Page 1

I-80 Integrated Corridor Mobility (ICM)

Corridor System Management Plan Draft Prepared by

January 15, 2010


Interstate 80 Integrated Corridor Mobility Project

Corridor System Management Plan DRAFT

By

DKS Associates 1000 Broadway, Suite 450 Oakland, CA 94607 (510) 763-2061

January 15, 2010


Table of Contents 1

INTRODUCTION .................................................................................................................. 1 1.1 1.2 1.3

2

PURPOSE AND NEEDS OF CSMP ................................................................................ 1 THE I-80 CSMP CORRIDOR .......................................................................................... 2 CORRIDOR TEAM .......................................................................................................... 2

CORRIDOR DESCRIPTION ............................................................................................... 5 2.1 FREEWAY ........................................................................................................................ 5 2.2 ARTERIALS ..................................................................................................................... 7 2.3 TRANSIT .......................................................................................................................... 9 2.3.1 Rail Service ................................................................................................................. 9 2.3.2 Bus Service ............................................................................................................... 11 2.3.3 Park-and-Ride Facilities............................................................................................ 12 2.4 MAJOR TRIP GENERATORS....................................................................................... 16 2.4.1 Powell Street Emeryville Shopping District ............................................................. 16 2.4.2 Golden Gate Fields ................................................................................................... 16 2.4.3 University of California Berkeley ............................................................................. 16 2.4.4 Richmond Hilltop Shopping Area ............................................................................ 16 2.4.5 Port of Oakland ......................................................................................................... 16 2.5 EXISTING ITS INFRASTRUCTURE ........................................................................... 16

3

EXISTING CONDITIONS.................................................................................................. 18 3.1 TRAVEL DEMAND CHARACTERISTICS ................................................................. 18 3.1.1 Corridor Traffic Volume ........................................................................................... 18 3.1.2 Traffic Peaking Patterns ............................................................................................ 21 3.1.3 Trip Origin-Destination Patterns............................................................................... 24 3.1.4 Truck Traffic ............................................................................................................. 26 3.1.5 Mode Choice Characteristics .................................................................................... 27 3.2 FREEWAY PERFORMANCE ....................................................................................... 27 3.2.1 Mobility..................................................................................................................... 27 3.2.2 Reliability .................................................................................................................. 37 3.2.3 Safety ........................................................................................................................ 39 3.2.4 Productivity ............................................................................................................... 44 3.2.5 Preservation............................................................................................................... 46 3.2.6 High Occupancy Vehicle Lane Performance ............................................................ 46 3.3 ARTERIAL PERFORMANCE ....................................................................................... 49 3.3.1 Arterial Travel Time ................................................................................................. 49 3.3.2 Accident Records on Arterials .................................................................................. 50 3.3.3 Intersection Level of Service .................................................................................... 54 3.4 TRANSIT PERFORMANCE .......................................................................................... 59 3.4.1 Rail Service ............................................................................................................... 59 3.4.2 Bus Service ............................................................................................................... 60

I-80 Integrated Corridor Mobility Project Draft CSMP

ii

January 15, 2010


3.5 BOTTLENECKS ............................................................................................................. 62 3.5.1 I-80 Eastbound Bottlenecks and Causalities ............................................................. 62 3.5.2 I-80 Westbound Bottlenecks and Causalities ........................................................... 72 4

MODELING APPROACH.................................................................................................. 78 4.1 4.2

5

FORECASTING APPROACH ....................................................................................... 78 OPERATIONAL ANALYSIS APPROACH .................................................................. 81

FUTURE BASELINE CONDITIONS ............................................................................... 82 5.1 BASELINE IMPROVEMENT PROJECTS ................................................................... 82 5.2 TRAVEL DEMAND TRENDS ...................................................................................... 82 5.2.1 Land Use ................................................................................................................... 82 5.2.2 Freeway Demands ..................................................................................................... 83 5.2.3 Arterial Demands ...................................................................................................... 84 5.2.4 Mode Choice ............................................................................................................. 85 5.2.5 Transit Ridership ....................................................................................................... 86 5.3 MOBILITY TRENDS ..................................................................................................... 87 5.3.1 I-80 Study Corridor ................................................................................................... 87 5.3.2 I-80 Freeway Mainline .............................................................................................. 87 5.3.3 San Pablo Avenue ..................................................................................................... 89 5.4 SAFETY TRENDS ......................................................................................................... 91 5.5 RELIABILITY TRENDS ................................................................................................ 92 5.6 CONGESTION AND BOTTLENECK TRENDS .......................................................... 92

6

IMRPOVEMENT STRATEGIES .................................................................................... 100 6.1 CANDIDATE STRATEGIES AND CONSTRAINTS ................................................. 100 6.2 I-80 ICM PROJECT IMPROVEMENTS...................................................................... 101 6.2.1 Expected Benefits of the Project ............................................................................. 102 6.3 ROADWAY GEOMETRIC IMPROVEMENTS ......................................................... 105 6.4 SYSTEM MANAGEMENT IMPROVEMENTS ......................................................... 106 6.5 TRANSIT IMPROVEMENTS ...................................................................................... 108 6.6 NON-MOTORIZED MODE IMPROVEMENTS ........................................................ 109 6.7 DEMAND MANAGEMENT STRATEGIES ............................................................... 110 6.8 TRAVELER INFORMATION ..................................................................................... 111 6.9 GOODS MOVEMENT POLICIES ............................................................................... 113 6.9.1 Roadway Time of Day Restrictions ........................................................................ 113 6.9.2 Lane Restrictions .................................................................................................... 113 6.9.3 Remote Transfer Sites ............................................................................................. 114 6.10 ITS IMPROVEMENTS ............................................................................................. 114

7

IMPLEMENTATION PLAN ............................................................................................ 116 7.1 7.2 7.3

NEAR-TERM ................................................................................................................ 116 INTERMEDIATE TERM ............................................................................................. 116 LONG-TERM................................................................................................................ 116

I-80 Integrated Corridor Mobility Project Draft CSMP

iii

January 15, 2010


Appendices APPENDIX A BART SERVICE  APPENDIX B BUS SERVICE  APPENDIX C PRESERVATION DATA       

I-80 Integrated Corridor Mobility Project Draft CSMP

iv

January 15, 2010


List of Figures Figure 1–1 Strategic Growth Plan....................................................................................................1 Figure 1–2 Corridor Study Limit .....................................................................................................3 Figure 2–1 BART System..............................................................................................................10 Figure 2–2 Park and Ride Facilities in the Corridor ......................................................................14 Figure 3–1 Existing Bi-Directional AADT....................................................................................18 Figure 3–2 Existing Peak Hour Mainline and Ramp Volumes (WB AM Peak) ...........................19 Figure 3–3 Existing Peak Hour Mainline and Ramp Volumes (EB PM Peak) .............................20 Figure 3–4 I-80 Weekday Hourly Volume Variation ....................................................................22 Figure 3–5 I-80 Weekday Hourly Volume Variation (Continued) ................................................23 Figure 3–6 Origin Destination Data for WB I-80 Existing AM Peak Hour ..................................24 Figure 3–7 Origin Destination Data for EB I-80 Existing PM Peak Hour ....................................25 Figure 3–8 Congested Freeways – Existing AM Peak ..................................................................29 Figure 3–9 Congested Freeways – Existing PM Peak ...................................................................30 Figure 3–10 Average Daily Delay by Day of Week ......................................................................31 Figure 3–11 Average Weekday Delay by Time of Day ................................................................32 Figure 3–12 Average Saturday Delay by Time of Day .................................................................33 Figure 3–13 Vehicle-Miles Traveled (VMT) ................................................................................35 Figure 3–14 Vehicle-Hours Traveled (VHT) ................................................................................36 Figure 3–15 Travel Time Variation by Time of Day ....................................................................38 Figure 3–16 Segments from TASAS Accident Analysis...............................................................41 Figure 3–17 Eastbound I-80 Continuous Risk Profile ...................................................................43 Figure 3–18 Westbound I-80 Continuous Risk Profile..................................................................44 Figure 3–19 Lost Productivity by Time of Day .............................................................................45 Figure 3–20 HOV Lane Performance Averaged over the Bay Area .............................................48 Figure 3–21 Eastbound I-80 from University Ave to Gilman St ...................................................63 Figure 3–22 Eastbound I-80 from Pinole Valley Rd to SR 4 ........................................................65 Figure 3–23 Eastbound I-80 at Appian Way .................................................................................66 Figure 3–24 Eastbound I-80 at Richmond Parkway ......................................................................67 Figure 3–25 Eastbound I-80 at San Pablo Ave ..............................................................................68 Figure 3–26 Eastbound I-80 at Carlson Blvd ................................................................................69 Figure 3–27 Eastbound I-80 at University Ave .............................................................................70 Figure 3–28 Eastbound I-80 at the I-80/I-580/I-880......................................................................71 Figure 3–29 Westbound I-80 from San Pablo Dam to McBryde ..................................................73 Figure 3–30 Westbound I-80 at Gilman St ....................................................................................74 Figure 3–31 Westbound I-80 at I-80/I-580/I-880 diverge .............................................................75 Figure 3–32 Westbound I-80 at Powell St .....................................................................................76 Figure 4–1 Development of Base-Year Simulation Model. ..........................................................79 Figure 4–2 Development of Future-Year Simulation Model .........................................................80 Figure 6-1 Effect of Traveler Information on Travel...................................................................112 Figure 6-2 Benefits of Traveler Information ...............................................................................112

I-80 Integrated Corridor Mobility Project Draft CSMP

v

January 15, 2010


List of Tables Table 2-1 Existing HOV Lane along the I-80 Corridor ...................................................................5 Table 2-2 I-80 On-ramps Within Study Corridor ............................................................................6 Table 2-3 Parallel Arterial Segments within the Study Corridor .....................................................7 Table 2-4 Roadway Connectors within the Study Corridor.............................................................8 Table 2-5 Transit Services ...............................................................................................................9 Table 2-6 Major WestCAT Bus Service Routes ............................................................................11 Table 2-7 Major AC Transit Bus Service Routes Within I-80 Corridor........................................12 Table 2-8 Park-and-Ride Facilities ................................................................................................13 Table 2-9 Infrastructure Inventory .................................................................................................17 Table 3-1 Truck Percentages along the I-80 Corridor ...................................................................26 Table 3-2 Mode Split .....................................................................................................................27 Table 3-3 Accident Rate by Segment ............................................................................................40 Table 3-4 HOV Lane Performance at Observation Locations within the I-80 Corridor ...............47 Table 3-5 Arterial Travel Time ......................................................................................................49 Table 3-6 Accident Records on Arterials.......................................................................................51 Table 3-7 Intersection Level of Service .........................................................................................54 Table 3-8 Station Ridership ...........................................................................................................59 Table 3-9 WestCAT Bus Performance ..........................................................................................60 Table 3-10 AC Bus Performance ...................................................................................................60 Table 3-11 AM Eastbound Bottlenecks and Queues .....................................................................62 Table 3-12 PM Eastbound Bottlenecks and Queues ......................................................................64 Table 3-13 AM Westbound Bottlenecks and Queues ....................................................................72 Table 3-14 PM Westbound Bottlenecks and Queues ....................................................................77 Table 5-1 Improvement Projects Included in 2015 and 2035 Travel Demand Models .................82 Table 5-2 Household Growth.........................................................................................................83 Table 5-3 Employment Growth .....................................................................................................83 Table 5-4 Mainline Demands.........................................................................................................84 Table 5-5 I-80 Corridor Freeway Demand (Vehicle Trips) ...........................................................84 Table 5-6 Arterial Demands...........................................................................................................85 Table 5-7 Daily Mode Choice Demands .......................................................................................86 Table 5-8 I-80 Corridor Daily Transit Ridership Growth1 ............................................................86 Table 5-9 I-80 Corridor Baseline Mobility Trends ........................................................................87 Table 5-10 Performance Trends: Between Carquinez Bridge and SR 4 .......................................88 Table 5-11 I-80 Performance Trends: Between SR 4 and Central Avenue ...................................88 Table 5-12 I-80 Performance Trends: Between Central Avenue and the Bay Bridge...................89 Table 5-13 San Pablo Avenue Performance Trends: Between Carquinez Bridge and SR 4 .........90 Table 5-14 San Pablo Avenue Performance Trends: Between SR 4 and Central Avenue ............90 Table 5-15 San Pablo Avenue Performance Trends: Central Avenue to Bay Bridge ...................91 Table 5-16 Collisions on I-80 Study Corridor ...............................................................................91 Table 5-17 Existing Bottlenecks in the I-80 Study Corridor .........................................................92 Table 5-18 I-80 Corridor Eastbound Demand/Capacity Ratio ......................................................94 Table 5-19 I-80 Corridor Westbound Demand/Capacity Ratio .....................................................97 Table 6-1 I-80 ICM Project System Components........................................................................102

I-80 Integrated Corridor Mobility Project Draft CSMP

vi

January 15, 2010


Table 6-2 System Management Strategies and Benefits..............................................................108 Table 7-1 I-80 CSMP Proposed Project Implementation Timeline .............................................117

I-80 Integrated Corridor Mobility Project Draft CSMP

vii

January 15, 2010


1 INTRODUCTION 1.1 Purpose and needs of CSMP A Corridor System Management Plan (CSMP) is a document and an associated set of analytical tools and performance monitoring systems designed to optimize performance of a major transportation corridor. A transportation corridor is not limited to the highway but encompasses all transportation components such as major local parallel arterials, local road intersections, ramps and ramp meters, signal controls, transit. The ultimate purpose of the CSMP is to serve as a tool for efficiently and effectively optimizing the safety, mobility, productivity and reliability of the existing transportation resources and preservation outcomes. The CSMP allows the State, regional agencies, and local jurisdictions to manage and operate the transportation corridor to maintain the highest sustained productivity and reliability based on the assessment and evaluation of performance measures. The CSMP assesses current performance, identifies casual factors for congestion and proposes the best mix of improvements, strategies, and actions to optimize corridor performance based on testing of alternative corridor management.

