 651.2 869.6 1119.0 171.4 100.8 229.3 244.2 204.9 124.3 146.0 158.1 195.1 135.2 61.0 65.4 142.2

Length little finger-------Length ring finger---------Length middle finger-------Midd-fing-prox-phalanx lengt Midd-fing-middle phal-length Midd-fing-distal phal-length Length of forefinger-------Length of thumb------------Length of palm-------------Length of hand-------------Breadth of hand with thumb-Breadth of hand without th-Thickness of hand----------Radius of fingertips-------Grip dia-thumb/middle fg-tip Grip dia-thumb/forefingertip Gr-dia-foref-tip/dist-thumb Gr-dia-foref-tip/prox-thumb Circular reach-through dimen Projective leg (+foot) lengt Crotchheight inside leg+fo-Gluteal height-------------Knee joint height----------Medial ankle height--------Lateral ankle height ------Length of foot-------------Length of forefoot---------Projective foot breadth ---Breadth of heel------------Breadth of ball of the footGirth of shank-------------Girth of knee--------------Girth of calf--------------Girth of ankle-------------Height knee-sole of the foot Height of sitting plane----Length buttock to calf/sitti Length buttock to knee/sitti Max-sitt-depth/buttock-tipto Length buttock-sole, sitting Height of shank------------Breadth of single knee-----Breadth oth knees closed/sit Height of head-------------Height of face (chin-front-Eye-vertex height----------Ear height, tragion-vertex-Nose-vertex height---------Mouth-vertex height--------Distance root of nose - chin Nose height, subnasal-nasion Auricular height-----------Breadth initial neck--------

Kleinfingerlaenge----------Ringfingerlaenge-----------Mittelfingerlaenge---------Mittelfingergrundgliedlaenge Mittelfingermittelgliedlaeng Mittelfingerendgliedlaenge-Zeigefingerlaenge----------Daumenlaenge---------------Handflaechenlaenge---------Handlaenge-----------------Handbreite mit Daumen------Handbreite ohne Daumen-----Handdicke------------------Fingerkuppenradius---------Greifdurchmesser 1---------Greifdurchmesser 2---------Greifdurchmesser 3---------Greifdurchmesser 4---------Kreisfoermige Durchgreifgroe Projektivische Beinlaenge--Schritthoehe---------------Gesaessfaltenhoehe---------Kniegelenkhoehe------------Fussknoechelhoehe medial---Fussknoechelhoehe lateral--Fusslaenge-----------------Vorderfusslaenge-----------Fussbreite.----------------. Fersenbreite---------------Fussballenumfang-----------Oberschenkelumfang---------Knieumfang-----------------Wadenumfang----------------. Fesselumfang---------------Kniehoehe > Fussohle-------Sitzflaechenhoehe ---------Koerpersitztiefe bis Wade-Sitztiefe einschliessl.KnieSitztiefe > Fusszehen------Gesaess (Ruecken)-Beinlaenge Oberschenkelhoehe----------Kniebreite eines Knies-----Kniebreite beider(geschloss) Kopfhoehe------------------Gesichtshoehe(Kinn-Stirnmi-Augen-Scheitel-Hoehe-------Ohr-Scheitel-Hoehe---------Nasen-Scheitel-Hoehe-------Mund-Scheitel-Hoehe--------Abstand Nasenwurzel - Kinn-Nasenhoehe-----------------Ohrmuschellaenge-----------Halsansatzbreite------------


virtual human engineering 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

116.2 35.9 35.9 21.2 151.2 33.8 65.6 94.0 117.4 164.9 196.7 208.2 246.4 188.5 110.0 632.2 376.1 396.7 345.5 419.2 460.7

Breadth of lower jaw angle-Breadth of nose, lateral---Auricular breadth- --------Horizontal ear-head distance Zygomatic face breadth-----Breadth of root of the noseInterpupillary breadth-----Breadth of upper face------Smallest forehead breadth--Breadth of head------------Breadth of head with ears--Head length/glabel-opistho-Length nosetip-opisthocranio Length ectocanthus-opisthocr Length tragion-opisthocranio Horizontal head girth -----Sagittal head curve--------Transversal head curve,tragi Lower head curve,ear-chin-ea Girth of neck--------------Initial neck girth----------

Unterkieferwinkelbreite----Nasenbreite----------------Ohrmuschelbreite-----------Ohrmuschelabstand----------Jochbogenbreite------------Nasenwurzelbreite----------Pupillenabstand------------Obergesichtsbreite---------Kleinste Stirnbreite-------Kopfbreite-----------------Kopfbreite mit Ohren-------Kopftiefe------------------Kopftiefe ab Nasenspitze---Kopftiefe ab Augenwinkel---Kopftiefe ab Tragion-------Kopfumfang-----------------Sagittaler Kopfbogen-------Transversaler Kopfbogen----Ohr-Kinn-Ohr-Bogen---------Halsumfang-----------------Halsansatzumfang------------

17


18

virtual human engineering

Workflow : Session 1 Iteration 1 ---D = designer This looks extremely interesting! This is 95% male ... so frame should be as in the following picture. But the frame in your model appears to have the seat too far forward, and the handlebars should be pointing forwards a little as in the following picture. As a reference, for a tall person, the seat join is behind the frame join. On your model, the seat join is in front of the frame join. Could you check which frame 3ds model you are using? We must change the arm position. Arm Length is 851.81, therefore target arm distance needs to be about 780 mm. Something like the following frame adjustment will be needed: When riding, there can be considerable push/pull strain on the arm, the elbow bend at 90 degrees cannot cope with this repeated strain (90 cycles per minute, say), the arm will get tired and will not be able to stabilise the body to allow the core and trunk muscles to work fully. The arm needs to be extended to subtend an angle at the elbow of 150 or more degrees. Sometimes

the rider seeks a fully straight arm position. The hands need to be near the knee at its highest position. There are photos here that show this: http://www.cruzbike.com/new-12-hour-distance-record-pending-certfication If the CUERVO frame cannot provide this yet, then we have made our first critical discovery! :) The hand cannot grip the bar at right angles to the forearm or the hand will tire quickly. The bar to the forearm makes an angle of about 130 degrees. (see inserted picture right) so the arms need to push the slider forward and up and needs to rotate the handlebar forwards also. ---HE = human engineer Please, let me know what kind of documentation is necessary for you to support your next workflow steps? Additional to design data do you use 1:1 printed document or 1:1 projection? I need this info for the setup of the render options thank you. ---D My next steps are to redesign the frame in 2D autocad. If I can use the side elevation of each size human model and the frame, inside autocad, it would be very useful.

gripaxe


Can you create a side elevation in a vector format, such as EPS or dxf?

virtual human engineering

Very good! You have fitted the frameset to the Japanese woman 5% almost exactly. My only note would be that the knee moves parallel to the sagital plane, because the shoe does not rotate on the pedal (usually). On this model, the knee would remain about 125 mm from the centreline. The nose of the seat pan is intersecting the downtube slightly and can rotate up a little. With a large person the seatpan-seatback angle opens up and this allows the large person’s back to slide down the seat back a little, maybe 30mm. I note the pressure points at throacal_1 on the large person. The seat is covered with a cushion, which compresses away to 5 or 6 mm at the top of the seat, reducing this effect. Large persons have not mentioned this pressure point to me, even on rides of 350 km in one day, such as done by this man. The bike is Silvio, which has 700c wheels, and the seat back is the same profile, only lifted up about 20 mm. Recline is 45 degrees. Cruzbike Silvio

19


20

virtual human engineering

Session 1 Iteration 2 ---HE Hi John, yes indeed, if the seat back is adjusted to 43° from the vertical than we don’t need head support. I am going to make a version with this seat angle for you and we will see what to the construction parts happens. ----D Thank you, that would be great. ----HE The critical point is at the 40 mm safety distance betwen the handlebar and the femur. ----D I ride with a gap of 15mm, but ... that is me, not everyone.

