Biomass Power & Thermal - October 2010

Page 47

CHP¦

W

hen Hurricane Katrina struck in 2005, the Mississippi Baptist Medical Center in Jackson, Miss., remained open and operational despite the loss of grid power for several days, according to the U.S. DOE. This was because the hospital's combined-heat-and-power (CHP) system provided electricity, hot water and cooling service beyond what could be provided by its backup generators alone. The ability to produce electricity on-site rather than being reliant on the grid not only provides consistency and reliability for institutions such as hospitals where electricity is imperative, but also reduces grid congestion and avoids distribution costs. Those are only a few of the many outstanding benefits of CHP or cogeneration, and its widespread potential in the U.S. is looming. In fact, in 2008, the DOE published an in-depth report on the potential of CHP deployment in the country and determined that it is one of

the most promising options in the country’s energy efficiency portfolio. Notably, the report points out that while CHP has been around in one form or another for more than 100 years—it is a proven, not speculative, technology and still remains vastly underutilized even though it’s one of the most compelling sources of energy efficiency that could, with even modest investments, quickly move the U.S. toward greater energy security and a cleaner environment.

ABCs of CHP CHP is a form of distributed generation and is defined by the U.S. EPA as an integrated system that generates at least a portion of the electricity requirements of a building, facility or campus, and recycles the thermal energy exhausted from the electric generation; energy that would normally be wasted. Generally, CHP systems consist of

OCTOBER 2010 | BIOMASS POWER & THERMAL 47


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.