Figure 1–1 Strategic Growth Plan The CSMP approach is consistent with the goals and objectives of the Governor’s Strategic Growth Plan. The objectives of the plan are to decrease congestion, improve travel time and safety. Key elements of the strategy are illustrated in Figure 1–1 . The foundation of transportation system management, which is the base of the pyramid, is system monitoring and evaluation. It is critical to understand what is occurring on the transportation network so that the value of any

I-80 Integrated Corridor Mobility Project Draft CSMP

-1-

January 15, 2010


investment decision made at a higher level in the pyramid is not limited. The next layers up the pyramid are focused on making the best use of existing resource and reducing the demand for new transportation facilities.

1.2 The I-80 CSMP corridor Interstate 80 (I-80) is a major east-west freeway connecting San Francisco and Sacramento, passing through Alameda County and Contra Costa County. The Interstate 80 corridor has ranked as the most congested corridor in the entire San Francisco Bay Area during the last six years, with traffic volumes reaching 312,000 vehicles per day and an average of 20,000 hours of delay daily. For more than forty years, congestion has been present in the I-80 corridor. Even after past major investments in freeway capacity, segments of the corridor remain congested for up to ten hours a day. Currently, the demand on the freeway exceeds the roadway capacity, causing unreliable travel times, erratic operating speeds, breakdowns, as well as diversion to the local arterials. The congestion on the roadway network contributes to an increase in incidents, including rear-end accidents on both the freeway and local arterials. The frequency of incidents also contributes to delays for transit services operating along the corridors. The combined effect of the incidents and the congestion hinders efficient response times and creates potential for additional secondary incidents. The study corridor covers the I-80 freeway segment between the San Francisco Bay Bridge in Alameda County and the Carquinez Bridge in Contra Costa County, and includes ramps, roadway connectors, parallel arterials, and transit services. Figure 1-2 provides a graphical overview of the corridor study limits.

1.3 Corridor Team The preparation and implementation of a CSMP requires coordination with local agencies, MTC, CMA, and Caltrans. Local Partner members: City of Oakland, City of El Cerrito, City of Berkeley, AC Transit, WestCAT Transit, Alameda County Congestion Management Agency, West Contra Costa Transportation Advisory Committee, Metropolitan Transportation Commission, Contra Costa Transportation Authority, Contra Costa Public Works, Caltrans members: District 4: Erik Alm, Mei-ling Leong, Cesar Pujol, Rod Oto, Koohong Chung, Emily Tang, Cheung-Chim Lau, John McKenzie, John Wolf, Adrian Levy, Stephen Yokoi, Wingate Lew, Julie Gum.

I-80 Integrated Corridor Mobility Project Draft CSMP

-2-

January 15, 2010


N

EL CERRITO

Figure 1-2 Study Corridor Limit


N

HERCULES

PINOLE

RICHMOND

EL SOBRANTE

RICHMOND

Figure 1-2 Study Corridor Limit (Continued)


2 CORRIDOR DESCRIPTION 2.1 Freeway I-80 is a major east-west directional freeway connecting San Francisco and Sacramento, passing through Alameda County and Contra Costa County. In general, I-80 has three mixed-flow lanes between the Carquinez Bridge and Interstate 580 (I-580 in Albany) and five mixed-flow lanes between I-580 (Albany) and Powell Street (Emeryville). Several freeway segments include an auxiliary lane between an on-ramp and the immediate downstream off-ramp. High Occupancy Vehicle (HOV) lanes are available in this corridor for three or more people per vehicle during the hours of 5:00 AM to 10:00 AM and 3:00 PM to 7:00 PM. Table 2-1 lists the existing HOV lanes on I-80 within the study corridor. There are a total of 35.7 HOV lane miles available on I-80, and there is a plan to add another 4.7 lane miles to the eastbound I-80 from west of State Route 4 (SR 4) to the Carquinez Bridge, as indicated in the Caltrans 2007 Bay Area HOV Lanes Report. Table 2-1 Existing HOV Lane along the I-80 Corridor Direction 

Route 

Limits 

Lane‐miles 

Minimum  Periods  Occupancy  3+  5‐10 AM, 3‐7 PM

Westbound  CC‐80 

SR‐29 to SR‐4 

4.9

Westbound  CC‐80 

SR‐4 to Alameda County Line

10.1

3+ 

5‐10 AM, 3‐7 PM

Westbound  ALA‐80 

Contra Costa County Line to I‐880 Viaduct

4.2

3+ 

5‐10 AM, 3‐7 PM

Westbound  ALA‐80 

Bay Bridge Toll Plaza 

1.1

3+ 

5‐10 AM, 3‐7 PM

Eastbound 

ALA‐80 

I‐880 Viaduct to Ala/CC County Line

5.8

3+ 

5‐10 AM, 3‐7 PM

Eastbound 

CC‐80 

Ala/CC County Line to SR‐4

9.5

3+ 

5‐10 AM, 3‐7 PM

Eastbound 

SOL‐80 

Carquinez Bridge Toll Plaza

0.1

3+ 

5‐10 AM, 3‐7 PM

Note: There is a plan to extend the HOV lane on I-80E from West of SR-4 to the Carquinez Bridge (EA#26372K: $45 million, 4.7 lane-miles) Source: Caltrans 2007 Bay Area HOV Lanes Report

There are 52 on-ramps along the I-80 study corridor that provide access from local arterials onto I80, including HOV-only center median on-ramps at Richmond Parkway (Pinole) and Cutting Boulevard (Richmond), as listed in Table 2-2. Most of the on-ramps are in a diamond configuration that allow access to the freeway from both directions of the cross streets. There are some locations where loop ramps are utilized to serve only one direction of cross street traffic (e.g., eastbound Cutting Boulevard on-ramp to eastbound I-80). Please note that off-ramps are not listed because most cross streets will have both on- and off-ramps.

I-80 Integrated Corridor Mobility Project Draft CSMP

-5-

January 15, 2010


Table 2-2 I-80 On-ramps Within Study Corridor Westbound  Pomona St on‐ramp  Cummings Skyway on‐ramp  Willow Ave on‐ramp  WB Route 4 on‐ramp  Pinole Valley Rd on‐ramp  Appian Way on‐ramp  Richmond Pkwy on‐ramp  Richmond Pkwy HOV on‐ramp (at left)  WB Hilltop Dr on‐ramp  EB Hilltop Dr on‐ramp  El Portal Dr on‐ramp  San Pablo Dam Rd on‐ramp Solano Ave on‐ramp  Barrett Ave on‐ramp  Potrero Ave on‐ramp  Carlson Blvd on‐ramp  Central Ave on‐ramp  EB I‐580 merge (at right)  Buchanan St on‐ramp  Gilman St on‐ramp  WB University Ave on‐ramp  WB Ashby Ave on‐ramp  Frontage Rd on‐ramp  Powell St on‐ramps  WB I‐580 merge (at left)  NB I‐880 merge (at right and HOV merge at left)

I-80 Integrated Corridor Mobility Project Draft CSMP

Eastbound  WB I‐580 merge (at right) NB I‐880 merge (at left) Powell St on‐ramp WB Ashby Ave on‐ramp WB University Ave on‐ramp Gilman St on‐ramp Buchanan St on‐ramp Central Ave on‐ramp Carlson Blvd on‐ramp EB Cutting Blvd on‐ramp WB Cutting Blvd on‐ramp Cutting Blvd HOV on‐ramp (at left)  San Pablo Ave on‐ramp San Pablo Dam Rd on‐ramp El Portal Dr on‐ramp EB Hilltop Dr on‐ramp WB Hilltop Dr on‐ramp EB Richmond Pkwy on‐ramp WB Richmond Pkwy on‐ramp  EB Appian Way on‐ramp WB Appian Way on‐ramp Pinole Valley Rd on‐ramp Route 4 on‐ramp Willow Ave on‐ramp Cummings Skwy on‐ramp Pomona St on‐ramp

-6-

January 15, 2010


2.2 Arterials San Pablo Avenue is the primary north-south alternative arterial to the I-80 corridor, running parallel to I-80 from Crockett (the northern end of the corridor) to Oakland (the southern end of the corridor). It is a north-south directional roadway with one or two through lanes per direction. Other study corridor arterials serve as secondary alternative routes (localized) or connectors between I-80 on-ramps and off-ramps, and transit facilities on San Pablo Avenue. These roadways also typically have one or two through lanes per direction. Table 2-3 lists segments of the parallel arterials within the study corridor in the north-south direction (most segments are sections of San Pablo Avenue). Roadway connectors between these parallel arterials and I-80 ramps are listed in Table 2-4. Table 2-3 Parallel Arterial Segments within the Study Corridor Parallel Arterial  San Pablo Ave  San Pablo Ave/ Parker Ave  San Pablo Ave  San Pablo Ave  San Pablo Ave  Fitzgerald Dr  San Pablo Ave  San Pablo Ave  San Pablo Ave  El Portal Dr  San Pablo Ave  San Pablo Dam Rd  San Pablo Ave  San Pablo Ave  Swans Way  San Pablo Ave  San Pablo Ave  San Pablo Ave  Carlson Blvd  San Pablo Ave  San Pablo Ave  W. Frontage Rd  Eastshore Hwy  San Pablo Ave  San Pablo Ave  San Pablo Ave  San Pablo Ave 

From  Pomona St  Cummings Skyway  Willow Ave  Route 4/John Muir Pkwy  Pinole Valley Rd  Appian Way  Appian Way  Richmond Pkwy  Hilltop Dr  San Pablo Dam Rd  El Portal Dr  El Portal Dr  San Pablo Dam Rd  McBryde Ave  San Pablo Ave  Barrett Ave  Cutting Blvd  Potrero Ave  I‐80   Central Ave  Buchanan St  Gilman St  Buchanan St  Gilman St  University Ave  Ashby Ave  Powell St 

I-80 Integrated Corridor Mobility Project Draft CSMP

-7-

To  Cummings Skyway  Willow Ave  Route 4/John Muir Pkwy  Pinole Valley Rd  Appian Way  Richmond Parkway  Richmond Parkway  Hilltop Dr  El Portal Dr  El Portal Dr on‐ramp to I‐80W  San Pablo Dam Rd  San Pablo Ave  McBryde Ave  Barrett Ave  Barrett Ave  Cutting Blvd  Potrero Ave  Central Ave  Central Ave  Buchanan St  Gilman St  Powell St  University Ave  University Ave  Ashby Ave  Powell St  W. MacArthur Blvd 

January 15, 2010


Table 2-4 Roadway Connectors within the Study Corridor Roadway Connector  Cummings Skyway  Willow Ave  Route 4/John Muir Pkwy  Pinole Valley Rd  Appian Way  Richmond Pkwy  Hilltop Drive  El Portal Dr  McBryde  Solano Ave  Barrett Ave  MacDonald Ave  Cutting Blvd  Potrero Ave  Central Ave  Buchanan St  Gilman St  University Ave  Ashby Ave  Powell St 

From San Pablo Ave San Pablo Ave San Pablo Ave San Pablo Ave San Pablo Ave San Pablo Ave San Pablo Ave San Pablo Ave San Pablo Ave San Pablo Ave I‐80  I‐80  I‐80  I‐80  I‐80  I‐80  W. Frontage Rd W. Frontage Rd W. Frontage Rd W. Frontage Rd

I-80 Integrated Corridor Mobility Project Draft CSMP

To  I‐80  I‐80  I‐80  I‐80  I‐80  I‐80  I‐80  San Pablo Dam Rd  I‐80  I‐80  San Pablo Ave  San Pablo Ave  San Pablo Ave  San Pablo Ave  San Pablo Ave  San Pablo Ave  San Pablo Ave  San Pablo Ave  San Pablo Ave  San Pablo Ave 

-8-

January 15, 2010


2.3 Transit Various transit agencies provide service along the project corridor. Table 2-5 summarizes each transit operator, type of transit service, and service limits within the corridor. There are currently no existing ferry stops within the corridor limit. However, the Vallejo BayLink Ferry provides ferry services from Vallejo Ferry Building to San Francisco Ferry Building and the Oakland/Alameda Ferry provides ferry services from Oakland Jack London Square to San Francisco Ferry Building. These ferry services parallel all or part of the project corridor. Table 2-5 Transit Services Transit Operator 

Type of Transit Service 

Service Limits within Corridor 

Bay Area Rapid  Transit (BART) 

Rail 

Between Richmond and San Francisco  

Amtrak 

Rail 

Between Oakland and Richmond

Fairfield‐Suisun  Transit 

Express bus connections to  Between Fairfield and El Cerrito del Norte BART station along  BART  Interstate 80 

Vallejo Transit 

Express bus connections to  Between Vallejo and El Cerrito del Norte BART station along  BART  Interstate 80 

WestCAT 

Express bus connections to  Between Martinez, Hercules and the El Cerrito del Norte BART  BART  station along Interstate 80 

Golden Gate Transit  Express bus connections to  Between San Rafael and El Cerrito del Norte BART station along  BART  Cutting Boulevard.  Vallejo BayLink 

Transbay express bus service Between Vallejo Ferry Building and San Francisco Ferry Building  to San Francisco  along Interstate 80 

AC Transit 

Transbay express bus service Between various east bay locations (neighborhoods and park‐ to San Francisco  and‐ride lots) and San Francisco along Interstate 80 

WestCAT Lynx 

Transbay express bus service Between Hercules Transit Center and San Francisco Transbay  to San Francisco  Terminal along Interstate 80 

AC Transit 

Rapid Bus Service 

Along San Pablo Avenue between Richmond and Oakland

2.3.1 Rail Service Bay Area Rapid Transit (BART) is a major rail service within the study corridor. The 5 system lines and 43 stations are presented in Figure 2-1. BART operates Monday through Friday from 4:00 AM to midnight; Saturdays from 6:00 AM to midnight; and, Sundays from 8:00 AM to midnight. Service may extend beyond midnight depending on the station coordination of the last running train. The Richmond-Milbrae and Richmond-Fremont BART lines, running parallel to the I-80 corridor have the average travel time of 69 minutes and 61 minutes, respectively. Train headways are 15 minutes during weekdays and headways are 20 minutes during weekends for both Richmond lines. Seating capacity varies between cars; however, total capacity including standing

I-80 Integrated Corridor Mobility Project Draft CSMP

-9-

January 15, 2010


passengers can reach up to 150. Detailed information including frequencies and connections to bus services is presented in Appendix A. In addition to BART, Amtrak also provides rail service within the corridor. There are four Amtrak stations within the study corridor: Richmond, Berkeley, Emeryville, and Oakland-Jack London Square. The Richmond station has a platform with shelter and fixed service hours; however, there is no ticket office and checked baggage service available. The Berkeley station has only a platform without shelter. There is no fixed service hour, no ticket office, and no checked baggage service at this location. Access to the Berkeley station is limited to arrival and departure times. The Emeryville and Oakland-Jack London Square stations are full service stations with fixed service hours, ticket office, checked baggage hours, and waiting rooms.