For Japanese female 5% lifting the handlebar (by lengthening the fork steering tube) brings the hands up rather high and into the riders vision. So the fitting cannot be ideal for a smaller person. ----HE Btw... Sufficient Knee Clearance... The X-Seam/(2*Crank lenght) proportion has a hard consequence for the JF05: the femur-thorso angel is over 90°. ----D That is absolutely correct, but ... shimano do not make quality road crank less than 165 mm, so that is what Japanese women use when they ride a road bike. I personally think it strange that crank lengths are nearly always 170 to 175.

Even 165 can be hard to find unless it is specially ordered from Shimano. Other makes fit shorter cranks and on one of my models we are close to specifying 145 mm cranks as standard equipment. There is a case for 155mm cranks on the Cuervo model. ----HE Ok but we’ll find together a good solution, not a compromise. ----D It looks convincing to me! ----HE A question: is it a technical problem if the Chainstay is shorter than the actual one? ----D


virtual human engineering

21

Mechanically, no... but the US male 95% might feel cramped. I made a long chainstay to give a large x-seam fitment. ----HE What is the bottom limit? ----D Rear deraileur gear changing is good at a 430mm chainstay length. As it gets shorter than that, the chain angles get sharper onto the front chainring but we can still manage it.

---D Ah! Now I see the seat angle 57° should be 43° from verticle (or 47° from horizontal). When that is done, no head support will be required. For the femur touching the fork: 1) we can narrow the shoulders of the fork blades 2) turning 12 degrees can occur only when riding very slowly, maneuvering, etc. This occurs for only a few seconds during even a long day’s ride. The rider must change technique when turning 180 degrees in a driveway for example, by lifting the outside leg to the 12 o’clock crank position. 12 degrees is a lot of steering turn when riding. Can you locate the centre of gravity of the rider? This determines when wheelspin occurs on an uphill grade.


22

virtual human engineering

Session 1 Iteration 3 -4 ---HE I’m sending you the ASSEMBLY JAPAN F05 iteration 3-4 pictures. The seat back is now 43° from vertical. Please, check the Japan F05 database - distance No.132 Length buttock to knee/sitting : 511.0 mm . I understand all your technical restrictions. In this case we have only one option for a practical solution: to change the shape of the handlebar. ---D

Your handlebar suggestion is the way to go! It will be something like what we use on the Vendetta: On the Cuervo design, I shortened the reach distance. Looks like I should have lengthened it. I will try to get revised handlebars into the model. Longer horns will be striking - they’ll be similar to our high-end bike, Vendetta (attached). And I think we can weld the bars to the end of the slider, avoiding a clamp. That looks great. I feel convinced that the Cuervo design can be made to accomodate the Japanese Female 5% size, and I know where


virtual human engineering

23

I have to develop the design details further to do this. I am wondering how Mr US 95% will look - will the frame design hold up!?


24

virtual human engineering

Session 1 Iteration 5 ---D I’m inspired by your superimposition of J F05 and US M95. Several things seem possible (in addition to the extra reach handlebar). We have to check whether 1) we could fix the slider clamp height? (fork neck length) 2) we could fix the slider clamp to the slider? (fixed reach adjustment) 3) it might be possible on 26” wheels. 4) we might be able to introduce a nose bend (like Vendetta) and still have sufficient slider adjust-

ment, which would make it easier to fit a front derailleur. 1) & 2) Would you be able to average the positions between JF05 and USM95 and let us see the outcome? I am organising a new 3ds frame model for you with extended reach bars (and a better modelled seat, so side views look more realistic) This would simplify production. 3) & 4) I will investigate these on autocad, once I have your 1) & 2) suggestion. These possibilities would lower costs and make the bicycle more compatible.

----HE A new 3ds modell with detailed seat is necessary for an exact positioning. I would like to use a SRP definition (SRP = seat reference point). I need your help to be able to define an SRP, because only you have a seat that will be used to the Cuervo model. I’m going to make a description for you with a picture during the next days in order to explane how to measure the exact position of the SRP. If you are ready with the corrected 3ds model we can start the second session. I would like to test the recent configuration for the european population (DIN33402 and EU-


virtual human engineering

ROPA-UHP) and I’m going to create a design/ human engineering documentation (PDF) about the first session. I’ll send you the 2 DWG files with the iteration 5 J F05 and US M95 frame configuration.

25


26

virtual human engineering

Session 2 Iteration 6 ---D New model files are in the shared directory with new seat and handlebar. The seatpan attaches with two bolts and sits on small rubber blocks front and rear that touch the frame. The seatpan rotates around virtual axis 30 cm above the seat pan curve. The seat pan curve is an arc. If the extreme tests (US_M95 and J_F05) are sat-

isfactory then I am confident that in between sizes will also be satisfactory. ---HE I’ve received the 2 HBr2 3ds models. Thank you! I’m going to build the new cinematic modell for the second session with the new parts but I still need some additional data. The first data is the thickness of the seat upholstery. The second is the trochanterion position of a real person on the seat. For this measurement I’ll prepare a short description with a picture and I’ll send it to you as soon as possible.


virtual human engineering

27

----D 1) can we fix the slider clamp height ? (fork neck length) ---HE --- YES ---D 2) can we fix the slider clamp to the slider? (fixed reach adjustment) ---HE --- YES


28

virtual human engineering

Design data


virtual human engineering

29


30

virtual human engineering

Dear LĂĄszlĂł, Thank you for this spectacular report. There was truely a lot of work done and the results are very impressive. I knew that within the geometry combinations of the layout of Cuervo there would be a sweet spot - and with your help we have found it. I suggest the report conclusions might include: 1) a frame design has been established to a simple geometry and low tube count to rival a diamond frame bike and with an adjustment range that accommodates US males to 95th percentile down to Japanese females at the 5th percentile. This is a very large fitment range.

2) I am very confident this frame design can be adapted to 26� wheels or 700c wheels and retain the same fitment range 3) The boom may allow a vendetta type curve, which would allow use of a front derailleur. 4) The tube simplicity lends itself to being built in other materials. This has far reaching implications. 5) A single frame design capable of taking derailleur or hub gearing is possible. Best John


virtual human engineering

Very impressive work indeed. This design is astoundingly versatile. Lots of potential regardless of the approach we choose to take with it. Cheers, Doug Burton Cruzbike Technical Specialist http://www.cruzbike.com/forums/ http://sports.groups.yahoo.com/group/Cruzbike/ Good work John and L谩szl贸, this is very exciting! Maria Parker Cruzbike.com

hub gearing

front derailleur.

31


32

virtual human engineering

Additional Testpopulation: DIN 33402 2005 MASCULIN 50%

#!CATBODY 2 # GERMAN DIN-33402 2005 database # masculin 25 years old PC 50 # unit: mm #

MNr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

P50 1758.0 1634.0 1641.4 1573.6 1517.8 1479.0 1440.1 1458.0 1465.0 1313.0 1292.8 1098.2 1082.0 1035.4 918.9 455.4 394.0 143.4 380.3 283.8 301.7 304.8 346.0 263.0 237.0 207.0 215.0 258.0 232.0 1061.1 1603.5 916.7 911.9 897.2 833.8 996.8 921.0 797.0 737.4 658.9 628.0 479.2

Stature--------------------Eye height-----------------Tragion height-------------Mouth height---------------Height of cervical vertebra7 Initial neck height--------Sternal height-------------Shoulder height lateral----Shoulder height acromial---Subaxillary height---------Mamillary height-----------Waist height---------------Iliocristal height---------Iliospinal height----------Trochanter height ---------Shoulder breadth, bideltoidShoulder breadth, biacromi-Shoulder breadth, unilateral Shoulder breadth, lifted arm Thorax breadth-------------Waist breadth--------------Pelvis breadth-------------Hip breadth----------------Body depth-----------------Depth back - chest---------Depth dorsal vertebra-ster-Depth of waist-------------Biggest de-torso below che-Biggest depth of buttock---Shoulder girth-------------Torso girth, vertical------Chest girth----------------Anthropological chest girthThorax girth---------------Waist girth----------------Seat girth-----------------Height sitting plane- vertex Height sitting plane- eye--Height sitting plane- mouthHeight sitting plane-cervi-Sitt-shoulder height, acromi Height of lower scapula/sitt

