Page 1

Photo 1,  Zoe  Brain,  (2014)   Photo  2,   Zoe   Brain,   (2014)  

Photo 3,   Zoe   Brain,   (2014)  

Photo 4,   Zoe   Brain,   (2014)  

In the  following  photo  you  can  see  the   sequence  that  we  went  through  to   produce  our  balsa  wood  model  of  a   can8lever  from  the  Melbourne   University  Oval  pavilion  building.   Photo  1  shows  us  first  understanding   what  part  of  the  building  we  are   building.  The  next  photo  (2)  shows  us   sketching  the  specified  part  onto  a  piece   of  paper  which  we  then  glued  the  balsa   wood  onto  (this  made  it  easier  to  ensure   angles  and  measurements  were  right).     In  photo  3  we  then  proceeded  to  match   up  the  different  parts  that  we  had  each   been  working  on.  They  were  then  stuck   onto  a  piece  of  white  cardboard  which   served  as  the  roof.  Photo  5  shows  the   finished  structure  of  our  model.     This  structure  has  fixed  joints.   Below  is  a  load  path  diagram  of  our   groups  structure.   Sketch  1,  by  Zoe  Brain,  (2014)  

Photo 5,  Zoe  Brain,  (2014)  

Zoe Brain  639  607  

Different models…  

Photo 1,  James  Macintosh,   (2014)  

Photo 2,  James  Macintosh,   (2014)  

This groups  model  is  quite  similar  to   the  one  our  group  made  (also  a   can8lever).  However,  the   construc8on  method  was  slightly   different,  in  that  this  group  did  not   s8ck  their  model  onto  paper  in  order   to  construct  it.     However,  the  equipment  as  well  as   the  other  methods  they  undertook   were  the  same.   (This  structure  also  has  fixed  joints).  

Below is  a  load  path  diagram  of  this   groups  final  design.   Sketch  1,  by  Zoe  Brain,  (2014)  

Photo 3,  James  Macintosh,   (2014)  

Photo 4,  James  Macintosh,   (2014)   Zoe  Brain  639  607  


Sketch 1,  by  Zoe  Brain,  (2014)    

Round and  rectangular  columns   are  used  (in  a  grid)  in  concrete   frames  where  they  are  connected   together  using  concrete  beams.  

Steel frames  can  be   seen  in  Melbourne     School  of  design-­‐   they  comprise  steel   columns  connected   to  steel  girders  and   beams.  

Sketch 2,  by  Zoe  Brain,  (2014)    

Reinforced masonry  load  bearing  walls  are  core  filled  hollow   concrete  blocks  or  grout  filled  cavity  masonry.  Bond  beams   created  using  special  concrete  blocks  which  bond  individual   units  together.  These  are  used  instead  of  concrete  or  steel   lintels.   Timber  frame  (post  and  bearing)  typically  use  a  grid  of  8mber   post  or  poles  connected  to  8mber  beams.  Bracing  is   necessary  for  stabilising  the  structure.  (This  type  of  framing   can  be  seen  in  the  oval  pavilion).   Zoe  Brain  639  607  

Concrete load  bearing  walls  can  be  in-­‐situ  or  precast.  They   may  also  provide  support  for  spandrel  panels  and  link  into   other  structural  elements  (i.e.  floor  slabs,  roof  structure  etc.)     Solid  masonry   load  bearing   walls  can  be   constructed  with   either  single  or   mul8ple  skins  of   concrete   masonry  or  clay   bricks.  If  more   Sketch  1,  by  Zoe  Brain,  (2014)   than  one  skin     they’re  8ed   Cavity  masonry  walls  are  generally   together  with  a   double  skin  walls,  this  provides  more   insula8on.  If  you  see  weep  holes  (holes   wall  8e.  Could   also  be  joined   between  bricks),  chances  are  it’s  a   using  a  brick   cavity  masonry  wall.  Could  put  blue   layering  between  brick/8mber  to  keep   (header  showing   moisture  out;  leave  perpend  open  to  let   in  face  of  wall)     water  seep  through.   Brick  veneer  construc8on  uses  1  skin  of  structural  frame   wall  and  1  skin  of  non-­‐structural  masonry-­‐  which  does  not   support  structure,  the  structural  frame  does.  Insula8on   then  put  in  between  the  brick  and  structural  frame!!     wall  members  can  be  8mber  or  steel  and  structural   Stud  

frames can  be  constructed    using  8mber,  steel  or  concrete;   could  even  use  brick.   Zoe  Brain  639  607  

Quarter sawn   Advantages:  best  grain   shown  on  face,  good   wearing  for  surface   floors/furniture,  lower   width  shrinkage  on   drying,  less  cupping   and  warping  than   other  cuts.  Can  be   successfully   recondi8oned.   Disadvantages:  slower   seasoning,  nailing  on   face  is  prone  to   splicng.   Back  Sawn:   Advantages:  seasons   more  rapidly,  less   prone  to  splicng   when  nailing.  Wide   sec8ons  are  possible,   few  knots  on  edge.   Disadvantages:  shrinks   more  across  width   when  drying;  more   likely  to  warp  and   cup  ;  collapsed  8mber   more  difficult  to   recondi8on.    

