Biomass Magazine - January 2009

Page 46

analyst of the Market Monitoring Division of the China Grains and Oils Information Center, a government think tank researching grain and oilseed supply and demand. Wang’s analysis of Chinese agriculture and food supply revealed the country’s limitations for grain-based ethanol expansion. “Chinese agricultural products will continue to increase yields and efficiency, but the lack of water and arable land will limit China’s future in grain output,” Wang said. “With a rising population and increased standard of living we must ask who will feed Chinese people in the future.” Wang explained that to expand agricultural production the Chinese government has implemented policies that will improve crop yields, increase storage and restrict uses for arable land, but he stressed that food will remain the priority for Chinese agriculture. It is for this reason that China’s largest food manufacturer and ethanol producer is focusing its research and development efforts on cellulosic ethanol. The China National Cereals, Oils, & Foodstuffs Corp. (COFCO) produces 820,000 tons (275 million gallons) of ethanol in China annually, which is half the country’s total capacity. “Our demand for cellulose is more than in the United States,” Guojun Yue, assistant president of COFCO, told the audience during the general session. “With the development of biomass technologies we have a goal to produce 2 million tons (670 million gallons) of biomass ethanol by 2010 and 10 million tons (3.3 billion gallons) by 2020.” However, Yue did not dismiss the production of grain-based ethanol altogether. He explained that corn and wheat are laying down the foundation for nongrain ethanol in China, and the second stage will include sweet potato and sweet sorghum, which is still considered a grain. “This will provide a transition period, but the future of ethanol in China lies in cellulose.” A U.S. company that is trying to find a way to supply the Chinese biofuels market is Coskata Inc., a cutting-edge technology firm that is commercializing a proprietary process for the production of fuelgrade ethanol. Wes Bolsen, chief marketing officer and vice president of business development for Coskata, discussed China’s rising potential for second-generation biofuels and outlined his company’s solution to its food-versus-fuel dilemma. Bolsen’s figures showed that Chinese grain-based ethanol production has grown from 100 million gallons in 2004 to about 500 million in 2008. He attributed this increase to E10 mandates in several Chinese provinces and cities, but cautioned that “high food demand limits the further growth of first-generation ethanol in China.” He added that corn ethanol is not economical without subsidies in China, and said that cellulosic ethanol from the Coskata process costs less than half the current cost of producing grain-based ethanol. Bolsen told participants that cellulosic ethanol can tap into a wealth of nonfood resources and help make China energy self-sufficient. He said that China’s current annual biomass resources can displace the equivalent of 1.2 billion barrels of imported oil, and that additional potential exists from dedicated energy crops, garbage, steel off-gasses and fossil sources. “Using Coskata’s hybrid gasification plus fermentation technology combines the best of both routes and allows for the use of a wide variety of feedstocks,” Bolsen said. “This could provide important economic development in China—not only in rural areas—but outside major cities using things like tires, municipal solid waste and plastic bottles.” 46 BIOMASS MAGAZINE 1|2009

PHOTO: BBI INTERNATIONAL

EVENT

A lack of water and arable land limits China’s ability to use food crops to produce ethanol, so the country is focusing its efforts on nonfood crops such as this cassava root.

General Motors Corp., a premier sponsor of the symposium, supports Coskata’s process and the second-generation ethanol movement. The automaker has announced alliances with Coskata and Bostonbased Mascoma Corp., another cellulosic ethanol start-up. “GM is committed to the rapid commercialization of the next generation of ethanol,” said Andreas Lippert, director for Global Energy Systems in General Motor’s Research and Development and Strategic Planning Department. “This is why we started a strategic alliance with the two leading cellulosic ethanol companies that together cover the biothermal and biochemical spectrum in advanced biofuel technology.” The United States is also looking at cellulosic ethanol and other advanced biofuels to meet its goals for alternative transportation fuels, according to Dale Gardner, associate director for Renewable Fuels Science and Technology at the National Renewable Energy Laboratory in Golden, Colo. Gardner presented an overview of the biofuels industry in the United States and pointed out the limitations of grain feedstocks. The United States has 162 commercial ethanol plants with a total capacity of 9.4 billion gallons per year and another 4.2 billion gallons per year planned, Gardner said. There are an additional 13 cellulosic ethanol demonstration plants funded by the U.S. DOE with a projected capacity of 250 million gallons per year for 2008. Gardner listed three government programs aimed at increasing the capacity of alternative transportation fuels in the United States including President George W. Bush’s 20-in-’10 target of 35 billion gallons of alternative transportation fuels by 2017, the renewable fuels standard legislation that requires the use of 36 billion gallons of renewable fuels by 2022, and the DOE’s 30x’30 goal of 60 billion gallons of ethanol (30 percent of today’s gasoline consumption of 140 billion gallons per year) by 2030. “A major goal of the DOE is to reduce the cost of cellulosic ethanol,” Gardner said. “We are currently funding projects using various technologies including biochemical, thermochemical and integrated processes.” In addition to technical barriers for commercially viable production, Gardner explained that another challenge is collecting the feedstock. “We have done extensive resource assessments so we


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.