Koerperhoehe---------------Augenhoehe-----------------Tragionhoehe---------------Mundhoehe------------------Halswirbelhoehe------------Halsansatzhoehe------------Sternalhoehe---------------Schulterhoehe lateral------Schulterhoehe akromial-----Unterachselhoehe-----------Brustwarzenhoehe-----------Taillenhoehe---------------Darmbeinkammhoehe----------Darmbeinstachelhoehe-------Trochanterhoehe------------Schulterbreite >Oberarme<--Schulterbreite >Akromien<--Einseitige Schulterbreite--Schulterbreite bei erh-Armen Brustkorbbreite------------Taillenbreite--------------Beckenbreite---------------Hueftbreite----------------Koerpertiefe---------------Brusttangente--------------Brustkorbtiefe-------------Taillentiefe---------------Gr- Rumpftiefe u-Brustkorb-Gesaesstangente------------Schulterumfang-------------Rumpfumfang vertikal-------Brustkorbumfang------------Anthropologischer Brustumfan Thoraxumfang---------------Taillenumfang--------------Gesaessumfang--------------Koerpersitzhoehe ----------Augenhoehe von Sitzflaeche-Mundhoehe von Sitzflaeche--Cervicalhoehe--------------Schulterhoehe akromial-----Untere Schulterblatthoehe---


virtual human engineering 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

253.9 83.6 355.0 247.2 1794.9 1535.8 906.9 734.0 653.2 2083.0 2184.5 2361.9 2271.2 671.7 786.0 874.0 1106.0 341.3 789.5 677.4 617.8 484.2 368.0 430.7 121.6 47.4 271.4 64.8 417.0 175.0 184.2 251.8 288.3 1367.3 1268.7 249.1 211.3 133.5 289.0 57.0 64.0 67.0 65.0 70.0 17.0 16.0 20.0 17.0 21.0 18.0 21.0 19.0 23.0

Height of pelvis/sitting---Height seat-trochanter-----Biggest hip breadth sittingSagittal diamet-abdomen/sitt Span of arms---------------Span of grip axes----------Elbow span-----------------Forward reach, (fingertips)Forward reach, (grip axis)-Vertical reach, (fingertips) Vertical reach, (grip axis)Max-vertical reach(fingertp) Maximal vertical grip reachMiddle fingertip height----Height of grip axes--------Wrist height---------------Elbow height---------------Upper arm length-----------Projected arm length-------Functional arm length------Arm length without hand----Length elbow - fingertips--Length elbow - grip axes---Length bend of elbow-fingert Diameter of initial uppera-Forearm thickness----------Forearm length without han-Breadth of elbow-----------Widest breadth for both elbo Wrist girth----------------Smallest forearm girth-----Biggest forearm girth------Biggest upper arm girth----Vertic-fingertip reach/sittVertical grip reach, sitting Elbow height, sitting------Hand girth without thumb---Grip girth-----------------Fist girth-----------------Little finger girth--------Ring finger girth ---------Middle finger girth--------Forefinger girth-----------Thumb girth----------------Breadth little finger prox-Breadth little finger dist-Breadth ring finger proxim-Breadth ring finger distal-Breadth middle finger prox-Breadth middle finger dist-Breadth forefinger proxima-Breadth forefinger distal--Breadth of thumb distal-----

Beckenhoehe----------------Trochanterhoehe------------Koerpersitzbreite----------Sagittaler Abdomendurchmesse Spannweite der Arme -------Griffachsenspannweite------Ellenbogenspannweite-------Reichweite vorn(Fingerspitz) Reichweite vorn(Griffachse)Reichweite oben(Fingerspitz) Reichweite oben(Griffachse)Max Reichweite oben (Fspitz) Max Reichweite oben (Griff-) Fingerspitzenhoehe---------Griffachsenhoehe-----------Handgelenkshoehe-----------Ellenbogenhoehe------------Oberarmlaenge--------------Projektivische ganze Armlaen Funktionelle Armlaenge-----Armlaenge ohne Hand--------Ellenbogen > Fingerspitzen-Ellenbogen > Griffachse----Ellenbeuge > Fingerspitzen-Armansatzbreite------------Unterarmdicke--------------Unterarmlaenge ohne Hand---Ellenbogenbreite-----------Breite ueber Ellenbogen----Handgelenkumfang-----------Kleinster Unterarmumfang---Groesster Unterarmumfang---Groesster Oberarmumfang----Reichweite nach oben-------Reichweite nach oben (Griff) Ellenbogenhoehe------------Handumfang ohne Daumen-----Griffumfang----------------Faustumfang----------------Kleinfingerumfang----------Ringfingerumfang-----------Mittelfingerumfang---------Zeigefingerumfang----------Daumenumfang---------------Kleinfingerbreite handnah--Kleinfingerbreite handfern-Ringfingerbreite handnah--Ringfingerbreite handfern-Mittelfingerbreite handnah-Mittelfingerbreite handfer-Zeigefingerbreite handnah--Zeigefingerbreite handfern-Daumenbreite koerperfern----

33


34

virtual human engineering

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

63.0 78.0 84.0 27.0 26.0 29.0 75.0 67.0 109.0 187.0 106.0 86.0 28.0 8.0 43.1 44.1 32.3 21.5 79.3 857.4 827.0 809.7 486.6 75.7 69.8 262.0 191.5 104.0 67.0 253.3 559.1 374.7 364.8 264.1 548.0 453.0 507.0 599.0 800.0 1039.0 141.0 94.7 215.3 229.0 192.2 116.5 137.0 148.2 183.0 126.8 57.3 61.3 133.1 109.3 33.8 33.8

Length little finger-------Length ring finger---------Length middle finger-------Midd-fing-prox-phalanx lengt Midd-fing-middle phal-length Midd-fing-distal phal-length Length of forefinger-------Length of thumb------------Length of palm-------------Length of hand-------------Breadth of hand with thumb-Breadth of hand without th-Thickness of hand----------Radius of fingertips-------Grip dia-thumb/middle fg-tip Grip dia-thumb/forefingertip Gr-dia-foref-tip/dist-thumb Gr-dia-foref-tip/prox-thumb Circular reach-through dimen Projective leg (+foot) lengt Crotchheight inside leg+fo-Gluteal height-------------Knee joint height----------Medial ankle height--------Lateral ankle height ------Length of foot-------------Length of forefoot---------Projective foot breadth ---Breadth of heel------------Breadth of ball of the footGirth of shank-------------Girth of knee--------------Girth of calf--------------Girth of ankle-------------Height knee-sole of the foot Height of sitting plane----Length buttock to calf/sitti Length buttock to knee/sitti Max-sitt-depth/buttock-tipto Length buttock-sole, sitting Height of shank------------Breadth of single knee-----Breadth oth knees closed/sit Height of head-------------Height of face (chin-front-Eye-vertex height----------Ear height, tragion-vertex-Nose-vertex height---------Mouth-vertex height--------Distance root of nose - chin Nose height, subnasal-nasion Auricular height-----------Breadth initial neck-------Breadth of lower jaw angle-Breadth of nose, lateral---Auricular breadth- ---------