Sketch 1,  by  Zoe  Brain,  (2014)    

WOOD Sketch  2,  by  Zoe   Brain,  (2014)    

Sketch 3,  by   Zoe  Brain,   (2014)    

Radial Sawn:  Advantages:  dimensional  stability  less   prone  to  warping  and  cupping,  less  wastage  in  milling.       Disadvantages:  wedge  shaped  cross  sec8on;  more   difficult  to  detail  and  stack.   Zoe  Brain  639  607  

CLT-­‐ Cross   laminated   8mber  made   by  gluing   pieces  of   dressed  sawn   8mber   together  to   form  a  deep   member  most   laminates  with   grain  designed   to  longitudinal   direc8on.    

GLULAM-­‐ glue   laminated  8mber-­‐   made  from  gluing   pieces  of  dressed   sawn  8mber  together   to  form  a  deep   member.  Most   laminates  with  grain   aligned  to   longitudinal  direc8on.  

PLYWOOD-­‐ Made  by   gluing  and  pressing   thin  laminates   together  to  form  a   sheet  grain  in   laminates  in   alternate  direc8ons   strengths  in  2   direc8ons.   {Structural  bracing,   structural  flooring,   formworks,  joinery,   marine   applica8ons}.  

MDF-­‐ Medium  density   fibreboard-­‐  made  by   breaking  down  hardwood   or  sonwood  waste  into   wood  fibres,  combining  it   with  wax  and  resin  binder   by  applying  high   temperature  and  pressure.   MDF  generally  more  dense   than  plywood  {non   structural  applica8ons  –   (joinery).}  

ENGINEERED TIMBER   LVL-­‐  Laminated  veneer   lumber-­‐  made  from   lamina8ng  thin  sheets  of   8mber,  most  laminates   with  grain  aligned  to   longitudinal  direc8on,   very  deep  and  long   sec8ons  possible,  high   strength.  {Mainly   structural  use  (beams,   posts,  portal  frames).}  

Zoe Brain  639  607  

OSB (Oriented   strand  board)/ Chipboard  and   strand  board-­‐   made  by  layering   hardwood  and   sonwood   residuals  (chips,   strands)  in  specific   orienta8ons  with   wax  and  resin   binder  by  applying   high  temperatures   and  pressure   {structural   systems  (flooring,   bracing,  cladding   finish)      

COLUMNS: Ver8cal  structural  members  designed  to  transfer   axial  compressive  loads.  All  columns  are   considered  slender  members.       LONG  COLUMNS:  


Length is  longer  than  12:1.  

Length is  shorter  than  12:1.  

Deflect by  buckling  (in  length)   Deflect  by  compressing;  are   shorter  length/thicker  cross   Length  and  fixing  of  the   sec8on  i.e.  10:1  Load  (N)/ column  determines  how  it   Area  (mm^2)     will  take  load  and  the  way  it     buckles.     (The  effec8ve  length  changes   Fail  by  crushing  (shear  force)   depending  on  the  fixture.  This   [when  compressive  load  in   is  measured  between  the   exceeded-­‐  load  too  great  or   points  of  contraflexure.     cross  sec8on  too  small.]  and   get  shorter  with  compressive   load.    

•  Compressive Strength  (Pa)   =  Load  (N)  /  area  (mm2)       (Column)  easy  to  deflect  pin;   harder  fixed  joint;  more  hard   fixed/pin  (length  shorter);   hardest  if  2  pin  and  fixed  middle   Sketch  1,  by  Zoe   (length  shorter).   Brain,  (2014)         Zoe  Brain  639  607    

•  References: •  •  •  •  • 

htps:// %2005/SHORT%20AND%20LONG%20COLUMNS.pdf htps:// %2005/SHORT%20AND%20LONG%20COLUMNS.pdf   htp://   htp://   htp://   htp://   htp://  


‘Oval Pavilion  Redevelopment’,  Cox  Architecture,  (2012)  


Zoe Brain  639  607  

Logbook week 5  

Zoe Brain