Page 9

A.1. .21Design DesignFuturing Computation

SOCK FARM

NANDINI BAGCHEE, ARTUR DABROWSKI & ANDREW SWINGLER

Iwindn thisbasedproject, in relation to the topography, solar and energy parks are planned along the east and

west slopes through its north-south ridge. For the first part, there would be a series of large greenhouses which called “Fresh Houses” that enclosed in a semi-transparent PV glass structure. On the second part, it consists of wind harvesting Glider kites that move up to a great distance to generate adequate energy. The energy generated will be consumed to power the installation of the tandem sock kites and Fresh Houses. Tethered to these main kites, are the smaller ‘sock’ kites that generate a moving, pulsating canopy on the banks of Main Creek. It acts as a moniker of the wind and the sun as it traces the changing shadows throughout the day. The principle of maximise the effect from a minimal resource have been applied in this design concept. The use of both solar and wind based energy generators in respective to the locations can ensure sufficient energy generated from these renewable resources throughout the year. During winter, although there is less solar energy being captured, but it could be traded-off with the wind energy. Besides, the design also introduces a complementary indoor produce farm on this site to supply food source to the neighbourhood. Greenhouse farming has the potential to attract users by exposing them to the greenhouse planting system.

However, greenhouse farming also requires electrical furnaces whenever supplementary heating is needed to grow the plants. The greenhouse covering could not be insulated well since it needs to allow light to filter into the structure, hence, supplementary heating spent to continually replace the heat lost. Thus, certain amount of energy generated from the renewable resources would be used up to supply electricity to the farm. In addition, for the super kite, albeit it could reach up to a 1000 feet in altitude, however, there is energy loss when it is reeled back by the tether. Hence, in this design, the net-gain energy is largely reduced after the energy loss as well as being used up to power the mobile sculpture of the tandem kites and to run the green houses as well. The unique kinetic airborne canopy could be a trademark of the site but somehow there is a waste of useful energy to power it rather supply to the neighbourhood.

A multifunctional project likes Sock Farm can be a good precedence for the green project at Copenhagen, which rather than only respond to the requirement in the brief, we can do something extra like the green house. Somehow, when doing this, we have to consider the consequences of the design to the environment.

This project would transform the New York City to a new green reality. The use of renewable resources to supply electricity can compensate the part of the carbon emissions produced by the population. Not only that, greenhouse gases can be absorbed by the vegetation in the Fresh Houses.

6

Tan yeeyin 560654 journal final submission  

final journal studio air