Kleinfingerlaenge----------Ringfingerlaenge-----------Mittelfingerlaenge---------Mittelfingergrundgliedlaenge Mittelfingermittelgliedlaeng Mittelfingerendgliedlaenge-Zeigefingerlaenge----------Daumenlaenge---------------Handflaechenlaenge---------Handlaenge-----------------Handbreite mit Daumen------Handbreite ohne Daumen-----Handdicke------------------Fingerkuppenradius---------Greifdurchmesser 1---------Greifdurchmesser 2---------Greifdurchmesser 3---------Greifdurchmesser 4---------Kreisfoermige Durchgreifgroe Projektivische Beinlaenge--Schritthoehe---------------Gesaessfaltenhoehe---------Kniegelenkhoehe------------Fussknoechelhoehe medial---Fussknoechelhoehe lateral--Fusslaenge-----------------Vorderfusslaenge-----------Fussbreite.----------------. Fersenbreite---------------Fussballenumfang-----------Oberschenkelumfang---------Knieumfang-----------------Wadenumfang----------------. Fesselumfang---------------Kniehoehe > Fussohle-------Sitzflaechenhoehe ---------Koerpersitztiefe bis Wade-Sitztiefe einschliessl.KnieSitztiefe > Fusszehen------Gesaess (Ruecken)-Beinlaenge Oberschenkelhoehe----------Kniebreite eines Knies-----Kniebreite beider(geschloss) Kopfhoehe------------------Gesichtshoehe(Kinn-Stirnmi-Augen-Scheitel-Hoehe-------Ohr-Scheitel-Hoehe---------Nasen-Scheitel-Hoehe-------Mund-Scheitel-Hoehe--------Abstand Nasenwurzel - Kinn-Nasenhoehe-----------------Ohrmuschellaenge-----------Halsansatzbreite-----------Unterkieferwinkelbreite----Nasenbreite----------------Ohrmuschelbreite------------


151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

19.9 142.1 31.8 63.0 88.4 110.3 155.0 184.8 193.0 228.4 174.8 102.1 571.0 345.0 360.0 312.1 393.7 432.5 0.0

Horizontal ear-head distance Zygomatic face breadth-----Breadth of root of the noseInterpupillary breadth-----Breadth of upper face------Smallest forehead breadth--Breadth of head------------Breadth of head with ears--Head length/glabel-opistho-Length nosetip-opisthocranio Length ectocanthus-opisthocr Length tragion-opisthocranio Horizontal head girth -----Sagittal head curve--------Transversal head curve,tragi Lower head curve,ear-chin-ea Girth of neck--------------Initial neck girth---------Bodyweight------------------

Ohrmuschelabstand----------Jochbogenbreite------------Nasenwurzelbreite----------Pupillenabstand------------Obergesichtsbreite---------Kleinste Stirnbreite-------Kopfbreite-----------------Kopfbreite mit Ohren-------Kopftiefe------------------Kopftiefe ab Nasenspitze---Kopftiefe ab Augenwinkel---Kopftiefe ab Tragion-------Kopfumfang-----------------Sagittaler Kopfbogen-------Transversaler Kopfbogen----Ohr-Kinn-Ohr-Bogen---------Halsumfang-----------------Halsansatzumfang-----------Kรถrpergewicht---------------

virtual human engineering

35


36

virtual human engineering

Design data Fitting DIN 33402 2005 MASCULIN 50%


virtual human engineering

37


38

virtual human engineering

Additional Testpopulation: DIN 33402 2005 FEMININ 50%

#!CATBODY 2 # GERMAN DIN-33402 2005 database # feminin 25 years old PC50 # unit: mm #

MNr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

P50 1646.0 1516.0 1522.9 1461.9 1404.9 1374.8 1337.8 1347.8 1348.0 1203.5 1176.4 1017.8 980.6 947.5 832.1 406.9 356.0 130.1 354.0 246.5 261.1 289.0 353.0 269.0 220.6 162.0 162.0 215.9 198.3 967.3 1498.9 870.4 818.6 743.3 684.6 980.6 866.0 737.0 687.5 631.0 596.0 463.7

Stature--------------------Eye height-----------------Tragion height-------------Mouth height---------------Height of cervical vertebra7 Initial neck height--------Sternal height-------------Shoulder height lateral----Shoulder height acromial---Subaxillary height---------Mamillary height-----------Waist height---------------Iliocristal height---------Iliospinal height----------Trochanter height ---------Shoulder breadth, bideltoidShoulder breadth, biacromi-Shoulder breadth, unilateral Shoulder breadth, lifted arm Thorax breadth-------------Waist breadth--------------Pelvis breadth-------------Hip breadth----------------Body depth-----------------Depth back - chest---------Depth dorsal vertebra-ster-Depth of waist-------------Biggest de-torso below che-Biggest depth of buttock---Shoulder girth-------------Torso girth, vertical------Chest girth----------------Anthropological chest girthThorax girth---------------Waist girth----------------Seat girth-----------------Height sitting plane- vertex Height sitting plane- eye--Height sitting plane- mouthHeight sitting plane-cervi-Sitt-shoulder height, acromi Height of lower scapula/sitt

Koerperhoehe---------------Augenhoehe-----------------Tragionhoehe---------------Mundhoehe------------------Halswirbelhoehe------------Halsansatzhoehe------------Sternalhoehe---------------Schulterhoehe lateral------Schulterhoehe akromial-----Unterachselhoehe-----------Brustwarzenhoehe-----------Taillenhoehe---------------Darmbeinkammhoehe----------Darmbeinstachelhoehe-------Trochanterhoehe------------Schulterbreite >Oberarme<--Schulterbreite >Akromien<--Einseitige Schulterbreite--Schulterbreite bei erh-Armen Brustkorbbreite------------Taillenbreite--------------Beckenbreite---------------Hueftbreite----------------Koerpertiefe---------------Brusttangente--------------Brustkorbtiefe-------------Taillentiefe---------------Gr- Rumpftiefe u-Brustkorb-Gesaesstangente------------Schulterumfang-------------Rumpfumfang vertikal-------Brustkorbumfang------------Anthropologischer Brustumfan Thoraxumfang---------------Taillenumfang--------------Gesaessumfang--------------Koerpersitzhoehe ----------Augenhoehe von Sitzflaeche-Mundhoehe von Sitzflaeche--Cervicalhoehe--------------Schulterhoehe akromial-----Untere Schulterblatthoehe---


virtual human engineering 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

237.6 76.1 384.0 239.1 1647.0 1403.9 838.5 689.0 608.5 1890.0 2018.2 2197.3 2098.3 631.4 753.0 826.5 1036.0 304.0 713.0 620.0 544.0 434.0 323.0 380.0 114.1 50.7 239.0 69.9 451.0 160.0 162.0 268.3 341.6 1273.8 1192.7 243.1 182.1 130.1 286.2 56.0 62.0 65.0 63.0 67.0 15.0 13.0 16.0 14.0 18.0 15.0 18.0 15.0 19.0

Height of pelvis/sitting---Height seat-trochanter-----Biggest hip breadth sittingSagittal diamet-abdomen/sitt Span of arms---------------Span of grip axes----------Elbow span-----------------Forward reach, (fingertips)Forward reach, (grip axis)-Vertical reach, (fingertips) Vertical reach, (grip axis)Max-vertical reach(fingertp) Maximal vertical grip reachMiddle fingertip height----Height of grip axes--------Wrist height---------------Elbow height---------------Upper arm length-----------Projected arm length-------Functional arm length------Arm length without hand----Length elbow - fingertips--Length elbow - grip axes---Length bend of elbow-fingert Diameter of initial uppera-Forearm thickness----------Forearm length without han-Breadth of elbow-----------Widest breadth for both elbo Wrist girth----------------Smallest forearm girth-----Biggest forearm girth------Biggest upper arm girth----Vertic-fingertip reach/sittVertical grip reach, sitting Elbow height, sitting------Hand girth without thumb---Grip girth-----------------Fist girth-----------------Little finger girth--------Ring finger girth ---------Middle finger girth--------Forefinger girth-----------Thumb girth----------------Breadth little finger prox-Breadth little finger dist-Breadth ring finger proxim-Breadth ring finger distal-Breadth middle finger prox-Breadth middle finger dist-Breadth forefinger proxima-Breadth forefinger distal--Breadth of thumb distal-----

