May 2014 Biomass Magazine

Page 24

POWER recovery of products and energy from MSW has grown considerably. In 1960, the recovery rate from MSW was around 6 percent, according to U.S. EPA estimates. Today, an estimated 35 percent of MSW is reclaimed through recycling, composting and conversion into usable energy. According to the most recent estimates from “The State of Garbage in America” by Columbia University and BioCycle, 6.8 percent of MSW finds its way to waste-to-energy (WTE) plants in the U.S., where it is transformed primarily into process heat and electricity. Radiocarbon dating analysis of WTE emissions and ash has determined that roughly twothirds of what constitutes MSW originates from biomass. As a predominantly biomass input, MSW-fed power plants are considered a part of the biomass power industry's fleet of grid-connected power plants. There are currently 71 operating WTE plant in the U.S., according to Biomass Magazine data.With 2,476 MW of

nameplate capacity, WTE plants make up 40 percent of the operating biomass power industry’s generating capacity. Conversion of MSW into renewable power is a waste management strategy with uneven dispersion across the country. In states where land values and heightened regulations discourage the siting of landfills, there are more WTE facilities. Five of the top 10 states for power generation from MSW are located in the Northeast, where land for disposal sites comes at a high cost and with stiff siting regulations. Florida, where a high water table inhibits the construction of landfills, has the most WTE power facilities at 11 and a combined generating capacity of 541 MW. Next year, Florida will add a 12th WTE power plant in West Palm Beach, which will represent the first WTE plant built in the U.S. in over a decade. At its height in the late 1980s, the WTE sector built 11 plants each year. Between 1986 and 1990, 39 plants came

on line to supply hundreds of megawatts of biomass power to the grid and mitigate the growing burden of MSW on local landfills. Federal energy policies under the Public Utility Regulatory Policies Act supported the growth of independent renewable power producers, like many of the WtE and other biomass power plants that were deployed in the ‘80s and early ‘90s. Municipalities possessed control over the flow of the MSW that was generated within its boundaries. Known as flow control, municipalities were able to manage their MSW by guaranteeing feedstock to a WTE plant that provided regionally reliable renewable power, jobs and a financial presence in the community. In 1994, the U.S. Supreme Court strongly influenced the future of MSW management in what became known as the “Carbone decision.” The court declared municipal flow control laws that “deprive competitors, including out-ofstate firms, of access to a local [MSW]”

DESIGNING INNOVATION

Renewable Feedstock Processing Systems A worldwide leader in size reduction technology for bioenergy, Vecoplan works with individual customers to design, engineer, manufacture and implement technologically advanced, material specific, and application specific shredding, ferrous and non-ferrous removal, size and density separation, screening and classification technologies and extremely efficient conveyor and bulk material handling, metering, storage and unloading technologies. Contact Vecoplan today to learn more about our existing systems or to arrange a visit to one, or several, of our installations.

(336) 252-4095

vecoplanllc.com 24 BIOMASS MAGAZINE | MAY 2014


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.