Source: www.bart.gov

Figure 2–1 BART System

I-80 Integrated Corridor Mobility Project Draft CSMP

- 10 -

January 15, 2010


2.3.2 Bus Service The Western Contra Costa Transit Authority (WestCAT) and the Alameda-Contra Costa Transit District (AC Transit) are the two main transit agencies providing bus services in the study corridor. Table 2-6 and Table 2-7 summarize major bus service routes in the study corridor operated by these agencies. WestCAT bus routes provide services in the northern section of the study corridor connecting Hercules Transit Center with the Richmond Transit Center and El Cerrito del Norte BART station. In contrast, AC Transit bus routes provide services in the southern section of the I80 corridor connecting downtown Oakland to both San Francisco Transbay Center and Richmond Transit Center. It is important to note that bus routes connecting to/from a BART station have significant ridership. BART is a crucial transit alternative in the study corridor and many travelers use bus transit services to connect to the BART system. Detailed information on each bus service route within the study corridor is provided in Appendix B.

Table 2-6 Major WestCAT Bus Service Routes Provider 

Route 

From 

WestCAT  WestCAT  WestCAT  WestCAT  WestCAT  WestCAT  WestCAT  WestCAT  WestCAT  WestCAT  WestCAT 

JX  J  JPX  30Z  C3  LYNX  10  11  12  13  14 

Hercules Transit Center Hercules Transit Center Hercules Transit Center El Cerrito del Norte BART Station Hercules Transit Center Rodeo/Hercules  Hercules Transit Center Hercules Transit Center Hercules Transit Center Hercules Transit Center Hercules Transit Center

WestCAT  WestCAT  WestCAT  WestCAT 

15  16  17  18 

Hercules Transit Center Richmond Parkway Transit Center Richmond Parkway Transit Center Tara Hills 

WestCAT 

19 

Hercules Transit Center

I-80 Integrated Corridor Mobility Project Draft CSMP

To  El Cerrito del Norte BART Station  El Cerrito del Norte BART Station  El Cerrito del Norte BART Station  Downtown Martinez Pinole‐Contra Costa College  San Francisco Transbay Terminal  Gem Street Rodeo/Hercules Redwood Street Coronado Pheasant Drive, Sparrow Drive, Falcon  Way, and Refugio Valley Road  North Shore Business Park, Rodeo  Pinole Valley Area Del Monte Shopping Center  Richmond Parkway Transit Center/Hilltop  Mall  Hilltop Mall

- 11 -

2007  Ridership  121,655 456,114 74,251 68,151 52,075 124,071 29,449 98,263 38,990 57,350 48,405 52,388 93,690 10,771 15,864 59,400

January 15, 2010


Table 2-7 Major AC Transit Bus Service Routes Within I-80 Corridor Provider 

Route 

From 

To 

AC Transit  AC Transit 

L  7 

San Francisco Transbay Rockridge BART 

Princeton Plaza Shopping Center  Berkeley BART/El Cerrito Del Norte BART 

AC Transit  AC Transit 

70  71 

Contra Costa College El Cerrito Del Norte BART

AC Transit 

Oakland 14th St/Broadway Ave

AC Transit  AC Transit  AC Transit 

72/  72M  72R  74  76 

AC Transit 

376 

El Cerrito Del Norte BART

Richmond BART Richmond BART/Richmond Parkway  Transit Center  El Cerrito Del Norte BART/Richmond  BART/Castro Street  Contra Costa College Richmond BART/Orinda BART  Richmond BART/El Cerrito Del Norte  BART  Richmond BART/Pinole Business Park 

Jack London Square Hall Ave& Marina Way Richmond Parkway Transit Center

2007  Ridership  175,695 467,690 400,248 389,721 2,730,143 1,733,490 426,438 687,745 70,752

2.3.3 Park-and-Ride Facilities Park-and-ride facilities allow travelers to park their cars to use transit or carpool with others. These facilities are provided by transit providers (BART, AC Transit, and WestCAT). Table 2-8 summarizes the park-and-ride facilities within the study corridor including location, available spaces, and possible transit route connection options. The park-and-ride facilities are sorted by their locations from north to south. Park and ride lots in Hercules (Willow Avenue and I-80) and Richmond (Richmond Parkway and I-80) are owned and operated by Caltrans. Figure 2-2 illustrates the locations of park and ride facilities in the corridor.

I-80 Integrated Corridor Mobility Project Draft CSMP

- 12 -

January 15, 2010


Table 2-8 Park-and-Ride Facilities City 

Location 

Spaces 

Provider 

Connection to Transit Routes 

San Pablo  Richmond  Oakland  Oakland 

San Pablo Ave near Church Ln Hilltop Dr and I‐80  Linden St and 7th St  Grand Ave and Lake Park 

AC Transit AC Transit AC Transit AC Transit

LC, L, 72R, 72, 76  LA, LC, J,18,  71, 76, 670, 672,676 19,62,800 NX1,B,NL, NX,  12,13,57,653,657,658,680,688,689,805 

Crockett  Hercules 

Pomona St and Wanda St  Sycamore and San Pablo Ln 

156 135 180 No  available  information  24 252

WestCAT WestCAT

Hercules 

Willow Ave and EB I‐80 

85

WestCAT

Hercules 

Willow Ave and WB I‐80 

85

WestCAT

11 C‐3, JX,30Z, JPX, LYNX,J,  10,11,12,13,14,15,19  J, C‐3, JX, 30Z, JPX, LYNX,  10,11,12,13,14,15,19  J, C‐3, JX, 30Z, JPX, LYNX,  10,11,12,13,14,15,19  17 LA, LC, 70,71,76,376,670  AC Transit routes 1, 1R, 11, 12, 13, 14,  15, 18, 19, 40, 71, 72, 72 M, 74, 76,  376; Golden Gate Transit route 42  AC Transit routes 7, 71, 72, 72M, 72R,  76, 376; Golden Gate Transit routes  40, 42; WestCAT routes 30Z, J, JL, JPX,  JR, JX.  AC Transit routes 19, 88  AC Transit routes 19, 88  AC Transit routes 1, 1R, 7, 9,15, 18, 19,  51, 52L, 65, 67, 79, 800  AC Transit routes 9, 15, 18  AC Transit routes 7, 51, 59, 851

Richmond  Richmond Pkwy and I‐80 

182 

Richmond  Richmond Station 

626

WestCAT AC Transit BART

El Cerrito 

El Cerrito Plaza Station 

747

BART

El Cerrito  Berkeley  Berkeley 

El Cerrito del Norte  North Berkeley  Downtown Station 

2159 792 No parking 

BART BART BART

Berkeley  Oakland 

Ashby  Rockridge 

602 885

BART BART

Oakland 

MacArthur 

621

BART

AC Transit routes 1, 1R, 12, 14, 15, 18,  57 

Oakland 

West Oakland 

439 

BART 

AC Transit routes 13, 19, 62 

Source: http://rideshare.511.org/511maps/

I-80 Integrated Corridor Mobility Project Draft CSMP

- 13 -

January 15, 2010


Legend

N

EL CERRITO

Figure 2-2 Park and Ride Facilities in the Corridor


N

HERCULES

PINOLE

RICHMOND

EL SOBRANTE

Legend PARK N’ RIDE FACILITY

RICHMOND BART STATION LOCATION

Figure 2-2 Park and Ride Facilities in the Corridor (Continued)


2.4 Major Trip Generators This section discusses land uses that are major trip generators and attractors within the study corridor. 2.4.1 Powell Street Emeryville Shopping District With an area of 800 acres (1.25 square miles) the Powell Street Shopping District consists of variety of major retail stores like IKEA, and outdoor shopping mall located on Bay Street slightly east of I-80 and north of I-580. Bay Street Emeryville is a mixed urban neighborhood consisting of retail, residential apartment units, restaurants and movie theaters. Bay Street Emeryville offers over 1,900 parking spaces in multi-level structured facilities and surface lots. 2.4.2 Golden Gate Fields The Golden Gate Fields facility is located on 181 acres (0.3 square miles) near the Buchanan Street exit, just west of I-80, with a one-mile dirt track for horse racing. In addition to holding approximately 1,350 horses, there is a main grandstand with seating for up to 9,000 visitors and a clubhouse with seating for 4,500 visitors. Parking is available for 8,500 cars on racing days. Within the year, there are approximately 105 racing days. 2.4.3 University of California Berkeley The flagship campus of the University of California (UC) located at the end of University Avenue, approximately 2 miles east of I-80 has an enrollment of 35,409 students and 2,028 faculty members among the 130 academic departments. As one of the largest universities in California, this public university has numerous intercollegiate athletic teams that compete throughout the year. During the fall, the university’s football team brings as many as 80,000 spectators per game from the Bay Area to Berkeley’s Memorial Stadium on the east side of campus. 2.4.4 Richmond Hilltop Shopping Area The Hilltop Mall covering 64 acres (0.1 square miles) is located approximately 0.5 miles off the Hilltop Drive exit from I-80. Opening in 1976, this two-level mall has 140 stores, including a wide variety of retail stores and restaurants. Along Fitzgerald Drive, there is an 80-acre (0.12 square miles) plaza containing a wide range of retails, restaurants, and fast food venues. The plaza is also easily accessible off the Richmond Parkway exit. 2.4.5 Port of Oakland Even though the Port of Oakland is located outside of the corridor limit (approximately two miles south of the corridor limit), it contributes significant truck traffic to I-80. The Port of Oakland is one of the largest maritime facilities in the Bay Area and it continues to grow and plans to capture a larger share of west coast maritime activities. It has ten container terminals and two intermodal rail facilities serving the Oakland Waterfront.

2.5 Existing ITS Infrastructure Many of the existing elements included in the Regional Architecture are relevant to the I-80 study corridor and each element was evaluated to determine how they fit within the system concept of the I-80 ICM project. The existing ITS elements include loop detectors on I-80 mainline and ramps, microwave vehicle detection systems (MVDS), changeable message signs (CMS), I-80 Integrated Corridor Mobility Project Draft CSMP

- 16 -

January 15, 2010


extinguishable message signs (EMS), bus arrival system, automatic vehicle location (AVL) system, closed circuit television system in BART, FasTrak, Caltrans roadside equipment, Transportation Management System, Highway Advisory Radio (HAR) and TravInfo. Table 2-9 shows the ITS inventory in the I-80 Corridor. Details about existing ITS infrastructure and regional ITS architecture can be found in the Comprehensive Performance Assessment Report. Table 2-9 Infrastructure Inventory   1 

ITS devices  I‐80 mainline and ramp loop detectors

Microwave vehicle detection systems (MVDS) on arterials

19

Changeable message signs on I‐80 mainline

5

Highway advisory radio (HAR) antennas along I‐80

3

Extinguishable message signs (EMS) 5

5

Closed‐circuits television (CCTV) cameras along I‐80 mainline

24

Closed‐circuits television (CCTV) cameras along arterial

88

I-80 Integrated Corridor Mobility Project Draft CSMP

- 17 -

Count  101

January 15, 2010


3 EXISTING CONDITIONS Understanding the corridor-wide performance is the foundation for developing a Corridor System Management Plan (CSMP). This section discusses the corridor-wide performance measures to assess the operations of the I-80 corridor. The Performance Measurement System (PeMS) database is the major data source to provide performance measures related to the freeways. Performance measures related to the arterials are mainly available from the San Pablo Corridor Regional Signal Timing Program (RSTP) Project done in 2007.

3.1 Travel Demand Characteristics 3.1.1 Corridor Traffic Volume Figure 3-1 provides a flow diagram of the bi-directional annual average daily traffic (AADT) on I-80 for 2008 from Caltrans traffic counts. The single highest traffic count of 288,000 vehicles per day (vpd) occurs between Powell Street and the I80/I-880/I-580 split. East of the I-80/I-580 (east)/I-880 junction, there are two locations within the corridor where major changes in daily traffic occur: at I-580 (West) where volume changes by 94,000 vpd and at SR 4 where volume changes by 56,000 vpd. Figure 3-2 provides westbound ramp volume and select mainline freeway information in the I-80 corridor for the AM peak hour (2008). The highest on-ramp volume of 3,000 vph is added to the corridor from I-580. Other high-volume on-ramp locations in the AM peak hour include SR 4 (2,000 vph), Pinole Valley Road (1,200 vph), Appian Way (1,220 vph), and San Pablo Dam Road (1,100 vph). The I-580/I-880 off-ramps experience the highest off-ramp volume of 5,700 vph. Other high-volume off-ramp locations include Richmond Parkway (1,760 vph), Cutting Boulevard (1,300 vph), and Gilman Street (1,490 vph). Similar information for eastbound I-80 in the PM peak hour is provided in Figure 3-3. The highest entering volumes are from northbound I-880 (2,300 vph) and westbound I-580 (3,100 vph). Other high-volume on-ramp locations in the PM peak hour include Powell Street (950 vph), Barrett Avenue (1,350 vph), and eastbound Richmond parkway (1,400 vph). In addition to I-580West (3,700 vph), high-volume off-ramp locations include Powell Street (1,700 vph), Hilltop Drive (1,150 vph), and SR-4 (2,400 vph). Figure 3–1 Existing Bi-Directional AADT Source : Caltrans Data, 2008 I-80 Integrated Corridor Mobility Project Draft CSMP

- 18 -

January 15, 2010


Figure 3–2 Existing Peak Hour Mainline and Ramp Volumes (WB AM Peak)

I-80 Integrated Corridor Mobility Project Draft CSMP

- 19 -

January 15, 2010


Figure 3–3 Existing Peak Hour Mainline and Ramp Volumes (EB PM Peak)

I-80 Integrated Corridor Mobility Project Draft CSMP

- 20 -

January 15, 2010


3.1.2 Traffic Peaking Patterns Figure 3-4 and Figure 3-5 consists of graphs at key locations that illustrate the variation in directional traffic volumes throughout the day based on Caltrans Census data between the years 2002-2004. In general, key findings from this data include: • • • • • • •

The directional peak in the morning is westbound. The directional peak in the evening is eastbound. In the eastbound direction, the percentage of traffic in the AM peak period varies between 18% and 23% of daily traffic. In the westbound direction, the percentage of traffic in the PM peak period varies between 35% and 43% of daily traffic. In the AM peak period, the directional split on I-80 is typically 40% eastbound, 60% westbound. In the PM peak period, the directional split on I-80 is typically 55% eastbound:45% westbound. The peak hour volume ranges from 7% to 9% of the daily volume.