Beckenhoehe----------------Trochanterhoehe------------Koerpersitzbreite----------Sagittaler Abdomendurchmesse Spannweite der Arme -------Griffachsenspannweite------Ellenbogenspannweite-------Reichweite vorn(Fingerspitz) Reichweite vorn(Griffachse)Reichweite oben(Fingerspitz) Reichweite oben(Griffachse)Max Reichweite oben (Fspitz) Max Reichweite oben (Griff-) Fingerspitzenhoehe---------Griffachsenhoehe-----------Handgelenkshoehe-----------Ellenbogenhoehe------------Oberarmlaenge--------------Projektivische ganze Armlaen Funktionelle Armlaenge-----Armlaenge ohne Hand--------Ellenbogen > Fingerspitzen-Ellenbogen > Griffachse----Ellenbeuge > Fingerspitzen-Armansatzbreite------------Unterarmdicke--------------Unterarmlaenge ohne Hand---Ellenbogenbreite-----------Breite ueber Ellenbogen----Handgelenkumfang-----------Kleinster Unterarmumfang---Groesster Unterarmumfang---Groesster Oberarmumfang----Reichweite nach oben-------Reichweite nach oben (Griff) Ellenbogenhoehe------------Handumfang ohne Daumen-----Griffumfang----------------Faustumfang----------------Kleinfingerumfang----------Ringfingerumfang-----------Mittelfingerumfang---------Zeigefingerumfang----------Daumenumfang---------------Kleinfingerbreite handnah--Kleinfingerbreite handfern-Ringfingerbreite handnah--Ringfingerbreite handfern-Mittelfingerbreite handnah-Mittelfingerbreite handfer-Zeigefingerbreite handnah--Zeigefingerbreite handfern-Daumenbreite koerperfern----

39


40

virtual human engineering

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

58.0 73.0 77.0 25.0 24.0 25.0 69.0 60.0 100.0 174.0 92.0 79.0 26.0 7.0 40.8 41.8 30.8 20.9 68.6 0.0 0.0 0.0 444.4 72.0 68.0 250.0 181.5 101.0 62.0 263.0 570.3 364.2 352.2 239.1 504.0 397.0 482.0 586.0 796.8 1044.0 144.0 86.1 187.1 218.0 180.6 125.0 136.8 148.5 183.8 125.0 57.7 60.9 121.4 105.1 31.6 32.7

Length little finger-------Length ring finger---------Length middle finger-------Midd-fing-prox-phalanx lengt Midd-fing-middle phal-length Midd-fing-distal phal-length Length of forefinger-------Length of thumb------------Length of palm-------------Length of hand-------------Breadth of hand with thumb-Breadth of hand without th-Thickness of hand----------Radius of fingertips-------Grip dia-thumb/middle fg-tip Grip dia-thumb/forefingertip Gr-dia-foref-tip/dist-thumb Gr-dia-foref-tip/prox-thumb Circular reach-through dimen Projective leg (+foot) lengt Crotchheight inside leg+fo-Gluteal height-------------Knee joint height----------Medial ankle height--------Lateral ankle height ------Length of foot-------------Length of forefoot---------Projective foot breadth ---Breadth of heel------------Breadth of ball of the footGirth of shank-------------Girth of knee--------------Girth of calf--------------Girth of ankle-------------Height knee-sole of the foot Height of sitting plane----Length buttock to calf/sitti Length buttock to knee/sitti Max-sitt-depth/buttock-tipto Length buttock-sole, sitting Height of shank------------Breadth of single knee-----Breadth oth knees closed/sit Height of head-------------Height of face (chin-front-Eye-vertex height----------Ear height, tragion-vertex-Nose-vertex height---------Mouth-vertex height--------Distance root of nose - chin Nose height, subnasal-nasion Auricular height-----------Breadth initial neck-------Breadth of lower jaw angle-Breadth of nose, lateral---Auricular breadth- ---------

Kleinfingerlaenge----------Ringfingerlaenge-----------Mittelfingerlaenge---------Mittelfingergrundgliedlaenge Mittelfingermittelgliedlaeng Mittelfingerendgliedlaenge-Zeigefingerlaenge----------Daumenlaenge---------------Handflaechenlaenge---------Handlaenge-----------------Handbreite mit Daumen------Handbreite ohne Daumen-----Handdicke------------------Fingerkuppenradius---------Greifdurchmesser 1---------Greifdurchmesser 2---------Greifdurchmesser 3---------Greifdurchmesser 4---------Kreisfoermige Durchgreifgroe Projektivische Beinlaenge--Schritthoehe---------------Gesaessfaltenhoehe---------Kniegelenkhoehe------------Fussknoechelhoehe medial---Fussknoechelhoehe lateral--Fusslaenge-----------------Vorderfusslaenge-----------Fussbreite.----------------. Fersenbreite---------------Fussballenumfang-----------Oberschenkelumfang---------Knieumfang-----------------Wadenumfang----------------. Fesselumfang---------------Kniehoehe > Fussohle-------Sitzflaechenhoehe ---------Koerpersitztiefe bis Wade-Sitztiefe einschliessl.KnieSitztiefe > Fusszehen------Gesaess (Ruecken)-Beinlaenge Oberschenkelhoehe----------Kniebreite eines Knies-----Kniebreite beider(geschloss) Kopfhoehe------------------Gesichtshoehe(Kinn-Stirnmi-Augen-Scheitel-Hoehe-------Ohr-Scheitel-Hoehe---------Nasen-Scheitel-Hoehe-------Mund-Scheitel-Hoehe--------Abstand Nasenwurzel - Kinn-Nasenhoehe-----------------Ohrmuschellaenge-----------Halsansatzbreite-----------Unterkieferwinkelbreite----Nasenbreite----------------Ohrmuschelbreite------------


151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

18.4 136.8 31.6 61.0 87.8 109.2 149.0 178.6 179.0 213.4 167.2 95.4 546.0 335.0 344.0 299.5 330.2 384.2 0.0

Horizontal ear-head distance Zygomatic face breadth-----Breadth of root of the noseInterpupillary breadth-----Breadth of upper face------Smallest forehead breadth--Breadth of head------------Breadth of head with ears--Head length/glabel-opistho-Length nosetip-opisthocranio Length ectocanthus-opisthocr Length tragion-opisthocranio Horizontal head girth -----Sagittal head curve--------Transversal head curve,tragi Lower head curve,ear-chin-ea Girth of neck--------------Initial neck girth---------Bodyweight------------------

Ohrmuschelabstand----------Jochbogenbreite------------Nasenwurzelbreite----------Pupillenabstand------------Obergesichtsbreite---------Kleinste Stirnbreite-------Kopfbreite-----------------Kopfbreite mit Ohren-------Kopftiefe------------------Kopftiefe ab Nasenspitze---Kopftiefe ab Augenwinkel---Kopftiefe ab Tragion-------Kopfumfang-----------------Sagittaler Kopfbogen-------Transversaler Kopfbogen----Ohr-Kinn-Ohr-Bogen---------Halsumfang-----------------Halsansatzumfang-----------Kรถrpergewicht---------------

virtual human engineering

41


42

virtual human engineering

Design data Fitting DIN 33402 2005 MASCULIN 50%


virtual human engineering

43


44

virtual human engineering


virtual human engineering

Design data: DIN 33402-2005 FEMININ 50 the trochanter height prportional coefficient is - 0.2284 Recommended slider clamp - handlebar distance correcture 260 mm

45


46

virtual human engineering

CRUZBIKE VENDETTA Analysis tasks: I have the entire frame designed in detail except for a particular dimension that relates to arm reach, a similar question we analysed in the Cuervo project. I need your digital humans placed into the frame to resolve this! Requirements ‌ we need to ensure 1. the placement of the bars gives arms 2. an aerodynamic position, 3. and a position that lets them perform with good strength, 4. allows proper visibility 5. and leg clearance. Similar questions to the Cuervo project but this time with three tube-sets for the front triangle .. 6. small, 7. medium, 8. large and with two handlebar types, 9. road bike style drop bars 10. and bull horn bars. The key question we need to determine is 11. the distance from bar to head tube (‘y’), 12. to make the hand grip 50mm shorter than what a fully extended, straight arm could reach. 13. We need this for the bull bar and for the drop bar. We want to see y being the same for drop bar and bull bar. If 50mm becomes 30 mm on the bull bar, it is okay. The bullhorn bars should give an almost straight and almost horizontal arm position - the arms should point up, but only 5 degrees 14. Head support positions I cannot extend the adjustment range further (have developed the design through many interations to the current conclusion) so you might indicate the percentile range that has been captured and we will accept that. 15. definition of the percentile range-dependent tube sets. Restrictions:


