Page 29

VLAD TENU MINIMAL SURFACE EXPLORATION Through the extruction of each of the mesh edges within the digital model (as shown top left), Tenu was able to create planar elements which would provide structural rigidity and retain the form of the minimal surface throughout his large-scale models3. This collection of work adds to this concept of material efficiency as it demonstrates the structural system employed into the production of a realistically assembled large-scale minimal surface. Of course these paper-prototypes do not express the physical characteristics required within an actual large-scale realisation, however, it is still important to take from Tenu’s prototypes the form retention and the apparent surface to emerge - without the use of surfaces to create it. This material efficiency is something that our model has also explored through physical modelling and it suggests for a reduction in the use of superfluous materials - significantly reducing material wastage. The bottom left image is an actualisation of the use of a simple triangular mesh; which is made into modular pieces and then cut and folded or mechanically fixed4. It exhibits captivating visual properties and the pattern emergence seems to be quite strong - and seemingly intentional. The main focus of this particular exercise was the exploration into the variety of functions such a form can have - ranging from architectural elements to furniture etc. It shows a different aesthetic to the the previous model and seems to express stronger fluidity throughout.

YUN WA LAI 531600  

PART B JOURNAL

YUN WA LAI 531600  

PART B JOURNAL

Advertisement