I-80 Integrated Corridor Mobility Project Draft CSMP

- 21 -

January 15, 2010


University Avenue Interchange

Weekday Hourly Traffic Flows (vph)

12000

10000

8000

6000

4000

2000 Eastbound Westbound 0 0

2

4

6

8

10

12

14

16

18

20

22

20

22

24

Time of Day (hours)

Central Avenue Interchange 8000

Weekday Hourly Traffic Flows (vph)

7000 6000 5000 4000 3000 2000 1000

Eastbound Westbound

0 0

2

4

6

8

10

12

14

16

18

24

Time of Day (hours)

Figure 3–4 I-80 Weekday Hourly Volume Variation

I-80 Integrated Corridor Mobility Project Draft CSMP

- 22 -

January 15, 2010


Hilltop Drive Interchange 8000

Weekday Hourly Traffic Flows (vph)

7000 6000 5000 4000 3000 2000 1000

Eastbound Westbound

0 0

2

4

6

8

10

12

14

16

18

20

22

24

20

22

24

Time of Day (hours)

SR 4 Interchange 8000

Weekday Hourly Traffic Flows (vph)

7000 6000 5000 4000 3000 2000 1000

Eastbound Westbound

0 0

2

4

6

8

10

12

14

16

18

Time of Day (hours)

Figure 3–5 I-80 Weekday Hourly Volume Variation (Continued)

I-80 Integrated Corridor Mobility Project Draft CSMP

- 23 -

January 15, 2010


3.1.3 Trip Origin-Destination Patterns Figure 3-6 and Figure 3-7 highlight the origin and destination of traffic using I-80 in the existing AM peak hour and PM peak hour respectively. These figures were developed using select link results from the existing travel demand model. Figure 3-6 presents origin-destination results for two select link locations in the westbound direction during the AM peak hour. The first part of the figure (figure to the right) shows the distribution of trip destinations for vehicles that pass through the Carquinez Bridge, while the second part (figure to the left) shows the distribution of trip originations that pass through I-80 west of Powell Street. Key findings include: •

Over 55% of the trips that use the Carquinez Bridge in the AM peak hour westbound continue west to the I-80/I-880/I-580 split. In total this represents a little over one full lane of capacity in terms of demand.

Vehicle trips that use I-80 west of Powell Street during the AM peak hour originate in roughly equal distributions from four areas. These four areas include: Albany/Berkeley/Emeryville, I-580, Richmond to Rodeo, and east of the Carquinez Bridge.  

Figure 3–6 Origin Destination Data for WB I-80 Existing AM Peak Hour

I-80 Integrated Corridor Mobility Project Draft CSMP

- 24 -

January 15, 2010


Figure 3-7 provides similar information for eastbound I-80 in the existing PM peak hour. The figure to the left shows the distribution of trip destinations of vehicles originating from eastbound I-80 at Powell Street. The figure to the right shows the distribution of trip originations of vehicles that travel through Carquinez Bridge. Key findings include: • •

Trip destinations of vehicles originating from eastbound I-80 at Powell Street in the PM peak hour are roughly equally distributed to four areas: Albany/Berkeley/Emeryville, I580, Richmond to Rodeo, and east of the Carquinez Bridge. Over 40% of the trips that use the Carquinez Bridge eastbound in the PM peak hour travel the entire corridor.

                       

Figure 3–7 Origin Destination Data for EB I-80 Existing PM Peak Hour  

I-80 Integrated Corridor Mobility Project Draft CSMP

- 25 -

January 15, 2010


3.1.4 Truck Traffic The percentage of trucks along I-80 within the study corridor is summarized in Table 3-1. The trucks along I-80 range from two to five percent of the total daily vehicle traffic. The trend in data indicates that the number and percentage of trucks drops dramatically near the western (southern) portion of the corridor. This trend shows that a significant number of trucks travel between I-80 and I-880, where truck traffic is originated from Port of Oakland. Based on the San Pablo Corridor Regional Signal Timing Program (RSTP) Project, the trucks represent about two percent of the total vehicle traffic on San Pablo Avenue. Table 3-1 Truck Percentages along the I-80 Corridor % Truck by Axle

Truck  AADT 

% Truck of  Total Vehicles 

4

5+

Bay Bridge Toll Plaza 

6,325

2.5

45 

3

45

Oakland, Junction I‐580E

3,593

1.8

46 

4

43

ALA2.802 

Oakland, Junction I‐580E

8,056

2.7

42 

4

45

ALA3.786 

Emeryville, Powell Street

13,364

4.8

38 

4

50

ALA4.582 

Berkeley, Junction SR‐13E

13,420

4.8

35 

10 

4

51

ALA4.582 

Berkeley, Junction SR‐13E

12,879

4.8

38 

4

49

CC2.04 

Richmond, Junction SR‐123S

5,888

3.2

35 

11 

4

50

CC2.04 

Richmond, Junction SR‐123S

6,688

3.2

35 

10 

4

52

CC2.961 

Richmond, San Pablo Avenue

6,674

3.2

35 

5

53

CC2.961 

Richmond, San Pablo Avenue

7,633

3.6

34 

4

56

CC5.983 

Richmond, Hilltop Drive

8,040

4.0

37 

10 

3

50

CC7.597 

Pinole, Appian Way 

8,478

4.4

31 

3

59

CC7.597 

Pinole, Appian Way 

8,109

4.2

32 

4

58

CC10.059 

Hercules, Junction SR‐4E

8,556

4.6

34 

4

55

CC10.059 

Hercules, Junction SR‐4E

7,169

5.4

28 

2

62

CC14.139 

Carquinez Bridge 

6,200

5.0

28 

3

61

Postmile 

Leg 

ALA1.989 

ALA2.802 

Description 

Note: Leg A = ahead leg, Leg B = back leg, Leg O = traffic volume is equal for the back and ahead legs Source: 2007 Annual Average Daily Truck Traffic on the California State Highway System, Compiled by Traffic Data Branch, Division of Traffic Operations (published in September, 2008)

I-80 Integrated Corridor Mobility Project Draft CSMP

- 26 -

January 15, 2010


3.1.5 Mode Choice Characteristics The data presented in this section is derived from the 2006 American Community Survey (ACS). Mode split for means of transportation to work for cities along the I-80 Corridor is illustrated in Table 3-2. Single occupancy vehicle use is prevalent at 73.5 percent in Vallejo and at 71 percent in Hercules, which is in the northern area of the study corridor. In contrast, transit use is higher in the southern areas such as Albany, Berkeley, Emeryville, and Oakland. Table 3-2 Mode Split Cities

SOV%

Rideshare%

Transit%

Bike %

Walk%

Other Means%

Work at home %

Vallejo  Richmond‐San  Pablo  El Cerrito‐Hercules  Berkeley‐Albany  West‐North‐ Oakland‐Emeryville  Oakland Hills‐ Piedmont  East Oakland 

73.5 

16.1 

3.2 

0.3 

1.5 

1.8 

3.7 

59.0 

17.4 

15.1 

0.8 

1.0 

1.5 

5.2 

71.0  44.6 

13.2  6.3 

10.1  19.0 

0.2  6.5 

1.5  14.5 

0.6  0.9 

3.4  8.3 

51.9 

10.2 

19.7 

3.8 

7.2 

1.6 

5.6 

61.6 

11.5 

15.1 

1.9 

3.5 

0.9 

5.5 

58.3 

13.4 

14.6 

0.1 

4.0 

3.7 

5.9 

Source: 2006 American Community Survey

According to this survey, the HOV percentage in the Bay Area was approximately 10.2 percent in 2007, down from 12.9% in 2000. The HOV percentage in Alameda County was approximately the same with the Bay Area while the HOV percentage was 11.5% in Contra Costa County.

3.2 Freeway Performance This section summarizes the findings along with the methodologies and assumptions used to measure the performance of I-80 corridor. The performance measures used to quantify the freeway performance include: •

Mobility: quantifies traffic congestion in terms of vehicular delays

Reliability: measures predictability of freeway travel times within the corridor

Safety: evaluates accident rates in comparison to statewide average accident rates

Productivity: gauges freeway’s loss in efficiency due to traffic congestion

Pavement Condition: evaluates freeway pavement performance 3.2.1 Mobility

Mobility describes the ease of movement of people and freight in the corridor. Travel time and delay are interrelated primary measures to quantify mobility. Travel time is defined as is the

I-80 Integrated Corridor Mobility Project Draft CSMP

- 27 -

January 15, 2010


amount of time for a vehicle to traverse between two points along a corridor. Delay, on the other hand, is defined as the difference between the observed travel time and the expected travel time under a specified traffic condition such as 35 mph, which Caltrans uses to define congested conditions for freeways. Therefore, the delay relative to 35 mph is used in this study, and is reported as vehicle-hours of delay. Rather than reporting the delay for individual vehicles, the total delay incurred by all travelers over a period or day is most often reported. Delay information is shown in this section to describe mobility issue. Travel time information will be shown along with its variation to describe the reliability issue in the next section. Caltrans Highway Congestion Monitoring Program (HICOMP) is one of most accepted sources for information regarding the overall mobility of a corridor. The annual HICOMP report identifies the location and duration of congestion delay on freeways. HICOMP defines recurrent congestion as a condition lasting for 15 minutes or longer where travel demand exceeds freeway capacity and vehicular speeds are 35 miles per hour (mph) or less. Figure 3–8 and Figure 3–9, extracted from most recent HICOMP report show congested freeways in the Bay Area during the respective AM and PM peak periods. HICOMP reports describe I-80 as the most congested corridor in the Bay Area for many years, particularly in the westbound direction during the AM peak period, between SR 4 in Contra Costa County and the Bay Bridge. During the AM peak period, westbound (or southbound) is the peak direction and during the PM peak period, the peak direction is eastbound (or northbound). The PeMS database was also a data source used to compute freeway delay along I-80 eastbound and I-80 westbound. Continuous data from the PeMS detectors were processed and aggregated to provide delay information by day of week, and by time of day. Figure 3–10 shows average daily delay by day of week. The minimum, mean (average), and maximum delays of each day are shown in the plot, as well as the corresponding values in the unit of vehicle-hours relative to the congested speed of 35 mph as discussed earlier. The figure indicates that the mobility along the corridor on Sundays is good (less delay and less fluctuation). Figure 3–11 shows the data aggregated by time of day for a typical workday (Tuesday to Thursday). Three-year trends are identified for I-80 eastbound and I-80 westbound, separately. The figure indicates that corridor mobility has slightly improved from 2006 to 2008, not only in terms of magnitude of delay but also in terms of variation. The peak delay in 2008 occurs during the AM period between 6:00 AM and 10:00 AM in the westbound direction and the peak delay occurs during the PM peak period between 2:00 PM and 7:00 PM. Figure 3–12 shows the average delay on Saturday by time of day within the dates of March 30 to April 19 for the years 2006 to 2008 for both the eastbound and westbound directions of I-80. The general trend of the figures shows a decrease in the vehicle hours of delay from 2006 to 2008. For example, in the westbound direction, I-80 experienced a peak of approximately 500 vehicles hours of delay in 2008 compared to a peak of approximately 1,300 vehicle hours of delay in 2006. Furthermore, in 2008 the delay in the westbound direction exceeded 400 vehicle hours during only two hours of the day, whereas in 2007, the duration was seven hours and in 2006 the duration was nine hours.