1. the seat angle and position is fixed. (H point fixed vertical positioning line) 2. the attached drawing file shows the dimensions etc of the smallest triangle

positions

3. the test populations: - for the end size control ISO 7250-2 2010 USA male 95% down to JAPAN female 5%. - and for the middle size control German Male/ Female 50%

APPENDIX 1. Test populatin description Basic human body measurements for technological design —

Assembly Analysis Assembly components: Testpopulation: ISO 7250-2 2010 JAPAN Feminin 05% ISO 7250-2 2010 GERMAN Feminin 50% ISO 7250-2 2010 GERMAN Masculin 50% ISO 7250-2 2010 USA Masculin 95% CAD Data: CRUZBIKE VENDETTA front drived recumbent Vendetta frame 2 handlebar shape variants (drop bar, bull horn bar) 3 telescopic boom variants (small medium large) 3 chain stay variants (small medium large) 4 slider variants Ergonomics analysis tools: 1. Measurement analysis tools 2. Visibility analysis tool 3. Bodyforce analysis tool 4. Posture analysis tools Positioning of the testpopulation: Fixed Hpoint position with vertical variability + thorso contact with the seat back Fixed seat position and orientation Fixed seat back position and orientation Assembly analysis tasks: 1 Define for all testpopulation the optimal distance (leg clearance) between the slider/fork steering intersection point and the handlebar axis line and the crank. 2 Define for all testpopulation the optimal grip

3 Define the bodyheight/percentil ranges for the 3 front triangle tube.

virtual human engineering

47

Statistical summaries of body measurements from individual ISO populations: ISO 7250-2 2010 JAPAN Feminin 05% ISO 7250-2 2010 GERMAN Feminin 50% ISO 7250-2 2010 GERMAN Masculin 50% ISO 7250-2 2010 USA Masculin 95%


48

virtual human engineering


virtual human engineering

49


50

virtual human engineering


virtual human engineering

51


52

virtual human engineering


virtual human engineering

53


54

virtual human engineering


virtual human engineering

55


56

virtual human engineering


virtual human engineering

57


58

virtual human engineering


virtual human engineering

59


60

virtual human engineering


virtual human engineering

61


62

virtual human engineering


virtual human engineering

63


64

virtual human engineering


virtual human engineering

65


66

virtual human engineering

Appendix 1

About Cruzbike Inc. Source: http://www.cruzbike.com/contact-someone-cruzbike-inc Cruzbike Inc. was founded in 2006 by a U.S. Physician and an Australian Inventor. We want people to know there is a new way to ride a bike - a way that is safe, healthy and more than anything will renew your love of cycling. Jim Parker, M.D. Co Founder and CEO jim@cruzbike.com As a radiologist, I know human anatomy from head-to-toe. A standard bike places too much pressure on several sensitive areas of the body. This becomes more of a problem as we age. I did an exhaustive search of alternate bicycle designs before concluding that the Cruzbike is the best combination of comfort, performance, safety, and ergonomic design. It also looks cool, goes very fast, and is simply fun to ride. In the photos, note that the hands and wrists are not bearing weight, the back is supported, the head is in a comfortably high and upright position for viewing traffic (without craning the neck), the rider’s weight is not centered over the genitals (which can cause pain, numbness, and loss of function), and the laid-back posture creates nearly the same aerodynamic profile as a racer on a standard bicycle in a tuck position. John Tolhurst, Co Founder and Design Director john@cruzbike.com For over a decade I’ve been struck by the possibilities for front wheel drive cycling - a configuration that today has proven its excellence. On all kinds of surfaces - with a load up or without, with my four year old child on the back or not – the Cruzbike is the daily rider, Dad’s taxi, the weekend sprinter, and the lazy beach cruiser all rolled into one. And given the versatility in the Cruzbike design, which

to me as a designer is very important, the front wheel drive system as we have implemented it still provides excellent efficiency and ergonomics. The Cruzbike’s frame rigidly supports the crank to retain your precious cycling energy, without the need for expensive construction techniques or exotic materials. The seating position, the carefully shaped seat and the full body engagement in the cycling experience, as with a standard bike, ensure an exceptional ergonomic package. Add to that the use of standard parts and the Cruzbike design offers flexibility of use, economy, safety, efficiency and ergonomic perfection, all rolled into one. Before designing the Cruzbike and founding Cruzbike Inc., I spent ten years in the architecture profession and fifteen years consulting before being made a Fellow of the Institute of Management Consultants CMC logo. I have BA, BSc and MBA degrees from Australian universities. I am motivated by the hope that we all have a future on our fragile spaceship earth - and a vision that there are many more exciting and practical low energy vehicles yet to be built. Maria Parker, Co Owner of Cruzbike Inc maria@cruzbike.com I arrange shipping for customers and talk to them about their new bikes. It is a great pleasure to be able to own and work with a product I really believe in. I recently took a Sofrider on the cycle North Carolina 7 day ride. It was more fun than I could have possibly imagined. The first few days on the trip a few people asked me about and commented on the bike. By the third day at every rest stop I was questioned about it and every evening I would spend hours discussing its merits with interested, sore, road bike riders. I really enjoy talking with customers and potential customers about our terrific bikes. If I can help you, please call me on our toll free number

Appendix 2

About Virtual Human Engineering Human Engineering is the discipline dedicated to applying technical knowledge about human beings to products, processes, systems and work environments so that these essentials can be designed to withstand the demands of users. The need for such a discipline has arisen due of considerations of health and safety, efficiency, comfort and the development of human interests and potentials. Virtual Human Engineering recognises human beings in different virtual environments. Designing for humans is a decisive factor in the quality of products. Ergonomics, safety and comfort hold important advantages over the competition and increase customer satisfaction. Extensive virtual analysis of design and construction allow for early corrections to be implemented and avoid subsequent expensive redesign.

Virtual Human Engineering Inc. Foundation: 01. 02. 2010. Stuttgart Profile: Research and development in the field of Information Technology (IT) of Ergonomics, Industrial Design and New Media, as well as the education and consultation in these specialities and the distribution of coherent software products and solutions. The Human in sight Ergonomics aims to improve productivity of work systems and to reduce the loads acting on the working humans. We would like to provide you with the ergonomic planning of human friendly products and workplaces. Our objectives are: optimization of human/machine system, increasing the performance of the system, increasing


virtual human engineering

the reliability of the system with the help of the Virtual Reality Simulation Environment; modelling and simulation of human bodies; simulation of human behaviour and human signals.

problem recognitions ensure the reduction of costs, an increase in efficiency and a significant gain in quality and competitiveness. Advantages for employees: Workplaces and devices will be formed better and can be used more efficiently.

Global online Standard for Human Engineering Situation

Founder and CEO: Dipl. - Des. Dipl - Inf. (UNI) László Ördögh Scharrstraße 7.. D- 70563 Stuttgart Germany

Nowadays Virtual Human Engineering has become a worldwide technology. However, until now, only the larger companies and concerns have be able to enjoy its benefits. Virtual Human Engineering is now accessible to middle and small size companies. Technological Trends - Online Software Service Trend: in the future more and more software products will be available as online services. No software lincence will be required, instead the user will be charged the same way as for electricity and gas service. -Collaboration Platform Trend: In the future users will be subscribed at collaboration platforms and will have access to external competencies. -Online Virtual Reality Trend: an increasing number of design software products will include VR modules or be based on VR technologies. - Intuitive User Interface Concept Trend: more and more software products will have intuitively learnable user interfaces and humanised input devices. (iPod) The future Why can online collaboration solutions have global advatages for smaller companies as well? A worldwide online human engineering collaboration helps making decisions faster and makes possible the transfer of knowledge and experience. Advantages for Companies: They can use only the necessary part of the offered services for making decisions. There are no more unnecessary investments. Early stage

http://virtualhumanengineering.com/ Cooperation partners: NexStep Consulting Kft Hungary & Institute of Material Handling and Industrial Engineering, Professorship of Ergonomics, Dresden University of Technology Appendix 3

About CharAT Ergonomics CHarAT Ergonomics offers a human simulation model. Using this model, ergonomically related questions can be answered long before the construction of a physical prototype. This saves valuable product design time and cost. With the help of virtual human models, key features of accessibility and manageability can be studied, positioning and comfort analysis can be carried out and the field of sight reasonably judged. The interactive simulations enable you to learn more about the loads and to see them directly through the high quality visualization of the geometry of the human body. Through specific anthropometric population databases simulations can be carried out depending on the type of a person. This allows product decisions to be made faster and any expensive physical test can be reduced. CHarAT Ergonomics allows for ergonomic simulations to be carried out under different specialities and conditions.

