Page 104

86

I N C LU S I V E G R E E N G R O W T H: T H E PAT H WAY TO S U S TA I N A B L E D E V E LO PM E N T

function—human, natural, and physical capital—beginning with labor markets and whether green growth creates jobs.

Notes 1. This section is based on Dutz and Sharma (2012), a background paper produced for this report. 2. Indicators of technological sophistication (R&D personnel per capita) as well as the scale of the R&D sector (total R&D personnel) were considered in making this distinction. 3. Hausmann and Klinger (2006) show that as countries change their export mix, there is a strong tendency to move toward related goods rather than to goods that are farther away, where “relatedness” or “proximity” of products is defined at the global level. 4. See Popp (2012), who highlights the work of Lewis (2007) documenting how both countries went from having no wind turbine manufacturing capacity to having almost complete local production in fewer than 10 years. Sauter and Watson (2008) highlight this as a case study of “environmental leapfrogging,” explaining how the adoption of cutting-edge technologies was facilitated by the creation of learning networks. 5. See Popp (2012), who highlights international mobility of workers as a more important source of information than foreign direct investment or licensing, and de la Tour and others (2011) for the underlying analysis. 6. The initiative, led by the Commission for Environmental Cooperation, established by the North American Free Trade Agreement, included the environmental authority of the state of Queretaro and the Global Environmental Management Initiative, a nonprofit organization of leading U.S. multinational corporations focused on environmental sustainability. It is a 10-week eco-efficiency educational training program emphasizing learning-by-doing with a commitment by participating small and mediumsize enterprises to generate and implement pollution prevention projects, with recommendations for change made by the participants themselves. Investments related to the implementation of the improvement projects were provided by individual participants, who became convinced of their value. Lyon and van Hoof (2010) find that the average

7. 8.

9.

10.

11.

12.

participant generated a project with a net present value of more than $150,000, saved 1,900 cubic meters of water and 42,000 Kwh per year of electricity a year, reduced CO2 emissions by 61 tons a year, and cut waste disposal by 1,455 tons. Chapter 4 addresses the labor market–related questions concerning skills. See chapter 4 of Zhang and others (2009) for an overview and recommendations of policies to strengthen the ecosystem for the venture capital industry in China, and see chapter 7 of Dutz (2007) for India. Regression results (based on comprehensive deal-level data on high-growth financing and enterprises seeking investment in the cleantech sector over 2005–10 in 26 countries including Brazil, China, the Czech Republic, and India) suggest that deployment policies such as feed-in tariffs and tradable certificates, government R&D, and firm-level patenting are associated with higher levels of investment in clean-tech industries than short-term fiscal policies such as tax incentives and rebates. No significant correlation is found between public investment loans or public financing of venture capital and the amount of private financing of innovative ventures (Criscuolo and Menon 2012). Henry and Stiglitz (2010) document how the United States used the threat of a compulsory license to manufacture Cipro during the anthrax scare following September 11, 2001. The assessment is based on first-round approximations rather than full general equilibrium effects. This is a different issue from the rise in imported emissions to high-income countries from developing countries, which is associated with their general deindustrialization. In 2008, China emitted about 1,400 MtCO2 through its production of exported goods; the United States imported goods amounting to about 600 MtCO2 of emissions.

References Ambec, S., M. A. Cohen, S. Elgie, and P. Lanoie. 2011. “The Porter Hypothesis at 20: Can Environmental Regulation Enhance Innovation and Competitiveness?” Discussion Paper 11- 01, Resources for the Future, Washington, DC.

Inclusive Green Growth  
Inclusive Green Growth  

As the global population heads toward 9 billion by 2050, decisions made today will lock countries into growth patterns that may or may not b...