1.5° PATHWAYS

Page 332

WORLD ENERGY TRANSITIONS OUTLOOK

7.6 CASE STUDY: THE EUROPEAN UNION

The European Union is in the midst of a green transformation; the energy transition is a key objective of its recovery agenda and its Green Deal. In 2021, it committed to reduce its greenhouse gas reduction objectives by 55% by 2030 with respect to 1990 and to achieve net zero emissions by 2050. It also aims to increase the share of renewable energy generation to 40% by 2030, a much larger share than previously proposed (Chestney, 2021). These ambitious objectives will imply a massive increase in the deployment of renewable energy and EV technologies, increasing demand for critical materials. The European Union will need critical materials for electric transportation, the production of green hydrogen and renewable-based electricity generation. To meet its growing demand, it will need to increase its imports of such materials. As concerns over the supply of critical materials mount, the European Union is looking to secure its supply. European companies are securing contractual supply agreements that help ensure an undisrupted supply of critical materials. Such contracts reduce pressure in the short term, but they do not provide a solution to long-term structural issues. For this reason, European leaders are seeking to produce critical materials domestically. The European Union has sizable reserves of several critical materials, such as copper and nickel. Important reserves include copper in Central Europe, lithium reserves in Saxony (Germany), and nickel in Finland (NS Energy, 2021). These resources have not been mined in recent years because of strong local and environmental opposition. Another reason why mining has been limited is that current prices are not sufficiently high for these mines to be economically viable. Solutions need to be found to increase national production and ensure the supply of critical materials. They may arise from international partnerships, which can help reopen mines in a sustainable way, as well as from increases in prices, which would warrant reconsideration of these projects.

332


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

References

36min
pages 334-349

7.6 Case study: The European Union

2min
pages 332-333

Annex

3min
pages 350-352

7.5 Risk mitigation of supply shortages

9min
pages 325-331

7.2 What are critical materials?

1min
page 295

6.4 Availability of sustainable biomass feedstocks

12min
pages 274-281

6.5 Biomass sustainability

14min
pages 282-289

7.1 The role of critical materials in the energy transition

4min
pages 293-294

6.1 Introduction

1min
page 245

6.3 Scaling up bioenergy use in key applications: Opportunities, barriers and policies

29min
pages 258-273

5.3 Special focus: International trade of hydrogen and derivatives

14min
pages 234-241

5.1 Power system flexibility 5.2 Electrification of end-use

16min
pages 196-206

CHALLENGE

2min
pages 30-31

4.2 Priority action areas to scale up progress

41min
pages 165-189

Introduction

4min
pages 28-29

3.2 Policy baskets for a sensitivity analysis

16min
pages 121-129

3.1 Introduction

8min
pages 114-120

2.9 Policies for a just energy transition

8min
pages 108-111

Acknowledgements

1min
page 3

1.1 Introduction

1min
page 32
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.