I-80 Integrated Corridor Mobility Project Draft CSMP

- 28 -

January 15, 2010


Source: HICOMP (2007)

Figure 3–8 Congested Freeways – Existing AM Peak

I-80 Integrated Corridor Mobility Project Draft CSMP

- 29 -

January 15, 2010


Source: HICOMP (2007)

Figure 3–9 Congested Freeways – Existing PM Peak

I-80 Integrated Corridor Mobility Project Draft CSMP

- 30 -

January 15, 2010


I‐80 East: Average Daily Delay by Day of Week 14,000 12,000 10,000 8,000

Hours) ‐

6,000 4,000

Delay (Vehicle

2,000 0

Sun

Mon

Tue

Wed

Thu

Fri

Sat

Minimum

385

2,098

3,080

2,574

3,974

6,089

1,090

Mean

974

3,286

3,462

3,069

4,166

8,804

1,817

1,657

4,691

3,731

3,533

4,550

12,291

2,573

Maximum

I‐80 West: Average Daily Delay by Day of Week 14,000 12,000 10,000 Hours) ‐

8,000 6,000

Delay (Vehicle

4,000 2,000 0

Sun

Mon

Tue

Wed

Thu

Fri

Sat

Minimum

279

853

2,085

2,016

3,566

3,204

2,206

Mean

574

1,530

3,818

2,835

3,971

4,439

4,181

1,079

1,893

4,747

3,953

4,343

6,045

7,680

Maximum

Source: PeMS Database (March 30 – April 19, 2008)

Figure 3–10 Average Daily Delay by Day of Week I-80 Integrated Corridor Mobility Project Draft CSMP

- 31 -

January 15, 2010


I‐80W: Average Weekday Delay in 2006

2,000

2,000

1,600

1,600

1,200

1,200

800

800

400

400

0

0

Delay (Vehicle‐Hours)

I‐80E: Average Weekday Delay in 2007

I‐80W: Average Weekday Delay in 2007

2,000

2,000

1,600

1,600

1,200

1,200

800

800

400

400

0

0

I‐80W: Average Weekday Delay in 2008

2,000

2,000

1,600

1,600

1,200

1,200

800

800

400

400

0

0

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

Delay (Vehicle‐Hours)

I‐80E: Average Weekday Delay in 2008

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

Delay (Vehicle‐Hours)

I‐80E: Average Weekday Delay in 2006

Source: PeMS Database (March 30 – April 19; Tuesday to Thursday)

Figure 3–11 Average Weekday Delay by Time of Day

I-80 Integrated Corridor Mobility Project Draft CSMP

- 32 -

January 15, 2010


I‐80W: Average Saturday Delay in 2006

2,000

2,000

1,600

1,600

1,200

1,200

800

800

400

400

0

0

Delay (Vehicle‐Hours)

I‐80E: Average Saturday Delay in 2007

I‐80W: Average Saturday Delay in 2007

2,000

2,000

1,600

1,600

1,200

1,200

800

800

400

400

0

0

I‐80W: Average Saturday Delay in 2008

2,000

2,000

1,600

1,600

1,200

1,200

800

800

400

400

0

0 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

Delay (Vehicle‐Hours)

I‐80E: Average Saturday Delay in 2008

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

Delay (Vehicle‐Hours)

I‐80E: Average Saturday Delay in 2006

Source: PeMS Database (March 30 – April 19; Saturday)

Figure 3–12 Average Saturday Delay by Time of Day

I-80 Integrated Corridor Mobility Project Draft CSMP

- 33 -

January 15, 2010


Vehicle-Miles Traveled (VMT) Vehicle-miles traveled (VMT) is a key measurement used for highway planning and management. VMT measures roadway usage, which is not weighted by the time that travelers are required to spend on using a set of roadway segments. Along with other data, VMT is often used in estimating congestion, air quality, and potential gas-tax revenues, as well as providing a general measure of the level of the economic activity. Figure 3–13 illustrates VMT along I-80 within the study corridor by month, obtained from the PeMS database for the period covering January 2006 to July 2008. Each bar represents the total VMT for each month in each year. It can be seen that I-80 westbound serves more traffic than I-80 eastbound. Overall, I-80 westbound experienced 17% higher VMT than I-80 eastbound. I-80 westbound serves on the average of 53 million vehicle-miles per month, compared to an average of 45 million vehicle-miles served by I-80 eastbound. In terms of year-to-year trends, VMT on I-80 generally increased from year 2006 to year 2008. The peak travel months are generally between March and August.

I-80 Integrated Corridor Mobility Project Draft CSMP

- 34 -

January 15, 2010


Millions

I‐80E: VMT 60 55 50 45 40 35

December

September September

November

August August

October

July July

June

May

April

March

February

January

30

Millions

I‐80W: VMT 60 55 50 45 40 35

2006

2007

December

November

October

June

May

April

March

February

January

30

2008

Source: PeMS Database (January, 2006 – July, 2008)

Figure 3–13 Vehicle-Miles Traveled (VMT)

I-80 Integrated Corridor Mobility Project Draft CSMP

- 35 -

January 15, 2010


Vehicle-Hours Traveled (VHT) Vehicle-hours traveled (VHT) is another key measurement used for highway planning and management. It is calculated as a product of traffic volume and travel time on each freeway segment. Figure 3–14 illustrates the monthly VHT on I-80 obtained from the PeMS database for the period between January 2006 and July 2008. Similar to VMT, the VHT experienced on I-80 westbound is approximately 18% higher compared to VHT experienced on I-80 eastbound . The peak travel months are March and August.

Thousands

I‐80E: VHT 1,200 1,100 1,000 900 800 700

August

September

October

November

August

September

October

November

December

July

July

June

May

April

March

February

January

600

Thousands

I‐80W: VHT 1,200 1,100 1,000 900 800 700

2006

2007

December

June

May

April

March

February

January

600

2008

Source: PeMS Database (January, 2006 – July, 2008)

Figure 3–14 Vehicle-Hours Traveled (VHT) I-80 Integrated Corridor Mobility Project Draft CSMP

- 36 -

January 15, 2010


3.2.2 Reliability Unlike mobility, reliability focuses on the day-to-day variation of travel time. Continuous travel time data from the PeMS database was used to assess the reliability of travel times along the entire I-80 study corridor between the City of Oakland and the City of Vallejo. The data was used to compute the average and 95th percentile weekday (Tuesday to Thursday) travel times. The difference between the average and the 95th percentile travel times provides an indication of the day-to-day variation and reliability in travel time along the corridor. These results are presented in Figure 3–15. For reference, the expected travel times at constant speeds of 65 mph (21 minutes) and 35 mph (39 minutes) are also illustrated. As illustrated in the figure, the travel time of I-80 eastbound is more reliable than that of I-80 westbound as the average travel time is closer to the 95th percentile for a greater portion of the day. Even during the peaks, travel times for I-80 eastbound are more reliable. For example, to travel on I-80 westbound around 7:30 AM, it takes on average about 33 minutes. However, travelers must allow for the trip to take 43 minutes (10 additional minutes) to account for extra congestion that they may face if they want to have 95% chance of arriving on-time. For I-80 eastbound, the corresponding numbers at 5:30 PM are an average travel time of 35 minutes and a 95th percentile time of 40 minutes meaning an allowance of 5 additional minutes. The figure shows that travel times for I-80 eastbound remain relatively constant for a good portion of the day, but increase significantly from 2:00 PM to 7:00 PM, with the peak around 5:00 PM. In the westbound direction, travel times increase not only during the AM peak (5:00 AM to 9:00 AM), but also to a lesser degree during the PM peak period. The peak travel time occurs aroundt 7:00 AM. Finally, Figure 3-15 also shows the average travel times for both 2007 and 2008. In general, travel times show little change between the two years.

I-80 Integrated Corridor Mobility Project Draft CSMP

- 37 -

January 15, 2010


I‐80E: Travel Time Variation 45 40

30 25 20 15

16:00

17:00

18:00

19:00

20:00

21:00

22:00

23:00

16:00

17:00

18:00

19:00

20:00

21:00

22:00

23:00

15:00

14:00

13:00

12:00

11:00

10:00

9:00

8:00

7:00

6:00

2:00

1:00

0:00

0

5:00

5

4:00

Travel Time at 35 mph Travel Time Variability  (95th Percentile) Average Travel Time (2008) Average Travel Time (2007) Travel Time at 65 mph

10

3:00

Travel Time (Minutes)

35

I‐80W: Travel Time Variation 45 40

30 25 20 15

15:00

14:00

13:00

12:00

11:00

10:00

9:00

8:00

7:00

6:00

2:00

1:00

0:00

0

5:00

5

4:00

Travel Time at 35 mph Travel Time Variability  (95th Percentile) Average Travel Time (2008) Average Travel Time (2007) Travel Time at 65 mph

10

3:00

Travel Time (Minutes)

35

Source: PeMs Database (January 1 – October 31, 2008; Tuesday to Thursday)

Figure 3–15 Travel Time Variation by Time of Day I-80 Integrated Corridor Mobility Project Draft CSMP

- 38 -

January 15, 2010


3.2.3 Safety Accident Data from TASAS Database The Traffic Accident Surveillance and Analysis System (TASAS) database maintained by Caltrans is a collection of auto accident data which complies with federal law requiring statistical analyses of auto accidents for the purpose of reducing the occurrence of collisions. The components of the system include Accident Data Base (AXDB) and a TASAS Selective Accident Retrieval (TSAR) query system. Accident rate, defined as accidents per million vehicle-miles, is a safety performance measure of a highway corridor. Table 3-3 summarizes the accident rate by segment for the study portion of I-80 between November 2004 and October 2007. The limits of each segment are illustrated in

I-80 Integrated Corridor Mobility Project Draft CSMP

- 39 -

January 15, 2010


Figure 3–16. The figure shows the segments from the Bay Bridge Toll Plaza to the merge from I580 (segments 1 and 2 in Table 3-3) are critical segments in terms of safety. Segment 1 has an accident rate of 2.06, compared to the state-wide average accident rate of 1.32. Segment 2 has an accident rate of 2.18, compared to the state-wide average accident rate of 1.22. In addition to the information provided in Table 3-3, the TASAS database also indicates that I-80 in the westbound direction experiences more accidents than the eastbound direction. Among the 926 accidents in Segment 1, 716 occurred in the westbound direction. Among 2,270 accidents in segment 2, 1,407 happened on I-80W. Table 3-3 Accident Rate by Segment

ALA PM 1.990 – ALA PM 3.513 

Number of  Accidents  926

2.06

State‐wide Average  Accident Rate  1.32

ALA PM 3.513 – ALA PM R6.936

2,270

2.18

1.22

ALA PM R6.936 – CC PM 4.063 

1,077

0.97

1.19

CC PM 4.063 – CC PM 9.250 

1,290

1.18

1.00

CC PM 9.250 – CC PM 14.138 

722

0.99

1.03

Segment 

Limits 

Accident Rate 

Note: “Accident Rate” is the number of accidents per million vehicle-miles. “State-wide Average Accident Rate” is the averag accident rate from similar freeway segments in California. Source: TASAS Database (November 1, 2004 – October 31, 2007)

I-80 Integrated Corridor Mobility Project Draft CSMP

- 40 -

January 15, 2010


Legend

N

EL CERRITO

Figure 3-16 Segments from TASAS Accident Analysis

BOUNDARIES BETWEEN SEGMENTS FOR ACCIDENT SUMMARIES


N

HERCULES

PINOLE

RICHMOND

EL SOBRANTE

RICHMOND

Figure 3-16 Segments from TASAS Accident Analysis (Continued)

Legend BOUNDARIES BETWEEN SEGMENTS FOR ACCIDENT SUMMARIES


Continuous Risk Profiles from TASAS Database Continuous Risk Profile (CRP) analysis is an alternative way of assessing the accident data from the TASAS database. A CRP represents the number of accidents recorded in a moving window of the freeway, compared to a reference base rate. The resulting profile plots highlight locations that have a high risk of incidents, and filter out the “noise” related to inaccuracies in coding exact location. The CRP methodology was developed by the Traffic Safety Center at the University of California at Berkeley in collaboration with the California Department of Transportation. The results of the CRP analysis for eastbound and westbound I-80 within the study corridor are illustrated in Figure 3-17 and Figure 3-18 respectively. This figure shows the trends between the years of 2002 to 2006. The magnitude of the y-axis indicates the number of accidents per year per mile. Spikes or peaks in the chart indicate where greater risks for collisions are present. Consistent with the TASAS results presented previously, the I-80 segment between the Bay Bridge Toll Plaza and the merge from I-580 has the highest risk in terms of collisions (it also have the longest duration of congestion within the corridor). Additionally, in the eastbound direction, the segment between San Pablo Dam Road and SR 4 has a relatively higher risk of collisions compared to other segments in the corridor.

Figure 3–17 Eastbound I-80 Continuous Risk Profile

I-80 Integrated Corridor Mobility Project Draft CSMP

- 43 -

January 15, 2010


Figure 3–18 Westbound I-80 Continuous Risk Profile 3.2.4 Productivity Productivity is a system efficiency measure. It is generally defined as the ratio of output per unit of input. In the case of transportation, the output is the amount of vehicles served and the input is the capacity of the roadway. One way to measure the productivity is to measure the actual volume and divide it by the capacity of roadways. Even though this approach is quite straightforward, it is not commonly used and not available from the PeMS database. Alternatively, the productivity lost can be converted to equivalent lost lane-miles, which is used in PeMS. These lost lane-miles represent a theoretical level of capacity that would have to be added in order to achieve maximum productivity. For example, losing six lane-miles implies that adding a new lane along a six mile section of freeway would improve productivity. The PeMS database was used to measure productivity in this study. PeMS defines productivity as a measure of the equivalent lane miles lost due to the freeway operating in congestion instead of at peak efficiency. The lost productivity relative to the efficient speed of 35 mph is reported in Figure 3–19, in the unit of lanes-miles-hours. The minimum, mean, and maximum values of lost productivity are reported for each hour. Based on the figure, a significant amount of lost productivity occurs on I-80 eastbound during the PM peak period between 2:00 PM and 7:00 PM, and on I-80 westbound during both the AM peak (5:00 AM to 11:00 AM) PM peak periods.

