Biomass Magazine - August 2008

Page 61

outlook increase its ethanol production by 30 percent and reduce its cost to about 54 cents per gallon. One can grow many times the biomass per acre per unit of time by growing microalgae instead of rooted, land-based plants. Microalgae also require considerably fewer resources and much less energy to grow and harvest. We propose to grow and harvest microalgae in shallow desert freshwater pools. Using desert or arid, sparsely vegetated grassland for this purpose would not put net greenhouse gases into the atmosphere. Water for this process could be provided by a low-cost, low-energy process of large-scale desalination. The microalgae would need to have high cellulose content (approximately 40 percent), be hardy enough to withstand extremes of daytime to nighttime temperatures, and outgrow stray, undesired stains that enter the pool. Many candidates of microalgae have these properties that can be adapted to local conditions. There may be merit to growing microalgae (phytoplankton) on the surface of the ocean for use as biomass. Stimulated growth of ocean algae has been demonstrated and could be carried out over a large (but, by choice, not continuous) area of ocean using a “fertilizing agent” in concentrations of parts per billion sprayed onto the ocean from an aircraft. Enough microalgae could be grown in this manner to supply sufficient biomass for the entire world to abandon most energy applications of oil. If phytoplankton is grown at sea for biomass, it would make sense to manufacture carbon-negative ethanol aboard large ships. The energy needed to power the process might be provided by easily separated lignin-like compounds in microalgae. Thus, fuel might not have to be brought to the ship to manufacture ethanol. Similarly, freshwater for ethanol manufacturing could be obtained from the ocean by reverse osmosis desalination. Finally, another kind of microalgae could be used in a “bubbler” device to capture the carbon dioxide released dur-

ing the biofuel-making process, rendering the ethanol carbon negative. These algae are to be disposed of in the deep ocean to sequester the carbon they capture. Since the ship is already at sea, disposal would be simplified. When its tanks are full the ship can come close to shore and offload its ethanol through buoy-supported lines.

The Need for Innovation Many forms of cellulosic ethanol technology exist and there are various ways to implement them. Not all are equivalent in terms of sustainability and environmental friendliness. The motivation to follow a different path—to replace oil with a sustainable carbon-neutral process of fuel production and use—is evident as greenhouse gases in the atmosphere continue to rise and crude oil prices continue to soar. Change is made attractive, or at least palatable, by the large profit increase for growers and producers that the new path enables. Two-thirds of all pioneering inventions during the first 70 years of the 20th century came from individuals and small companies, according to Thomas W. Harvey in “Technical Ventures—Catalysts for Economic Growth.” Today such companies have difficulty gaining credibility and their innovations often go unrecognized. It is also risky for small companies to apply for a patent that threatens a multinational because changes in patent law enable the innovation to be stolen. Without patents, publishing in peer-reviewed journals— another source of credibility—is denied. Consequently, innovations needed for industry development may go unrecognized if they come from small companies. This daunting obstacle must be overcome to achieve sustainable, carbon-neutral fuel production. BIO Stephen Paley is the principal scientist at Agricultural Management Systems Inc. in Oklahoma City, Okla. Reach him at spaley1ams@aol.com or (405) 721-0064. The late George K. Oister contributed invaluable discussions and insights to this article.

We handle biomass feedstock: ◆ Procurement ◆ Logistics ◆ Consulting ◆ Yard Design

& Construction ◆ Preparation ◆ Management

Call to find out how you can profit from our experience.

870/367-9751 x112 61 BIOMASS MAGAZINE 8|2008 www.pricebiostock.com


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.