Energy Revolution 2012

Page 9

figure 9.5 figure 9.6 figure 9.7 figure 9.8 figure 9.9 figure 9.10 figure 9.11 figure 9.12 figure 9.13 figure 9.14 figure 9.15 figure 9.16 figure 9.17 figure 9.18 figure 9.19 figure 9.20 figure 9.21 figure 9.22 figure 9.23 figure 9.24 figure 9.25 figure 9.26

10 figure 10.1 figure 10.2 figure 10.3 figure 10.4 figure 10.5 figure 10.6 figure 10.7 figure 10.8 figure 10.9 figure 10.10 figure 10.11 figure 10.12 figure 10.13 figure 10.14 figure 10.15 figure 10.16 figure 10.17 figure 10.18 figure 10.19

basic components of a modern horizontal axis wind turbine with a gear box growth in size of typical commercial wind turbines biogas technology geothermal energy schematic diagram of a geothermal condensing steam power plant and a binary cycle power plant scheme showing conductive EGS resources run-of-river hydropower plant typical hydropower plant with resevoir typical pumped storage project typical in-stream hydropower project using existing facilities wave energy technologies: classification based on principles of operation oscillating water columns oscillating body systems overtopping devices classification of current tidal and ocean energy technologies (principles of operation) twin turbine horizontal axis device cross flow device vertical axis device natural flow systems vs. forced circulation systems examples for heat pump systems overview storage capacity of different energy storage systems renewable (power) (to) methane - renewable gas

figure 10.20 240 240 242 243 244 245 246 246 247 247 248 249 249 249

figure 10.21 figure 10.22 figure 10.23 figure 10.24 figure 10.25

11 figure 11.1 figure 11.2 figure 11.3 figure 11.4

250 250 250 251 252 255 259 259

figure 11.5 figure 11.6 figure 11.7 figure 11.8 figure 11.9 figure 11.10 figure 11.11

final energy demand (PJ) in reference scenario per sector worldwide 261 final energy demand (PJ) in reference scenario per region 262 final energy demand per capita in reference scenario 262 final energy demand for the world by sub sector and fuel source in 2009 262 projection of industrial energy demand in period 2009-2050 per region 263 share of industry in total final energy demand per region in 2009 and 2050 263 breakdown of final energy consumption in 2009 by sub sector for industry 263 global final energy use in the period 2009-2050 in industry 265 final energy use in sector industries 265 fuel/heat use in sector industries 265 electricity use in sector industries 265 breakdown of energy demand in buildings and agriculture in 2009 266 energy demand in buildings and agriculture in reference scenario per region 266 share electricity and fuel consumption by buildings and agriculture in total final energy demand in 2009 and 2050 in the reference scenario 266 breakdown of final energy demand in buildings in 2009 for electricity and fuels/heat in ‘others’ 267 breakdown of fuel and heat use in ‘others’ in 2009 267 elements of new building design that can substantially reduce energy use 268 breakdown of electricity use by sub sector in sector ‘others’ in 2009 269 efficiency in households - electricity demand per capita 270

figure 11.12 figure 11.13 figure 11.14 figure 11.15 figure 11.16 figure 11.17 figure 11.18 figure 11.19 figure 11.20 figure 11.21 figure 11.22 figure 11.23 figure 11.24 figure 11.25 figure 11.26 figure 11.26

electricity savings in households (E[R] vs. Ref) in 2050 breakdown of energy savings in BLUE Map scenario for sector ‘others’ global final energy use in the period 2009-2050 in sector ‘others’ final energy use i sector ‘others’ fuel/heat use in sector ‘others’ electricity use in sector ‘others’

© ANTHONY UPTON 2003

image NORTH HOYLE WIND FARM, UK’S FIRST WIND FARM IN THE IRISH SEA WHICH WILL SUPPLY 50,000 HOMES WITH POWER.

271 272 274 274 274 274

world final energy use per transport mode 2009/2050 - reference scenario 277 world transport final energy use by region 2009/2050 - reference scenario 277 world average (stock-weighted) passenger transport energy intensity for 2009 and 2050 279 aviation passenger-km in the reference and energy [r]evolution scenarios 280 rail passenger-km in the reference and energy [r]evolution scenarios 280 passenger-km over time in the reference scenario 280 passenger-km over time in the energy [r]evolution scenario 280 world average (stock-weighted) freight transport energy intensities for 2005 and 2050 281 tonne-km over time in the reference scenario 281 tonne-km over time in the energy [r]evolution scenario 281 energy intensities (Mj/p-km) for air transport in the energy [r]evolution scenario 282 fuel share of electric and diesel rail traction for passenger transport 283 fuel share of electric and diesel rail traction for freight transport 283 energy intensities for passenger rail transport in the energy [r]evolution scenario 284 energy intensities for freight rail transport in the energy [r]evolution scenario 284 HDV operating fully electrically under a catenary 284 fuel share of medium duty vehicles (global average) by transport performance (ton-km) 285 fuel share of heavy duty vehicles (global average) by transport performance (ton-km) 285 specific energy consumption of HDV and MDV in litres of gasoline equivalent per 100 tkm in 2050 285 energy intensities for freight rail transport in the energy [r]evolution scenario 287 LDV occupancy rates in 2009 and in the energy [r]evolution 2050 287 sales share of conventional ICE, autonomous hybrid and grid-connectable vehicles in 2050 288 vehicle sales by segment in 2009 and 2050 in the energy [r]evolution scenario 288 fuel split in vehicle sales for 2050 energy [r]evolution by world region 289 development of the global LDV stock under the reference scenario 289 development of the global LDV stock under the energy [r]evolution scenario 289 average annual LDV kilometres driven per world region 290

9


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.