Biomass Magazine - October 2009

Page 41

INNOVATION chemicals depend heavily on feedstock costs and Gonzalez’s discovery enables cost-effective production through waste products. “Having a cheap, abundant feedstock is key in the production process,” he says.

Gonzalez’s environmental conditions, E. coli still will not produce 1,3 propanediol, he says, but it does produce something similar. “So it is not [1,3 propanediol] that actually enables glycerol fermentation,” Gonzalez confirms. “The reason why they didn’t see it was because they didn’t use the right conditions.”

It’s All About Environment Gonzalez says his technique comes down to the microbe’s environment, and compares it to human beings. “We behave in a given way based on what we have around us,” he explains. “If it is hot, we try to cool off. If it is cold, we try to put a few layers of clothes on. Organisms behave depending on their environment.” The proprietary environmental triggers Gonzalez discovered are valid for all E. coli strains he has tested, which are industrial and not strains linked to food poisoning. “The actual discovery is not really a specific strain,” he says. “It’s more the environment in which we put that strain to make it happy and able to ferment glycerol.” It was previously thought that E. coli would not ferment glycerin because of the actual conceptual model of glycerin fermentation. “Back then, when we started working on this, it was thought that in order for a microorganism to be able to ferment glycerol, it would need to be able to produce another product,” Gonzalez explains. “That product was 1,3 propanediol. E. coli does not have the ability to produce that 1,3 propanediol.” Because of that, most scientists thought E. coli could not ferment glycerin. Even under

Utilizing that Feedstock GlycosBio co-founders saw promise and potential in Gonzalez’s discovery and hope its expected impact can be realized through their company. “It was more a strong understanding of the genetics and the process conditions together that allowed [Gonzalez] to discover what other people had been unable to find,” said Paul Campbell, GlycosBio chief science officer. “If you provide oxygen, it will eat it very quickly and that’s not a problem, but that’s not interesting. Because if you have oxygen present, all you make is more biomass, more cells. You don’t make any interesting chemicals.” “That discovery was so unique that it actually had enough interest from the venture capital community to make an investment in that discovery to commercialize that microbe to leverage it into a strategy to make biofuels or biochemicals,” says Richard Cilento, GlycosBio chairman. “The uniqueness about the business is there hasn’t been a great deal of investment or research into existing low-value or unique


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.