U.S. and Iranian Strategic Competition 1 of 2

Page 251

Cordesman/Wilner, Iran & The Gulf Military Balance

AHC 6/3/12

86

Figure IV.54: IAEA Report of November 8, 2011 – Hydrodynamic Experiments One necessary step in a nuclear weapon development program is determining whether a theoretical design of an implosion device, the behavior of which can be studied through computer simulations, will work in practice. To that end, high explosive tests referred to as “hydrodynamic experiments” are conducted in which fissile and nuclear components may be replaced with surrogate materials. Information which the Agency has been provided by Member States, some of which the Agency has been able to examine directly, indicates that Iran has manufactured simulated nuclear explosive components using high density materials such as tungsten. These components were said to have incorporated small central cavities suitable for the insertion of capsules such as those described in Section C.9 below. The end use of such components remains unclear, although they can be linked to other information received by the Agency concerning experiments involving the use of high speed diagnostic equipment, including flash X ray, to monitor the symmetry of the compressive shock of the simulated core of a nuclear device. Other information which the Agency has been provided by Member States indicates that Iran constructed a large explosives containment vessel in which to conduct hydrodynamic experiments. The explosives vessel, or chamber, is said to have been put in place at Parchin in 2000. A building was constructed at that time around a large cylindrical object at a location at the Parchin military complex. A large earth berm was subsequently constructed between the building containing the cylinder and a neighboring building, indicating the probable use of high explosives in the chamber. The Agency has obtained commercial satellite images that are consistent with this information. From independent evidence, including a publication by the foreign expert referred to in paragraph 44 above, the Agency has been able to confirm the date of construction of the cylinder and some of its design features (such as its dimensions), and that it was designed to contain the detonation of up to 70 kilograms of high explosives, which would be suitable for carrying out the type of experiments described in paragraph 43 above. As a result of information the Agency obtained from a Member State in the early 2000s alleging that Iran was conducting high explosive testing, possibly in association with nuclear materials, at the Parchin military complex, the Agency was permitted by Iran to visit the site twice in 2005. From satellite imagery available at that time, the Agency identified a number of areas of interest, none of which, however, included the location now believed to contain the building which houses the explosives chamber mentioned above; consequently, the Agency’s visits did not uncover anything of relevance. Hydrodynamic experiments such as those described above, which involve high explosives in conjunction with nuclear material or nuclear material surrogates, are strong indicators of possible weapon development. In addition, the use of surrogate material, and/or confinement provided by a chamber of the type indicated above, could be used to prevent contamination of the site with nuclear material. It remains for Iran to explain the rationale behind these activities. Source: IAEA, Implementation of the NPT Safeguards Agreement and relevant provisions of Security Council resolutions in the Islamic Republic of Iran, November 8, 2011 http://isis-online.org/uploads/isis-reports/documents/IAEA_Iran_8Nov2011.pdf

86


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.