I-80 Integrated Corridor Mobility Project Draft CSMP

- 44 -

January 15, 2010


I-80 Integrated Corridor Mobility Project Draft CSMP

- 45 -

23:00

22:00

20

21:00

23:00

22:00

21:00

20:00

19:00

18:00

17:00

16:00

15:00

14:00

13:00

12:00

11:00

10:00

9:00

8:00

7:00

6:00

5:00

4:00

3:00

2:00

1:00

0:00

20

20:00

19:00

18:00

17:00

16:00

15:00

14:00

13:00

12:00

11:00

10:00

9:00

8:00

7:00

6:00

5:00

4:00

3:00

2:00

1:00

0:00

Lost Productivity Relative to 35 mph (lane‐mi‐hrs)

Lost Productivity Relative to 35 mph (lane‐mi‐hrs) 25

I‐80E: Lost Productivity Maximum Mean Minimum

15

10

5

0

25

I‐80W: Lost Productivity Maximum Mean Minimum

15

10

5

0

Source: PeMS Database (March 30 – April 19, 2008; Tuesday to Thursday)

Figure 3–19 Lost Productivity by Time of Day

January 15, 2010


3.2.5 Preservation Preservation may be assessed in terms of distressed lane miles and International Roughness Index (IRI). Distressed lane miles were used to distinguish among pavement segments that require only preventive maintenance at relatively low costs and segments that require major rehabilitation or replacement are considered to be distressed. In contrast, IRI distinguish between smooth-riding and rough-riding pavement based on measuring the up and down movement of a vehicle over pavement. When such movement is measured to be 95 inches per mile or less, the pavement is considered good or smooth-riding. When movements are between 95 and 170 inches per miles, the pavement is considered acceptable. Measurements above 170 inches per mile reflect unacceptable or rough-riding conditions. The assessment presented in this report utilized data from the Caltrans Pavement Condition Reporting (PCR) System. PCR (version 3) is used in this study, which contains 2007 pavement inventory data. The analysis using this data was conducted for the segment of I-80 from the Bay Bridge Toll Plaza to the Carquinez Bridge (Alameda postmile 1.990 to 8.036 and Contra Costa postmile 0.000 to 14.138). This analysis suggests that there are 61.918 distressed lane miles (17.495 in Alameda County and 44.423 in Contra Costa County) on I-80 within the study corridor. In addition, from the IRI, three percent of the I-80 mainline is considered to have good pavement conditions (IRI ≤ 95). Ninety percent of the I-80 mainline is considered to have acceptable pavement conditions and seven percent is un-acceptable. Detailed locations of the distressed segments are provided in Appendix C, including begin postmile, end postmile, length, pavement type, direction, lane miles of the distressed segment (triggered lane miles), and short description of the predominant type of distress. 3.2.6 High Occupancy Vehicle Lane Performance Table 3-4 summarizes the high occupancy vehicle (HOV) lane performance at eight observation locations along I-80 during the AM and PM peak hours. Figure 3–21 shows the HOV lane performance averaged over the Bay Area. The performance of HOV lanes in the study corridor is better than the average HOV lane performance in the Bay Area in terms of both the percentage of HOV, and percentage of people in the HOV lanes, especially during the AM peak hour. In addition, the Bay Area Toll Authority (BATA) provides incentives for carpooling by providing exclusive HOV lanes and free access during peak periods to the seven state-owned toll bridges: Antioch Bridge, Benicia-Martinez Bridge, Carquinez Bridge, Dumbarton Bridge, Richmond-San Rafael Bridge, San Francisco-Oakland Bay Bridge, and San Mateo-Hayward Bridge. Among these seven bridges, two bridges are within the I-80 study corridor (the San Francisco-Oakland Bay Bridge and the Carquinez Bridge). The HOV lane performance at these two bridges shows that incentives contribute to the high percentage of carpooling within the I-80 study corridor, especially at the Bay Bridge Toll Plaza during the AM peak hour. Approximately 37% of all vehicles and 63% of all persons at these bridges use carpool lanes (compared to the Bay Area average of 17% vehicles and 30% of all persons using carpool lanes).

I-80 Integrated Corridor Mobility Project Draft CSMP

- 46 -

January 15, 2010


Table 3-4 HOV Lane Performance at Observation Locations within the I-80 Corridor Route ALA‐80 ALA‐80 ALA‐80 ALA‐80 ALA‐880 CC‐80 CC‐80 SOL‐80

Direction Westbound Westbound Eastbound Westbound Northbound Westbound Eastbound Eastbound

Location Bay Bridge Toll Plaza (4 HOVL) Contra Costa County Line to Powell St I‐880 Viaduct to Contra Costa County Line HOV Flyover Ramp 16th St to Bay Bridge Toll Plaza Solano County to Alameda County Line Alameda County Line to SR‐4 Carquinez Bridge Toll Plaza

# of Non‐ HOV  Lanes 18 4 4 0 2 3 3 11

AM Peak Hour PM Peak Hour HOV  Violation  % of All Vehicles % of All Persons HOV  Violation  % of All Vehicles % of All Persons (vph) Rate Rate HOVL Non‐HOVL HOVL Non‐HOVL (vph) HOVL Non‐HOVL HOVL Non‐HOVL 3,669 6.5% 37% 63% 63% 37% 961 7.8% 14% 86% 30% 70% 1,757 11.1% 20% 80% 37% 63% N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 1,259 7.9% 15% 85% 34% 66% 1,483 11.3% 100% 0% 100% 0% 387 10.9% 100% 0% 100% 0% 703 12.6% 38% 62% 60% 40% N/A N/A N/A N/A N/A N/A 1,476 10.6% 25% 75% 46% 54% N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 877 2.0% 13% 87% 34% 66% N/A N/A N/A N/A N/A N/A 959 10.1% 20% 80% 41% 59%

Note: Lane configurations at the Bay Bridge and Carquinez Bridge toll plazas have been changed recently. Source: Caltrans 2007 Bay Area HOV Lanes Report

I-80 Integrated Corridor Mobility Project Draft CSMP

- 47 -

January 15, 2010


Source: Caltrans 2007 Bay Area HOV Lanes Report

Figure 3–20 HOV Lane Performance Averaged over the Bay Area

I-80 Integrated Corridor Mobility Project Draft CSMP

- 48 -

January 15, 2009


3.3 Arterial Performance 3.3.1 Arterial Travel Time As part of the San Pablo Corridor Regional Signal Timing Program (RTSP) Project, travel time information on several arterials was compiled. Travel times for selected arterials in the study corridor are summarized in Table 3-6 by segment, period, and direction. For example, it takes an average of 13 minutes and 7 seconds to travel northbound on San Pablo Avenue, from Willow Avenue to Robert Miller Drive. This travel time with an average speed of 27.8 mph includes 3 minutes and 23 seconds of stop delay with an average of 7.3 stops. Based on the data presented in Table 3-5, San Pablo Avenue, which is the major parallel arterial to I-80, experiences higher stop delay in the afternoon period than the morning period for both northbound and southbound directions, especially in the central and southern sections. The central and southern sections experience higher stop delay than the northern section of San Pablo Avenue. Table 3-5 Arterial Travel Time Period 

Direction 

Average Travel  Time (min:sec) 

Average Stop  Delay (min:sec) 

Average Stops        (Times) 

San Pablo Avenue (Northern Section) ‐ Willow Avenue to Robert Miller Drive ‐ 32,095 feet  NB  13:07  3:23  7.3  AM  SB  13:58  4:04  8.9  NB  13:54  4:10  8.9  PM   SB  13:38  3:45  8.9  San Pablo Avenue (Central Section) ‐ Rivers Street to Monroe Street ‐ 35,730 feet  NB  17:59  5:19  10.3  AM  SB  20:34  7:19  12.5  NB   24:21  10:26  14.8  PM   SB  22:43  8:30  14.4  San Pablo Avenue (Southern Section) ‐ Gilman Street to 17th Street/Clay Street ‐ 27,695 feet  NB  16:14  5:36  10.6  AM  SB  15:12  4:33  10.1  NB  20:03  8:33  14.0  PM   SB  17:38  6:29  13.0  Appian Way ‐ San Pablo Avenue to Fitzgerald Drive ‐ 5,000 feet  NB  2:08  0:26  1.8  AM  SB  3:30  1:48  3.2  NB  2:14  0:29  1.5  PM   SB  3:23  1:39  2.8  Buchanan Street ‐ I‐80 WB Ramps to I‐80 EB Ramps ‐ 510 feet  EB  0:19  0:05  0.4  AM  WB  0:14  0:05  0.3  EB  0:18  0:04  0.3  PM   WB  0:16  0:06  0.4  Central Avenue ‐ I‐80 WB Ramps to San Pablo Avenue ‐ 2,455 feet  EB  2:21  1:22  1.7  AM  WB  1:46  0:49  2.2 

I-80 Integrated Corridor Mobility Project Draft CSMP

- 49 -

Average Speed        (mph)  27.8  26.1  26.2  26.7  22.6  19.7  16.8  17.9  19.4  20.7  15.7  17.9  26.6  16.2  25.5  16.8  18.3  25.6  19.1  21.3  11.9  15.9 

January 15, 2009


Period 

Direction 

Average Travel  Time (min:sec) 

Average Stop  Delay (min:sec) 

EB  2:20  1:15  WB  1:55  0:54  Cutting Boulevard ‐ I‐80 WB Ramps to San Pablo Avenue ‐ 1,055 feet  EB  0:56  0:36  AM  WB  0:38  0:14  EB  1:08  0:46  PM   WB  0:52  0:29  Marin Avenue ‐ San Pablo Avenue to Peralta Avenue ‐ 3,920 feet  EB  2:53  1:15  AM  WB  2:55  1:26  EB  2:41  1:06  PM   WB  3:04  1:09  Pinole Valley Road ‐ San Pablo Avenue to I‐80 EB Ramps ‐ 4,070 feet  NB  3:03  1:13  AM  SB  3:11  1:30  NB  2:20  0:36  PM   SB  2:24  0:43  Richmond Parkway ‐ San Pablo Avenue to I‐80 EB Ramps‐ 6,130 feet  EB  2:26  0:34  AM  WB  3:12  1:22  EB  2:46  0:53  PM   WB  3:05  1:23  San Pablo Dam Road ‐ San Pablo Avenue to I‐80 EB Ramps ‐ 1,645 feet  EB  2:28  1:44  AM  WB  1:07  0:24  EB  2:12  1:25  PM   WB  1:30  0:47  PM  

Average Stops        (Times) 

Average Speed        (mph) 

2.2  1.7 

12.0  14.6 

1.0  1.0  1.0  1.5 

12.9  19.0  10.6  14.0 

2.1  2.1  2.2  1.6 

15.4  15.2  16.6  14.6 

2.4  2.4  2.1  1.7 

15.1  14.5  19.8  19.3 

1.1  1.6  1.6  1.8 

28.6  21.8  25.1  22.6 

1.6  0.8  1.7  1.7 

7.6  16.7  8.5  12.5 

Source: San Pablo Corridor Regional Signal Timing Program Project (2007)

3.3.2 Accident Records on Arterials As part of the San Pablo Corridor Regional Signal Timing Program Project, accident records on arterials were compiled using the data from the Cities of Oakland and Berkeley. This data includes the collision history from September 30, 2002 to September 30, 2005, and is summarized Table 3-6. The number of collisions was low at a majority of the intersections (relative to the roadway volumes). Intersections that experienced a higher number of collisions included San Pablo Avenue/Ashby Avenue, San Pablo Avenue/Addison Street, San Pablo Avenue/University Avenue, San Pablo Avenue/Cedar Street, Ashby Avenue/7th Street, University Avenue/6th Street. The primary collision types for these intersections are rear-end, broadside, and sideswipe.

I-80 Integrated Corridor Mobility Project Draft CSMP

- 50 -

January 15, 2009


Table 3-6 Accident Records on Arterials Intersection  San Pablo Avenue & 17th Street 

San Pablo Avenue & 19th Street 

Total # of  Collisions 

Primary Collision  Types 

Primary Collision  Direction(s) 

Rear‐End (2) 

EB 

Sideswipe (3) 

Varies 

Auto/ Ped (1) 

NB 

Rear‐End (1) 

WB 

Sideswipe (1)  San Pablo Avenue & 20th Street 

Broadside (2) 

SB 

Sideswipe (2) 

Varies 

San Pablo Avenue & Martin Luther King Way /  Castro Street 

Sideswipe (1) 

SB 

San Pablo Avenue & Castro Street 

Rear‐End (5) 

Varies 

Sideswipe (3) 

Varies 

Broadside (1) 

NB 

Rear‐End (4) 

Varies 

Broadside (10) 

Varies 

Head‐On (1) 

SB 

San Pablo Avenue & Grand Avenue 

San Pablo Avenue & 25th Street 

San Pablo Avenue & 27th Street 

San Pablo Avenue & 30th Street  San Pablo Avenue & 31st Street 

San Pablo Avenue & Market Street  San Pablo Avenue & 35th Street 

I-80 Integrated Corridor Mobility Project Draft CSMP

21 

6  8 

6  21 

- 51 -

Auto/ Ped (4) 

Varies 

Auto/ Bike (2) 

Varies 

Rear‐End (4) 

Varies 

Broadside (2) 

Varies 

Sideswipe (1) 

SB 

Head‐On (2) 

SB 

Rear‐End (2) 

SB 

Broadside (1) 

WB 

Sideswipe (1) 

WB 

Auto/ Ped (1) 

NB 

Auto/ Bike (2) 

Varies 

Rear‐End (4) 

Varies 

Head‐On (2) 

Varies 

Rear‐End (3) 

Varies 

Broadside (3) 

Varies 

Head‐On (1) 

WB 

Other (1) 

N/A 

Rear‐End (4) 

Varies 

Head‐On (2) 

Varies 

Rear‐End (6) 

Varies 

Broadside (5) 

Varies 

Sideswipe (6) 

Varies 

January 15, 2009


Intersection 

San Pablo Avenue & 36th Street 

Total # of  Collisions 

San Pablo Avenue & Stanford Avenue 

9

San Pablo Avenue & 63rd Street 

8

San Pablo Avenue & Alcatraz Avenue 

8

San Pablo Avenue & West Street (N) 

9

San Pablo Avenue & Ashby Avenue 

71

San Pablo Avenue & Grayson Street 

11

San Pablo Avenue & Dwight Way 

27

San Pablo Avenue & Allston Way 

26

I-80 Integrated Corridor Mobility Project Draft CSMP

- 52 -

Primary Collision  Types 

Primary Collision  Direction(s) 

Head‐On (2) 

Varies 

Hit Object (1) 

SB 

Auto/ Bike (1) 

SB 

Broadside (4) 

Varies 

Sideswipe (3)  Rear‐End (6) Broadside (1) Sideswipe (2) Rear‐End (2) Sideswipe (1) Head‐On (2) Hit Object (2) Auto/ Ped (1) Rear‐End (3) Broadside (1) Sideswipe (2) Head‐On (1) Auto/ Bike (1) Rear‐End (4) Broadside (2) Sideswipe (1) Head‐On (2) Rear‐End (23) Broadside (20) Sideswipe (15) Head‐On (3) Hit Object (5) Auto/ Ped (3) Auto/ Bike (1) Not Stated (1) Rear‐End (5) Broadside (1) Sideswipe (4) Head‐On (1) Rear‐End (12) Broadside (6) Sideswipe (5) Hit Object (1) Auto/ Ped (2) Auto/ Bike (1) Rear‐End (7) Broadside (7) Sideswipe (3)

Varies  Varies NB EB NB WB Varies WB NB Varies NB Varies NB SB Varies NB SB SB Varies Varies Varies Varies Varies Varies SB SB Varies SB Varies SB Varies Varies Varies SB Varies WB Varies Varies Varies

