Counter-IED Report, Autumn/Winter 2012

Page 43

X-RAY EQUIPMENT IN THE FIELD OF COUNTER-IED

Where man-portability, speed and image resolution are all determining factors, and where there is a risk of chemical, biological, radiological or nuclear (CBRN) material being present in an IED and additional precautions are required, an amorphous silicon, or aSi, flat-panel X-ray system is the most applicable tool for the job. Such imaging systems have a dynamic range so high that they can achieve object penetration and contrast detail previously unobtainable. Small compact systems such as Scansilc 2520 have a 127-micron pixel size that will capture the finest detail of wiring or circuitry with a fast readout time of just 1 second. They can be backpacked for light-scale operations, whereas larger panels can be deployed for large object inspection. In a suspected CBRN explosives task, aSi X-ray technology can be used with dual-energy modules fitted onto the X-ray source to provide information on potential organic material. Dual-energy technology allows X-rays to be measured in two different energies, which the X-ray separates into different contrasting colours to enable operators to identify and differentiate organic and inorganic materials.

EXPLOITATION AND PREDICTION

In order to attack the IED network, military intelligence teams need detailed information on the construction and composition of IEDs. Following discovery or activation of an IED, every fragment is essential to the forensic team to understand both its makeup and its likely provenance. These teams gather and exploit evidence from blasts and each device is reconstructed, replicated and tested. X-ray investigation is a complementary technology that enables forensic teams to recognise an IED signature and also to predict patterns in bomb making that may identify a change in tactics or identify components from a common source. Recent investigation of wires, charges and other explosive components used in a series of bombs have indicated materials are being sourced from specific areas, which means strategies to block these trade routes can be put into place. Forensic exploitation procedures and post-blast analysis associated with IEDs do not need to be carried out where

the device is found. Ruggedness and portability are therefore less of an issue and image resolution becomes the determining factor. CR systems such as CR35 or ScanX Scout really come into their own for this type of task, and larger cabinet X-ray systems such as the Scanmax 225 (which runs the same X-ray imaging software as CR35 and ScanX Scout) are also used in Level 2 labs to provide a closed radiation chamber within which objects can be closely examined and documented. The X-ray image data is used in a number of ways including analysis for identification of explosives/initiators/ booby traps, to produce output for technical reports on findings, to develop device profiles and to maintain and document chains of custody of X-ray data.

X-ray detail of a detonator can reveal its likely provenance.

CONCLUSION

No single technology can solve the IED problem, however each has a role to play. X-ray analysis and imaging has now become part of a larger data fusion picture where the signature information is exported to a central intelligence point that can reference the image information to other sensory data to complete the profile picture. This holistic use of X-ray images as part of a larger IED threat analysis framework should provide a much more comprehensive picture for exploiting the forensic evidence within IEDs, in detecting the supply chain, helping to predicting future threats and, ultimately, preventing as many future devices as possible being successful. â–

... X-RAY INVESTIGATION IS A COMPLEMENTARY TECHNOLOGY THAT ENABLES FORENSIC TEAMS TO RECOGNISE AN IED SIGNATURE ‌

counteriedreport.com

43


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.