Counter-IED Report, Autumn/Winter 2012

Page 7

COUNTER-IED STRATEGY

be detonated, based on, for example, change- detection techniques as well as suspicious movements of material that could potentially lead to IED builders. Biometrics is typically used to support the exploitation process and target future IED emplacement.

Modern technologies for attacking the networks

Technologies linked to C-IED activities are often associated with a passive tool, a sensor that protects a convoy or a soldier on patrol, basically a tool for targeting the ‘defeat the device’ pillar when the IED has already been emplaced. Defeating the device means working very close to the boom phase, on the right-hand side of the C-IED Proactive Model. Nations have invested a great deal of money in research and development and technology procurement that ultimately provide a good set of tools for protecting troops on the ground. However, the question is: Can modern technologies be used to help attack the network? The immediate answer is yes. Currently, the majority of IEDs are built with homemade explosives using, for example, ammonium nitrate, a highly available fertiliser containing 34 per cent nitrogen. Heating or ignition may cause violent combustion or explosion of this material. It is therefore essential to ensure that movements of large quantities of this material are closely monitored so that misuse of it can be prevented. The NATO Communications and Information Agency delivered, under the NATO Security Investment Programme, several technologies for explosive detection that make it possible to screen vehicles and personnel entering ISAF compound entry control points. The main technology employed (X-ray) has proven to be quite successful against explosive and organic material detection, for both shape recognition (eg, to distinguish a can of soda from a barrel) and material discrimination (eg, to distinguish between a piece of explosive and a piece of metal of the same shape). Employing this type of technology, for example at national borders or at checkpoints along main supply routes (MSR), would increase the probability of intercepting transportation of suspicious material. Interception would clearly help

prevent the building and emplacement of multiple IEDs and ultimately save lives. The same approach could be applied with biometrics technologies such as latent fingerprint detection and analysis from a recovered IED, retina scanning, and stand-off identity detection (also known as gate recognition). Early identification of an individual involved in building an IED, in emplacement of an IED or in any of the C-IED Proactive Model phases may lead to an IED chain being broken early enough to prevent explosions and fatalities.

CONCLUSIONS

The answer to the question that forms the title of this article – ‘Attack the

networks versus defeat the device: how best to approach the IED problem?’ – is simple: a good mixture of both is key for prediction and prevention as well as protection. Relying on only one of the two would not be prudent and would certainly result in loss of life. The ‘train the forces’ pillar is a key enabler for the ‘attack the networks’ approach. Clearly it would be undesirable to send untrained troops into a theatre of operations and expose many others to a high risk of loss of life, or travel in a convoy that is not equipped with jammers against remotely controlled IEDs in areas where these are a threat. The IED fight is an all-arms battle and everything that could in any way support the attack the networks task is fundamental. ■

ABOUT THE AUTHOR Franco Fiore is the NATO Communication and Information Agency counter-terrorism and C-IED focal point. As Head of the Capability Area Team 5, Sensor Group, he supervises 15 personnel. Dr Fiore was formerly with the Italian Army Corps of Engineers (EW and Communications), from which he retired in 2004. He spent four years in the US serving at the NATO Medium Extended Air Defense System Management Agency (NAMEADSMA) as a sensor simulation engineer, and joined NC3A in January 2005. Since then he has been working on a number of counter-terrorism and C-IED projects. He is responsible for the Agency’s C-IED portfolio and has delivered C-IED capabilities for ISAF, and support for ACT and ACO in their counter-terrorism and C-IED activities, as well as for the NATO HQ Counter Terrorism Technology Section under the Emerging Security Challenges Division. Recently has been appointed as member of the newly established NATO Communication and Information Agency Business Process Design team. He has a Master degree in computer engineering, a PhD in telecommunications and electronics, and a PRINCE 2 Project Management qualification. His numerous papers, technical notes and articles on counter-terrorism and C-IED have been published in both newspapers and magazines.

Email: franco.fiore@ncia.nato.int

DISCLAIMER Any opinions expressed herein do not necessarily reflect the views of the NCIA, NATO and the NATO nations but remain solely those of the author. counteriedreport.com

7


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.