Page 30

CHAPTER 3

Reference 1. Walmsley, I., Waxer, L. & Dorrer, C. The role of dispersion in ultrafast optics. Rev. Sci. Instrum. 72, 1-29 (2001). 2. Szipocs, R., Ferencz, K., Spielmann, C. & Krausz, F. Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. Opt. Lett. 19, 201 (1994). 3. Zhou, J. et al. Pulse evolution in a broad-bandwidth Ti:sapphire laser. Opt. Lett. 19, 1149-1151 (1994). 4. Kärtner, F. X. et al. Design and fabrication of double-chirped mirrors. Opt. Lett. 22, 831-833 (1997). 5. Matuschek, N., Kartner, F. X. & Keller, U. Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics. IEEE J. Quantum Electron. 35, 129-137 (1999). 6. Kärtner, F. X. et al. Ultrabroadband double-chirped mirror pairs for generation of octave spectra. J. Opt. Soc. Am. B 18, 882–885 (2001). 7. Matuschek, N., Gallmann, L., Sutter, D. H., Steinmeyer, G. & Keller, U. Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics. Appl. Phys. B 71, 509-522 (2000). 8. Gires F. & Tournois P. Interféromètre utilisable pour la compression d’impulsions lumineuses modules en frèquence. C. R. Acad. Sci. Paris 258, 6112-6115 (1964). 9. Li, Y.P., Chen, S.H. & Lee, C.C. Chirped-cavity dispersioncompensation filter design. Appl. Opt. 45, 1525-1529 (2006). 10. Golubovic, B. et al. Double Gires-Tournois interferometer negative-dispersion mirrors for use in tunable mode-locked lasers. Opt. Lett. 25, 275-277 (2000). 11. Furman, S. A. & Tikhonravov, A. V. in Basics of Optics of Multilayer Systems. (Editions Frontière, Paris, 1992). 12. Pervak, V., Razskazovskaya, O., Angelov, I. B., Vodopyanov, K. L. & Trubetskov, M. Dispersive mirror technology for ultrafast lasers in the range 220–4500 nm. Adv. Opt. Technol. 3, (2014). 13..Goos, F. & Hänchen, H. Ein neuer und fundamentaler Versuch zur Totalreflexion. Ann. Phys. 436, 333-346 (1947). 14. Razskazovsaya, O. et al. HfO2/SiO2 chirped multilayer mirrors for broadband dispersion management in the ultraviolet spectral range. in Dig. XVIII International Conference on Ultrafast Phenomena, 36B, THU.PIII.17 (2012). 15.Garmire, E., Hammer, J. M., Kogelnik, H. & Zernike, F. in Integrated Optics. (Springer-Verlag, Berlin Heidelberg New York, 1975.). 16. Cheng, Y. C. et al. Beam focusing in reflection from flat chirped mirrors. Phys. Rev. A 87, 045802 (2013). 17. Hernandez., G. in Fabry Perot Interferometers. (Cambridge University Press, Cambridge, 1988) 18. Cheng, Y. C., Kicas, S. & Staliunas, K. Flat focusing in reflection from a chirped dielectric mirror with a defect layer. to be published in J. Nanophotonics (2015). 19. Tikhonravov, A. V., Trubetskov, M. K., Amotchkina, T. V. & Tikhonravov, A. A. Application of advanced optimization concepts to the design of high quality optical coatings. Proc. SPIE 4829, 19th Congress of the International Commission for Optics: Optics for the Quality of Life, 1061 (2003). 20. Nohadani, O., Birge, J. R., Kärtner, F. X. & Bertsimas, D. J. Robust chirped mirrors. Appl. Opt. 47, 2630-2636 (2008). 21. Birge, J. R., Kärtner, F. X. & Nohadani, O. Improving thinfilm manufacturing yield with robust optimization. Appl. Opt. 50, C36-C40 (2011). 22. Pervak, V., Trubetskov, M. K. & Tikhonravov, A. V. Robust synthesis of dispersive mirrors. Opt. Express 19, 2371–2380 (2011).

Page 22 | Flat Focusing Mirrors | Yu-Chieh Cheng’s Thesis | January 2015

23. Tikhonravov, A. V., Trubetskov, M. K. & DeBell, G. W. Application of the needle optimization technique to the design of optical coatings. Appl. Opt. 35, 5493-5508 (1996). 24. Tikhonravov, A. V., Trubetskov, M. K. & DeBell, G. W. Optical coating design approaches based on the needle optimization technique. Appl. Opt. 46, 704-710 (2007). 25. Dobrowolski, J. A. Completely automatic synthesis of optical thin film systems. Appl. Opt. 4, 937-946 (1965). 26. Cheng, Y. C. et al. Flat focusing mirror. Sci. Rep. 4, 6326 (2014).

Profile for Yu-chieh Cheng

Thesis yu chieh cheng 2015  

Thesis yu chieh cheng 2015  

Advertisement