Biomass Magazine - June 2007

Page 11

industry

NEWS Turkey litter will soon become the predominant energy source fueling a 55 megawatt (MW) power plant, producing enough electricity to supply 50,000 homes in the town of Benson, Minn. Fibrominn, a subsidiary of Philadelphiabased Fibrowatt LLC, is the developer and owner of the first-of-its-kind facility in the United States. The plant will process approximately 700,000 tons of turkey litter annually into electricity. The company will then supply the electricity to a transmission substation near Benson, which will indirectly make its way to the city grid. Construction began in early 2005 and the facility is expected to start up in June. “Benson has always been a pretty forward-looking community,” said Terry Walmsley, vice president for environmental and public affairs for Fibrominn. “In a sense, by reaching out and providing an opportunity for [a company] like Fibrominn to come in to an area like this, [the people of Benson] are indirectly securing the future of that area. They put all the pieces together.” In addition to poultry litter, Walmsley said

PHOTO: Fibrominn LLC

Minnesota power plant to burn poultry litter

An aerial view of Fibrominn’s facility in Benson, Minn., shows construction progressing.

Fibrominn will process other biomass materials, which will allow the company to store, convey and relocate biomass more efficiently into the furnace. “We typically are in the neighborhood of 90 percent poultry litter and 10 percent secondary biomass material,” Walmsley said. As an added service to the poultry owners, Fibrominn will provide a complimentary transportation service to surrounding poultry owners for timely pickup of the litter, a convenience mutually agreed upon by the rural

poultry community. “We’re working in a sense with the entire poultry industry to meet their needs,” Walmsley said. “We have to design a flexible process that can meet those demands and provide that valuable service to them.” Fibrowatt LLC has similar projects underway in North Carolina, Maryland, Arkansas and Mississippi. -Staff Report

Purdue researchers propose highly efficient conversion process Researchers at Purdue University have proposed a novel approach to biomass conversion that its developers said produces nearly three times the fuel from the same amount of biomass. To look at it another way, this approach could theoretically produce the same amount of fuel with 60 percent less feedstock, helping to responsibly grow industries focused on biomass utilization. Led by Purdue University chemical engineering professor Rakesh Agrawal, a team of two professors—Fabio Ribeiro and Nicholas Delgass—and a doctoral student—Navneet Singh—drafted a proposal describing the benefits of this method. It works using hydrogenation, whereby supplemental hydrogen is added to a gasification process. Hydrogen extracted from electrolyzed water would bond with carbons released during gasification that would otherwise connect with added process oxygen and get released as carbon dioxide. Power for electrolysis could come from wind, solar or nuclear sources, all of which are carbonfree. This technique, named H2-CAR, converts all of the carbon discharged from the synthesized feedstock to liquid hydrocarbon fuel either through suppression of carbon dioxide formation or recycling of the carbon dioxide back into the gasifier. Either way, all of the carbon is used

with the addition of hydrogen to produce a theoretical maximum amount of liquid hydrocarbon fuels. “We suggest a … pathway where neither coal nor biomass is treated as a sole source of energy to produce liquid hydrocarbon fuel,” the proposal stated. Biomass is carbon-neutral, so if some carbon is lost as carbon dioxide during gasification, it’s not contributing to net greenhouse gases—but it still leads to efficiency losses. Coal isn’t considered biomass; nevertheless, the suppression or recycling of carbon dioxide from coal processing is significant since its carbon emissions are said to heavily contribute to the greenhouse effect. Secondary and tertiary benefits were also noted by the research team. One of the hurdles that a “hydrogen economy” has is onboard storage. “By providing open-loop [hydrogen] storage, this solution addresses one of the grand challenges of the [hydrogen] economy,” the proposal said. “The addition of [hydrogen] atoms to carbon atoms from coal or biomass provides a high-density method for storage of massive quantities of [hydrogen]. … Clearly, the proposed concepts de-emphasize research in carbon dioxide sequestration, as well as on-board [hydrogen] storage.” -Staff Report 6|2007 BIOMASS MAGAZINE 11


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.