67

Ready for Your Challenge CHarAT: Ergonomics provides all the necessary functionality to ensure the virtual human successfully integrates into your product design process. Additionally, CHarAT is easily learnt and can be easily adjusted to your specific tasks. The biomechanical human model can be flexibly configured for graphic representation of the points and lines of joints. The statistical data used for the simulations is based on national and internationally recognised anthropometric data bases. This enables worldwide usage. There is a wide range of applications for Ergonomics. From workplace design, through the assessment of installation accessibility and maintenance to the research on usability, the possibilities are unlimited. When it comes to the design, development and production of user friendly products, Ergonomics meet all expectations. For example, in vehicles the position of seats and the accessibility of the dashboards can be tested; in machine manufacturing, operating elements can be studied at an early stage whether they are safe to use; in the service sector, studies can be carried out whether an accessory is easy and fast to replace or not. Buildings can also benefit from Ergonomics as the whole usability of a structure can be tested in an early stage. PRODUCT HIGHLIGHTS Reduces the time and cost expenditure during the whole life cycle of the product Easy adjusting of the human model Consideration of branch specified enlargement Early stage control of assembly and service features Safety and comfort analysis Reduces the number of prototypes Reduction of expensive physical tests Specific scenario tests can be specified Enhancement of user friendliness


68

virtual human engineering

CharAT Ergonomics is a 3dsMAX 2010 Plugin created by Virtual Human Engineering GmbH. It is designed for ergonomic analysis and the shaping of technology used by people. It is used as an intelligent tool for DIGITAL MOCK UP by ergonomists, engineers, designers, workplace designers as well as architects and interior decorators and also in research and academic education. CharAT Ergonomics is programmed in C++ and designed for effective visualization. There are no compromise solutions in the software architecture and handling. For the designing of the model the following anthropometric databanks were used: “ANTHROPOLOGISCHER ATLAS” (Flügel, Greil, Sommer, 1983), “Handbuch der Ergonomie” (Lufthansaverlag, 1975), “BODYSPACE” (Pheasant, 1988), “DIN 30402” (2005), “Internationaler anthropometrischer Datenatlas” (Jürgens, BAU, 1989), Europamensch, UHP. Variability: Nationalitäten Geschlecht Alter Perzentil Proportionalität Somatotypen Akzeleration. Furthermore customers can also use their own particular databanks. The adjustment of design-configuration concepts, populations and tests is absolutely no problem. CharAT Ergonomics Skeleton Models consist of 1-200 bone elements that can be parameterized and configured with scripts. The absolute flexibility of the kinematic structure enables free adjustments throughout the design process to reach the analysis objectives. The analysis organization will be immediately realized in a database management system. All the CharAT Ergonomics Services are integrated in it. Every record can be stored separately and integrated again in any subsequent project. This way the projects are 100% repeatable and together with the excellent level of documentation, they make a good base for ergonomists and designers to communicate. For the animation of the models in different body postures, an intuitive interaction procedure with many adjustment options can be used. The rotato-

ry and translational movements of the kinematic chain can be set in free space but they can also be directed to particular positions determined by the graphic environment. Fast and reliable positioning and inverse Biomechanics are available for the optimization of static/dynamic space demand and activity analysis. CharAT Ergonomics can see your surroundings. Through a stereo subjective camera it displays the digital mock-up surroundings - what a human with the same head position would see. Viewpoint restrictions caused by glasses and masks can also be set. The design-concept assessment through the stereo subjective camera is compromise free. The current position and the collisions with the surroundings of the models can be detected and recorded in real-time. The real-time detection of obstacles makes the optimization of static/dynamic space possible.

Using animation, CharAT Ergonomics automatically tests the physical strain of joints. These values can be issued numerically or as a graph. The real-time signal enable immediate and intuitive problem detection and the correction of the body position as well as comfort assessment.

System requirements 3ds Max 2010 / CahrAT Ergonomics 32-Bit 3ds Max 2010 or 3ds Max Design 2010 for Windows Operating system: Microsoft® Windows® 7 Professional, Microsoft® Windows Vista® Business (SP2 or higher), or Microsoft® Windows® XP Professional (SP2 or higher) For general animation and rendering (typically fewer than 1,000 objects or 100,000 polygons):


* Intel® Pentium® 4 1.4 GHz or equivalent AMD® processor with SSE2 technology* * 2 GB RAM (4 GB recommended) * 2 GB swap space (4 GB recommended)** * 3 GB free hard drive space * Direct3D® 10 technology, Direct3D 9, or OpenGL®-capable graphics card * 256 MB or higher video card memory, 1 GB or higher recommended) * Three-button mouse with mouse driver software * DVD-ROM drive * Microsoft® Internet Explorer® 7.0 or higher or Mozilla® Firefox® 2.0 or higher browser * Internet connection for web downloads and Autodesk® Subscription-aware access 64-Bit 3ds Max 2010 or 3ds Max Design 2010 for Windows Operating system: Microsoft Windows 7 Professional x64, Microsoft Windows Vista Business

x64 (SP2 or higher), or Microsoft Windows XP Professional x64 (SP2 or higher) For general animation and rendering (typically fewer than 1,000 objects or 100,000 polygons): * Intel 64 or AMD 64 processor with SSE2 technology* * 4 GB RAM (8 GB recommended) * 4 GB swap space (8 GB recommended)** * 3 GB free hard drive space * Direct3D 10, Direct3D 9, or OpenGL-capable graphics card† * 256 MB or higher video card memory, 1 GB recommended * Three-button mouse with mouse driver software * DVD-ROM drive†† * Microsoft Internet Explorer 7.0 or higher or Mozilla Firefox 2.0 or higher browser * Internet connection for web downloads and Autodesk Subscription-aware access

virtual human engineering

69

For large scenes and complex data sets (typically more than 1,000 objects or 100,000 polygons): * Intel® 64 or AMD64 processor with SSE2 technology* * 8 GB RAM * 8 GB swap space** * 3 GB free hard drive space * Direct3D 10, Direct3D 9, or OpenGL-capable graphics card * 1 GB or higher video card memory) * Three-button mouse with mouse driver software * DVD-ROM drive * Microsoft Internet Explorer 7.0 or higher or Mozilla Firefox 2.0 or higher browser) * Internet connection for web downloads and Autodesk Subscription-aware access


70

virtual human engineering

Appendix 4. What is a recumbent (Wikipedia) A recumbent bicycle is a bicycle that places the rider in a laid-back reclining position. Most recumbent riders choose this type of design for ergonomic reasons; the rider’s weight is distributed comfortably over a larger area, supported by back and buttocks. On a traditional upright bicycle, the body weight rests entirely on a small portion of the sitting bones, the feet, and the hands. Most recumbent models also have an aerodynamic advantage; the reclined, legs-forward position of the rider’s body presents a smaller frontal profile. A recumbent holds the world speed record for a bicycle, and they were banned from international racing in 1934.[1]

inches (410 mm) to the 700c of an upright racing cycle. The front wheel is commonly smaller than the rear, although a number of recumbents feature dual 26-inch (ISO 559), ISO 571 (650c), or ISO 622 (700c) wheels. Notable among these are “highracers”, such as the Bacchetta Corsa and Strada or Volae Team, or the “LWB-style” RANS Stratus XP. Larger wheels generally have lower rolling resistance but a higher profile leading to higher air resistance. Highracer aficionados also claim that they are more stable, and although bicycle stability increases with the height of the center of gravity above the ground, the wide variety of recumbent designs makes such generalizations unreliable. Another advantage of both wheels being the same size is that the bike requires only one size of inner tube. Cruzbike Silvio (2009) A pivot-boom, front wheel-drive, 700C road bike (with rear rack).