January 15, 2009


Intersection 

Total # of  Collisions 

San Pablo Avenue & Addison Street 

30

San Pablo Avenue & University Avenue 

56

San Pablo Avenue & Delaware Street 

17

San Pablo Avenue & Cedar Street 

36

San Pablo Avenue & Gilman Street 

28

7th Street & Potter Street 

11

Ashby Avenue & 9th Street 

6

Ashby Avenue & 7th Street 

29

I-80 Integrated Corridor Mobility Project Draft CSMP

- 53 -

Primary Collision  Types 

Primary Collision  Direction(s) 

Head‐On (2) Hit Object (2) Auto/ Ped (3) Auto/ Bike (1) Not Stated (1) Rear‐End (10) Broadside (4) Sideswipe (12) Head‐On (1) Auto/ Ped (2) Other (1) Rear‐End (30) Broadside (7) Sideswipe (10) Head‐On (1) Hit Object (3) Auto/ Ped (3) Auto/ Bike (2) Rear‐End (7) Broadside (2) Sideswipe (5) Auto/ Ped (2) Other (1) Rear‐End (3) Broadside (17) Sideswipe (11) Head‐On (3) Auto/ Ped (1) Not Stated (1) Rear‐End (10) Broadside (6) Sideswipe (7) Head‐On (1) Hit Object (1) Auto/ Ped (2) Other (1) Rear‐End (4) Broadside (5) Sideswipe (2) Broadside (1) Sideswipe (2) Hit Object (3) Rear‐End (8)

Varies Varies Varies EB N/A Varies Varies Varies NB Varies NB Varies Varies Varies EB Varies Varies WB Varies EB Varies SB NB Varies Varies Varies Varies EB WB Varies Varies Varies Varies EB NB NB Varies Varies SB EB Varies Varies Varies

January 15, 2009


Total # of  Collisions 

Intersection 

University Avenue/ 9th Street 

28

University Avenue/ 6th Street 

55

Primary Collision  Types 

Primary Collision  Direction(s) 

Broadside (6) Sideswipe (9) Hit Object (3) Other (3) Rear‐End (11) Broadside (10) Sideswipe (5) Head‐On (2) Hit Object (3) Rear‐End (15) Broadside (11) Sideswipe (18) Hit Object (4) Auto/ Ped (3) Auto/ Bike (1) Other (3)

EB Varies Varies Varies Varies Varies Varies EB Varies Varies Varies Varies Varies Varies WB Varies

Source: San Pablo Corridor Regional Signal Timing Program Project (2007)

3.3.3 Intersection Level of Service Intersection level of service (LOS) and average delay for key intersections within the study corridor are summarized in Table 3-7. Consistent with the arterial travel time reported in the last section, level of service and delay are worse in the afternoon peak period than the morning peak period. Severe congestion (LOS = F) can be found at the following intersections: San Pablo Avenue & East Shore Boulevard/ Hill Street (PM), San Pablo Avenue & University Avenue (PM), San Pablo Avenue & Dwight Way (PM), 7th Street & Potter Street (PM), Ashby Avenue & 7th Street (PM), and San Pablo Dam Road & I-80 eastbound ramp (both AM and PM). Table 3-7 Intersection Level of Service AM Peak Hour  Delay  LOS (sec)  B 15.7 

Intersection  San Pablo Avenue & Willow Avenue 

PM Peak Hour  Delay  LOS (sec)  B  15.0

San Pablo Avenue & Victoria Crescent 

B

10.4 

10.4

San Pablo Avenue & Route 4 / John Muir Parkway

C

30.4 

43.7

San Pablo Avenue & Transit Center  

A

5.4 

5.3

San Pablo Avenue & Sycamore Avenue 

C

33.9 

27.6

San Pablo Avenue & Hercules Avenue 

C

24.6 

22.1

San Pablo Avenue & John Street 

A

1.3 

1.2

San Pablo Avenue & Pinole Valley Road  

B

12.8 

12.0

San Pablo Avenue & Fernandez Avenue 

A

3.7 

6.7

San Pablo Avenue & Tennent Avenue 

B

12.3 

9.3

I-80 Integrated Corridor Mobility Project Draft CSMP

- 54 -

January 15, 2009


AM Peak Hour  Delay  LOS (sec)  A 6.0 

Intersection  San Pablo Avenue & Oak Ridge Lane 

PM Peak Hour  Delay  LOS (sec)  A  5.0

San Pablo Avenue & Appian Way 

B

15.0 

26.6

San Pablo Avenue & Sunnyview Drive 

B

10.8 

12.1

San Pablo Avenue & Pinole Shores Drive  

B

19.4 

14.3

San Pablo Avenue & Del Monte Drive / Belmont Way

B

18.7 

19.4

San Pablo Avenue & Tara Hills Drive  

B

15.6 

11.3

San Pablo Avenue & Shamrock Drive 

C

27.5 

12.8

San Pablo Avenue & Crestwood Drive 

A

8.6 

8.1

San Pablo Avenue & Kay Road 

A

5.5 

16.0

San Pablo Avenue & Richmond Parkway 

D

36.7 

34.4

San Pablo Avenue & Hilltop Drive 

C

28.7 

34.7

San Pablo Avenue & Robert Miller Drive 

B

18.9 

20.9

San Pablo Avenue & Rivers Street 

C

31.8 

20.3

San Pablo Avenue & Rumrill Blvd / College Lane

B

10.6 

32.7

San Pablo Avenue & El Portal Drive / Broadway

C

21.2 

25.7

San Pablo Avenue & Bank Lane 

A

6.2 

10.0

San Pablo Avenue & 23rd Street 

D

48.1 

36.8

San Pablo Avenue & Van Ness Street 

A

6.9 

8.8

San Pablo Avenue & Church Lane 

C

34.9 

33.7

San Pablo Avenue & Vale Road 

D

40.8 

26.7

San Pablo Avenue & San Pablo Dam Road 

C

21.1 

29.6

San Pablo Avenue & Food Max 

A

4.4 

9.7

San Pablo Avenue & Rheem Avenue 

B

17.3 

18.5

San Pablo Avenue & McBryde Avenue 

C

22.4 

26.0

San Pablo Avenue & Esmond Avenue 

A

4.2 

2.9

San Pablo Avenue & Garvin Avenue 

A

6.9 

7.0

San Pablo Avenue & Solano Avenue 

A

7.0 

6.2

San Pablo Avenue/ Clinton Avenue 

A

4.2 

8.5

San Pablo Avenue & Sierra Pedestrian Crossing

A

1.7 

1.6

San Pablo Avenue & I‐80 NB Ramps / Roosevelt Avenue

A

7.3 

13.1

San Pablo Avenue & Barrett Avenue 

C

27.7 

33.4

San Pablo Avenue & MacDonald Avenue 

A

8.1 

12.6

San Pablo Avenue & Home Depot / Conlon Avenue

B

11.2 

14.7

San Pablo Avenue & Knott Avenue 

B

10.7 

11.9

San Pablo Avenue & Cutting Boulevard 

C

31.7 

30.1

San Pablo Avenue & East Shore Blvd./ Hill Street

D

48.1 

110.7

I-80 Integrated Corridor Mobility Project Draft CSMP

- 55 -

January 15, 2009


AM Peak Hour  Delay  LOS (sec)  C 26.6 

Intersection  San Pablo Avenue & Potrero Avenue 

PM Peak Hour  Delay  LOS (sec)  C  28.3

San Pablo Avenue & Bayview Avenue/ Manila Avenue

B

11.3 

12.3

San Pablo Avenue & Schmidt Lane 

A

9.8 

7.8

San Pablo Avenue & Moeser Lane 

C

27.4 

13.5

San Pablo Avenue & Stockton Avenue 

C

24.1 

19.3

San Pablo Avenue & Central Avenue 

D

35.4 

39.4

San Pablo Avenue & Fairmount Avenue 

B

19.8 

21.8

San Pablo Avenue & Carlson Boulevard 

B

14.2 

23.8

San Pablo Avenue & Brighton Avenue 

B

13.4 

12.7

San Pablo Avenue & Clay Street 

A

2.1 

5.8

San Pablo Avenue & Washington Avenue 

A

9.8 

8.2

San Pablo Avenue & Solano Avenue 

C

30.9 

28.2

San Pablo Avenue & Buchanan Street 

A

8.9 

5.6

San Pablo Avenue & Marin Avenue 

D

43.2 

51.4

San Pablo Avenue & Monroe Street 

B

12.0 

8.0

San Pablo Avenue & Gilman Street 

C

27.7 

27.7

San Pablo Avenue & Cedar Street 

B

18.2 

33.3

San Pablo Avenue & Delaware Street 

B

14.5 

18.5

San Pablo Avenue & University Avenue 

D

39.8 

147.1

San Pablo Avenue & Addison Street 

A

6.7 

8.6

San Pablo Avenue & Allston Way 

A

8.5 

9.2

San Pablo Avenue & Dwight Way 

C

29.2 

117.6

San Pablo Avenue & Grayson Street 

A

8.2 

10.8

San Pablo Avenue & Ashby Avenue 

C

28.2 

37.9

San Pablo Avenue & Alcatraz Avenue 

C

22.6 

76.6

San Pablo Avenue & 63rd Street 

A

8.4 

6.4

San Pablo Avenue & Stanford Avenue 

C

29.9 

39.9

San Pablo Avenue & 53rd Street 

B

12.1 

9.8

San Pablo Avenue & 47th Street 

A

6.2 

4.7

San Pablo Avenue & 45th Street 

A

4.4 

5.0

San Pablo Avenue & Park Avenue 

B

14.7 

11.2

San Pablo Avenue & 40th Street 

C

32.1 

43.0

San Pablo Avenue & Adeline Street / MacArthur Boulevard

B

12.5 

12.3

San Pablo Avenue & 36th Street 

B

14.0 

10.9

San Pablo Avenue & 35th Street 

C

22.2 

44.3

San Pablo Avenue & 30th Street / Market Street

A

11.8 

11.1

I-80 Integrated Corridor Mobility Project Draft CSMP

- 56 -

January 15, 2009


AM Peak Hour  Delay  LOS (sec)  B 11.8 

Intersection  San Pablo Avenue & 27th Street 

PM Peak Hour  Delay  LOS (sec)  A  7.8

San Pablo Avenue & 25th Street 

A

7.7 

7.4

San Pablo Avenue & Grand Avenue 

B

14.4 

17.2

San Pablo Avenue & Castro Street / MLK, Jr Blvd

B

14.1 

15.2

San Pablo Avenue & 20th Street 

B

15.9 

19.5

San Pablo Avenue & 19th Street 

A

8.6 

15.1

San Pablo Avenue & 17th Street 

B

16.9 

23.5

Appian Way & Fitzgerald Drive 

D

43.0 

39.3

Appian Way & I‐80 EB Ramps 

A

9.5 

16.0

Appian Way & I‐80 WB Ramps 

D

35.4 

21.2

Appian Way & Tara Hills Drive  

D

36.8 

24.7

Appian Way & Mann Drive 

B

13.1 

8.1

7th Street & Potter Street 

C

20.8 

81.5

Ashby Avenue & 9th Street 

A

2.8 

3.6

Ashby Avenue & 7th Street 

D

44.1 

172.6

Buchanan Street & I‐80 EB 

A

4.8 

8.1

Buchanan Street & I‐80 WB 

C

22.2 

15.9

Central Avenue & Carlson Boulevard 

C

20.9 

21.7

Central Avenue & San Luis Street/Pierce Street

A

9.6 

24.9

Central Avenue & I‐80 EB Ramps 

B

11.1 

32.7

Central Avenue & I‐80 WB Ramps 

B

29.9 

18.9

Cutting Boulevard & I‐80 HOV Ramp 

D

38.8 

8.0

Cutting Boulevard & I‐80 WB Ramp 

B

11.2 

9.6

Marin Avenue & Peralta Avenue 

B

14.4 

16.9

Marin Avenue & Santa Fe Avenue 

C

24.2 

19.6

Marin Avenue & Masonic Avenue 

B

19.5 

26.1

Pinole Valley Road & I‐80 EB Ramps 

D

39.8 

56.4

Pinole Valley Road & I‐80 WB Ramps 

C

23.5 

12.9

Pinole Valley Road & Henry Avenue 

B

15.3 

16.8

Pinole Valley Road & Ellerhorst Street 

C

24.1 

19.9

Potrero Avenue & I‐80 EB Ramps 

B

12.1 

9.7

Richmond Parkway & Lakeside Drive 

B

12.1 

15.3

Richmond Parkway & Hilltop Bayview Apts 

A

8.5 

14.3

Richmond Parkway & Blume Drive/ I‐80 WB Off‐EB On Ramps

C

27.3 

53.2

Richmond Parkway & I‐80 WB On‐Ramp 

A

4.3 

6.1

Richmond Parkway & I‐80 EB Off‐Ramp 

E

11.6 

23.4

I-80 Integrated Corridor Mobility Project Draft CSMP

- 57 -

January 15, 2009


AM Peak Hour  Delay  LOS (sec)  C 31.5 

Intersection  Rumrill Boulevard & roadway Avenue 

PM Peak Hour  Delay  LOS (sec)  C  28.2

San Pablo Dam Road & Contra Costa Avenue

A

8.4 

11.9

San Pablo Dam Road & Ventura Avenue 

B

11.3 

22.5

San Pablo Dam Road & I‐80 WB Ramp 

E

57.4 

63.8

San Pablo Dam Road & I‐80 EB Ramp 

F

122.4 

118.2

University Avenue & 9th Street 

A

9.9 

11.1

University Avenue & 6th Street 

E

58.8 

49.7

Source: San Pablo Corridor Regional Signal Timing Program Project (2007)

I-80 Integrated Corridor Mobility Project Draft CSMP

- 58 -

January 15, 2009


3.4 Transit performance 3.4.1 Rail Service Based on the Statistical Summary of Bay Area Transit Operators Report, prepared by the Metropolitan Transportation Commission (MTC) in March 2008, BART average daily ridership has been more than 300,000 since 2002. The average ridership has increased approximately 4% from 2006 to 2007. Average weekday ridership and other basic information such as absolute number of home origin trips and access mode share for each station are summarized in Table 3-8. Except Downtown Berkeley Station, all stations in the study corridor have substantial trips from home origin trips. Downtown Berkeley station has the least home origin trips because of the high number of nonhome based trips coming from work and school. Nearly half of those coming from home, travel to BART by car and 30% of those home origins travel to the BART stations by “walk only” mode. Taking bus/transit to BART is highest at El Cerrito del Norte (22%) and bicycling to BART is highest at Ashby (12%).