Recumbents can be categorized by their wheelbase, wheel sizes, steering system, faired or unfaired, and front-wheel or rear-wheel drive. Wheelbase Bacchetta Corsa, a short wheelbase high racer

The rear wheel of a recumbent is usually behind the rider and may be any size, from around 16

* over-seat (OSS) or above seat steering (ASS); * under-seat (USS); or * center steering or pivot steering. OSS/ASS is generally direct—the steerer acts on the front fork like a standard bicycle handlebar—but the bars themselves may extend well behind the front wheel (more like a tiller); alternatively the bars might have long rearward extensions (sometimes known as Superman or Kingcycle bars). Chopper-style bars are sometimes seen on LWB bikes. USS is usually indirect—the bars link to the headset through a system of rods and bell cranks. Most tadpole trikes are USS. Center steered or pivot steered recumbents, such as Flevobikes and Pythons, may have no handlebars at all. Drive

Recumbents are available in a wide range of configurations, including: long to short wheelbase; large, small, or a mix of wheel sizes; overseat, underseat, or no-hands steering; and rear wheel or front wheel drive. A variant with three wheels is a recumbent tricycle.

Long wheelbase (LWB) models have the pedals located between the front and rear wheels; short wheelbase (SWB) models have the pedals in front of the front wheel; compact long wheelbase (CLWB) models have the pedals either very close to the front wheel or above it. Within these categories are variations, intermediate types, and even convertible designs (LWB to CLWB) - there is no “standard” recumbent. Wheel sizes

Steering for recumbent bikes can be generally categorized as

The most common arrangement is probably an ISO 559 (26-inch) rear wheel and an ISO 406 (20-inch) front wheel. The small front wheel and large rear wheel combination is used to keep the pedals and front wheel clear of each other, avoiding the problem called “heel strike” (where the rider’s heels catch the wheel in tight turns). A pivoting-boom front-wheel drive (PBFWD) configuration also overcomes heel strike since the pedals and front wheel turn together. PBFWD bikes may have dual 26-inch (660 mm) wheels or larger. Handlebar setup for under-seat steering (USS) Steering

As with upright bicycles, most recumbents are rear wheel drive. However, due to the proximity of the crank to the front wheel, front wheel drive (FWD) can be an option, and it allows for a much shorter chain. One style requires the chain to twist slightly to allow for steering.[4] Another style, Pivoting-boom FWD (PBFWD), has the crankset connected to and moving with the front fork.[5] In addition to the much shorter chain, the advantages to PBFWD are use of a larger front wheel for lower rolling resistance without heel strike (you can pedal while turning) and use of the upper body when sprinting or climbing. The main disadvantage to all FWD designs is “wheelspin” when climbing steep hills covered with loose gravel, wet grass, etc. This mainly affects off-road riders, and can be ameliorated by shifting the weight forward, applying steady pressure to the pedals, and using tires with more aggressive tread. Another disadvantage of PBFWD for some riders is a slightly longer “learning curve” due to adaptation to the pedal-steer effect (forces applied to the pedal can actually steer the bike). Beginner riders tend to swerve along a serpentine path until they adapt a bal-


anced pedal motion. After adaptation, a PBFWD recumbent can be ridden in as straight a line as any other bike, and can even be steered accurately with the feet only. Examples of PBFWD recumbents include Cruzbike, Flevo Bike, and Python Lowracer. A RANS V2 Formula long wheelbase recumbent bike fitted with a front fairing Fully suspended bikes Modern recumbent bikes are increasingly being fitted with front and rear suspension systems for increased comfort and traction on rough surfaces. Coil, elastomer, and air-sprung suspension systems have all been used on recumbent bikes, with oil or air-damping in the forks and rear shock absorbers. The maturation of fullysuspended conventional mountain bikes has aided the development of these designs, which often use many of the same parts, suitably modified for recumbent use.

bent bikes can be used for riding unpaved roads and offroad, just as with conventional mountain bikes. Because of their longer wheelbase and the manner in which the rider is confined to the seat, recumbents are not as easy to use on tight, curving unpaved singletrack. Large-diameter wheels, mountain gearing and off-road specific design have been used since 1999 on the Lightfoot Ranger. Crank-forward designs that facilitate climbing out of the saddle, such as the RANS Dynamik, also can be used off-road.[7] [edit] Lowracers Lowracers are a type of recumbent more common in Europe among racing enthusiasts. These typically have two 20” wheels or a 26” wheel at the rear and 20” wheel at the front. The seat is positioned between the wheels rather than above them. The extreme reclined position, and the fact that the rider is sitting in line with the wheels rather than atop them, makes this type the most aerodynamic of unfaired recumbents.

Fairings

Highracers

Some riders fit their bikes with aerodynamic devices called fairings. These can reduce aerodynamic drag[6] and help keep the rider warmer and drier in cold and wet weather. Fairings are also available for upright bikes, but are much less common.

Highracers are distinguished by using two large wheels (usually two ISO 559 or 26”). This necessitates a higher bottom bracket than on a lowracer so that the rider’s legs are above the front wheel, and this in turn requires a higher seat. The seating position may be otherwise identical to that on a lowracer allowing similar aerodynamics. “Racer” in the name implies that this will often be the case, since these bikes strive for speed.

Seats The seats themselves are either of mesh stretched tightly over a frame (as in the Gold Rush pictured) or foam cushions over hard shells like the Stinger pictured, which might be moulded (as here) or assembled from sheet materials. Hard-shell seats predominate in Europe, mesh seats in the USA. [edit] Variations This Barcroft Columbia is an example of how a tandem recumbent can be fitted within a compact layout for easy transport. Challenge Hurricane: a mid-racer. Mountain bike recumbents

Highracers are generally more maneuverable than lowracers since their higher center of gravity allows stability at lower speeds (see Bicycle and motorcycle dynamics). Given the same seating position they may be faster than lowracers, since it is widely believed that rolling resistance is inversely proportional to wheel diameter, although good data on this subject is scarce. However, lowracer proponents reply that their design is faster due to aerodynamics. The reasoning is that the riders body is in line with the wheels, reducing drag.

With the right equipment and design, recum-

Hip and elbow injuries are more common on

virtual human engineering

71

highracers than on lowracers due to the greater height from which the rider can fall. However, the injuries are very rare and seldom serious. Semi-recumbent and crank forward bicycles Bicycles that use positions intermediate between a conventional upright and a recumbent are called semi-recumbent or crank forward designs. These generally are intended for casual use and have comfort and ease of use as primary objectives, with aerodynamics sacrificed for this purpose. Tandem recumbents Just as with upright bicycles, recumbents are built and marketed with more than one seat, thus combining the advantages of recumbents with those of tandem bicycles. In order to keep the wheelbase from being any longer than absolutely necessary, tandem recumbents often place the stoker’s crankset under the captain’s seat. [edit] Recumbent tricycles Recumbent tricycles (trikes) are closely related to recumbent bicycles, but have three wheels instead of two. Trikes come in two varieties, the delta, with two rear wheels, and the tadpole, with two front wheels. A tadpole recumbent tricycle made by Inspired Cycle Engineering with a transparent front fairing Characteristics of recumbent trikes include: * The rider does not need to disengage from the pedals when stopped. * The trike can be geared very low to enable mountain climbing while heavily loaded and at a slow speed, without losing stability. * Trikes are capable of turning sharply without leaning, producing lateral “g forces” similar to sports cars. * Recumbent trikes may also be more suitable for people with balance or limb disabilities.


72

virtual human engineering


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.