Table 3-8 Station Ridership Station 

Average  weekday   ridership 

Home  origins 

% Home  origins 

Ashby  Downtown Berkeley  El Cerrito del Norte  El Cerrito Plaza  MacArthur  North Berkeley  Richmond  Rockridge  West Oakland 

4,797  11,929  7,788  4,420  7,802  3,714  3,680  4,842  5,355 

3,293  2,837  6,613  3,533  4,398  2,962  2,686  3,456  4,134 

69%  24%  85%  80%  56%  80%  73%  71%  77% 

Travel mode to the station  Walk only  Bus/Transit  Bicycle  57%  71%  13%  43%  35%  43%  24%  37%  16% 

1%  9%  22%  1%  15%  1%  21%  3%  1% 

12%  10%  3%  6%  8%  8%  2%  5%  5% 

Drive  30%  10%  62%  50%  42%  48%  53%  55%  78% 

Source: 2008 Bart Station Profile Study

I-80 Integrated Corridor Mobility Project Draft CSMP

- 59 -

January 15, 2009


3.4.2 Bus Service Table 3-9 presents the average weekday ridership, headway during the peak and off-peak periods, average travel time, and vehicle capacity for each WestCAT bus route. Because the maximum load is not available for each WestCAT bus route, it cannot be concluded if there is capacity constraint on any WestCAT bus routes.

Table 3-9 WestCAT Bus Performance Route

Average Weekday Ridership

Peak Frequency (Min)

Off-Peak Frequency (Min)

Average Travel Time (min)

Seating Capacity

JX J JPX 30Z C3 Lynx 10 11 12 15 16 17 18

373 1,220 363 260 177 510 149 308 186 153 292 18 30

15 30 15 30 60 20 40 40 40 40 30 70 70

---60 60 60 60 ---40 40 40 40 30 70 70

15 31 23 68 25 40 26 38 27 30 54 32 30

43 43 39 39 39 57 39 39 39 39 39 39 39

Source: WestCAT transit

Table 3-10 presents the average weekday ridership, headway during the peak and off-peak periods, maximum load, average travel time, and vehicle capacity for each AC Transit bus route. Maximum load during AM and PM peaks are the average of all the maximum loads recorded from 6:00 am to 10 am and 2:00 pm to 7:00 pm. Average travel time is based on the route schedule not the actual travel time. The maximum loads during both peak periods are smaller than seated capacity of assigned bus for each route. Thus, there is no capacity constraint on any AC bus routes within the study corridor. Table 3-10 AC Bus Performance

Route

Average Weekday Ridership

Peak Frequency (min)

Off-Peak Frequency (min)

L LA 7

704 726 2,460

10-20 10-20 20

n/a 120 30

I-80 Integrated Corridor Mobility Project Draft CSMP

Maximum Load AM peak

PM peak

Average Travel Time (min)

27 15 18

24 21 23

66 49 46

- 60 -

Typical Vehicle Assignment (Effective December 2008)

MCI 45-foot highway cruiser, seats 57 MCI 45-foot highway cruiser, seats 57 NABI 40-foot, seats 40

January 15, 2009


Route 70 71 72 72M 72R 74 76

Average Weekday 1,368 1,486 3,821 3,815 6,969 1,327 2,162

Peak Frequency 30 30 30 30 12 30 30

Off-Peak Frequency 30 30 30 30 12 30 30

Maximum Load 12 13 14 16 20 22 20 22 22 21 14 12 17 20

Average Travel 59 50 79 76 46 68 60

Typical Vehicle Assignment (Effective December 2008) Van Hool 40-foot, seats 32 NABI 40-foot, seats 40 Van Hool 60-foot artic, seats 47 Van Hool 60-foot artic, seats 47 Van Hool 40-foot, seats 32 Van Hool 40-foot, seats 32 NABI 40-foot, seats 40

Source: AC transit

I-80 Integrated Corridor Mobility Project Draft CSMP

- 61 -

January 15, 2009


3.5 Bottlenecks A bottleneck is defined as a specific location on a corridor where the travel demand is greater than the roadway capacity. Both demand (i.e., the number of vehicles that wants to pass through a bottleneck during a specific period of time) and supply (i.e., the number of vehicles that can pass a bottleneck during a specific period of time) contribute to congestion upstream of a bottleneck. For example, a lane drop (capacity reduction) could cause a bottleneck when the demand to pass this lane drop location is high enough. Once there is sufficient demand, the bottleneck becomes active, causing congestion upstream of this location. The identification of bottlenecks cannot rely on one source or one observation. Information from various sources should be utilized for the reasons that each source has its advantages and disadvantages over others, and travel demands dynamically vary from day-to-day and hour-byhour. The identified bottlenecks are first verified across various data sources to define potential causes, and then the approximate extents (i.e., queue length and duration) are quantified. In this study, information from the following sources was used to identify bottlenecks: •

Tach run data from DKS (2008)

Traffic speed from PeMS

Aerial photos

Field observations

Bottlenecks along I-80 eastbound and I-80 westbound are summarized in the following sections. Each bottleneck is identified in terms of potential causes, approximate length, and approximate duration. 3.5.1 I-80 Eastbound Bottlenecks and Causalities AM Peak Period During the AM peak period, there is one queue in the eastbound direction for one-half of a mile between University Avenue and Gilman Street. Table 3-11 details this queue. Table 3-11 AM Eastbound Bottlenecks and Queues Bottleneck Location Gilman Street University Avenue*

Reason

Queue Length (Postmile)

Duration

Weaving traffic between the on-ramp from University Avenue and the off-ramp to Gilman Street

11.5 to 11.0

7:00 AM to 10:00 AM

University Avenue on-ramp traffic merging with mainline traffic

11.5 to 11.0

7:00 AM to 10:00 AM

* Embedded bottleneck

The queue starting at Gilman Street is due to weaving traffic between the off-ramp to Gilman Street and the on-ramp from University Avenue. The queue typically occurs between 7:00 AM and 10:00 AM, as shown in Figure 3–21 . Additionally, there is an additional embedded queue near University Avenue due to merging traffic at this interchange. I-80 Integrated Corridor Mobility Project Draft CSMP

- 62 -

January 15, 2009


Weaving between  University Ave on‐ramp  and Gilman St off‐ramp

Figure 3–21 Eastbound I-80 from University Ave to Gilman St

I-80 Integrated Corridor Mobility Project Draft CSMP

- 63 -

January 15, 2009


PM Peak Period For the PM period, there are four queues in the eastbound direction ranging between 5.3 miles and 1.8 miles as shown in Table 3-12 Table 3-12 PM Eastbound Bottlenecks and Queues Bottleneck Location

Reason

Queue Length (Postmile)

Duration

Pinole Valley Road

Pinole Valley Road on-ramp traffic merging with mainline traffic; weaving between the on-ramp from Pinole Valley Road to SR 4.

22.0 to 16.7

4:00 PM to 6:30 PM

Appian Way*

Two eastbound on-ramps within 0.20 miles of each other serving northbound and southbound traffic on Appian Way

21.0 to 20.2

4:00 PM to 6:30 PM

20.2 to 16.7

4:45 PM to 6:15 PM

Two eastbound on-ramps within 0.25 miles of

Richmond Parkway* each other serving northbound and southbound traffic on Richmond Parkway

San Pablo Avenue

San Pablo Avenue on-ramp traffic merging with mainline traffic; sharp curve near the San Pablo Avenue interchange

16.7 to 14.6

3:15 PM to 7:00 PM

Carlson Boulevard

Carlson Boulevard on-ramp traffic merging with mainline traffic; interchange is 0.50 miles from I580 and serves as an access point for travel between I-580 and I-80

14.5 to 12.7

3:30 PM to 7: 15 PM

University Avenue

Short weaving distance between the University Avenue on-ramp and the Gilman Street off-ramp; heavy traffic (this bottleneck area serves the highest volume of traffic of I-80E)

11.5 to 7.9

3:00 PM to 7:45 PM

Ashby Avenue*

High off/on-ramp movements and short weaving distance between Ashby Avenue off-ramp and Powell Street on-ramp; and increase in mainline volumes due to the merge of I-80I-580/I-880 in the northbound direction.

10.1 to 7.9

3:00 PM to 7:45 PM

* Embedded bottleneck

I-80 Integrated Corridor Mobility Project Draft CSMP

- 64 -

January 15, 2009


The first queue begins at San Pablo Dam Road and extends 5.3 miles to the Pinole Valley Road interchange. The queue typically occurs between 4:00 PM and 6:30 PM and has two embedded bottlenecks at the Richmond Parkway interchange and the Appian Way interchange. Figure 3–22, Figure 3–23, and Figure 3–24 show the segment of I-80 eastbound at Pinole Valley Road, Appian Way, and Richmond Parkway, respectively.

Weaving between Pinole  Valley Road on‐ramp and  SR‐4 off‐ramp

Figure 3–22 Eastbound I-80 from Pinole Valley Rd to SR 4

I-80 Integrated Corridor Mobility Project Draft CSMP

- 65 -

January 15, 2009


Closely spaced eastbound on‐ ramps from Appian Way

Figure 3–23 Eastbound I-80 at Appian Way

I-80 Integrated Corridor Mobility Project Draft CSMP

- 66 -

January 15, 2009


Closely spaced eastbound on ‐ ramps from Richmond Parkway

Richmond Parkway

Figure 3–24 Eastbound I-80 at Richmond Parkway

I-80 Integrated Corridor Mobility Project Draft CSMP

- 67 -

January 15, 2009


Another queue occurs between San Pablo Avenue and Carlson Boulevard with a length of approximately 1.8 miles. The queue occurring between 3:15 PM and 7:00 PM is due to on-ramp traffic merging with mainline traffic in addition to a sharp curve near the San Pablo Avenue interchange. Figure 3–25 Eastbound I-80 at San Pablo Aveshows the segment of eastbound I-80 at San Pablo Avenue.

Merging at San Pablo Ave  on‐ramp; sharp curve  upstream of San Pablo Ave  on‐ramp

Figure 3–25 Eastbound I-80 at San Pablo Ave

I-80 Integrated Corridor Mobility Project Draft CSMP

- 68 -

January 15, 2009


A 1.8 mile long queue typically occurs between Carlson Boulevard and Buchanan Street. As shown in Figure 3–26 the cause of this queue is due to on-ramp traffic merging with mainline traffic in addition to the interchange proximity to I-580. This queue generally occurs between 3:30 PM and 7:15 PM. Figure 3-26 shows the segment of eastbound I-80.

Merging at Carlson Blvd on‐ramp

Figure 3–26 Eastbound I-80 at Carlson Blvd

I-80 Integrated Corridor Mobility Project Draft CSMP

- 69 -

January 15, 2009


The fourth queue in the eastbound direction during the PM period occurs for a length of 3.6 miles between University Avenue and the I-80/I-580/I-880 merge. This queue, which occurs between 3:00 PM – 7:45 PM is likely a result of the short weaving distance between the University Avenue on-ramp and the Gilman Street off-ramp, as shown in Figure 3–27.

Gilman St

Weaving between  University Ave on‐ramp  and Gilman St off‐ramp

University Ave

Figure 3–27 Eastbound I-80 at University Ave I-80 Integrated Corridor Mobility Project Draft CSMP

- 70 -

January 15, 2009


Additionally, this segment of eastbound I-80 receives a high level of traffic from the I-80/I-580/I880 merge that contributes to the congestion. There is also an embedded bottleneck near the Ashby Avenue interchange due high on/off-ramp volumes and a short weaving distance between the Powell Street on-ramp and Ashby Avenue off-ramp. Figure 3–28 shows I-80 eastbound at the I80/I-580/I-880 merge.

Merging from: I ‐80,  I‐580, I ‐880

Figure 3–28 Eastbound I-80 at the I-80/I-580/I-880

I-80 Integrated Corridor Mobility Project Draft CSMP

- 71 -

January 15, 2009


3.5.2 I-80 Westbound Bottlenecks and Causalities AM Peak Period In the westbound direction during the AM period, three queues occur as summarized Table 3-13. Table 3-13 AM Westbound Bottlenecks and Queues Queue Length (Postmile)

Duration

Bottleneck Location

Reason

San Pablo Dam Road

San Pablo Dam Road on-ramp traffic merging with mainline traffic; weaving between the onramp from Sam Pablo Dan Road to McBryde Ave approximately 0.25 miles away; sharp curve in the roadway east of the San Pablo Dam Road interchange

17.9 to 23.0

6:45 AM to 9:00 AM

Appian Way on-ramp traffic merging with mainline traffic;

21.0 to 23.0

6:45 AM to 8:30 AM

Gilman Street

Gilman Street on-ramp traffic merging with mainline traffic; weaving between the on-ramp at Gilman Street and the off-ramp at Buchanan Street approximately 0.20 miles away

11.9 to 15.4

6:45 AM to 9:45 AM

I-80/I-580/I-880 Diverge

High diverged traffic volumes from I-80/I-580/I880 to I-580/I-880 splits.

7.7 to 11.1

6:15 AM to 10:45 AM

Powell Street*

Powell street on-ramp traffic merging with mainline traffic

9.3 to 11.2

7:00 AM to 9:30 AM

Ashby Street*

Ashby Street on-ramp traffic merging with mainline traffic

9.9 to 10.4

6:15 AM to 10:45 AM

University Avenue*

University Avenue on-ramp traffic merging with mainline traffic; weaving between the University Avenue on-ramp and Ashby Avenue off-ramp

10.4 to 11.1

6:15 AM to 10:45 AM

Appian Way*

* Embedded bottleneck

I-80 Integrated Corridor Mobility Project Draft CSMP

- 72 -

January 15, 2009


The first occurs between 6:45 AM and 9:00 AM for a length of 5.1 miles between San Pablo Dam Road and Sycamore Avenue. Figure 3–29 shows westbound I-80 between San Pablo Dam and McBryde Ave. The bottleneck is due to the on-ramp traffic at San Pablo Dam Road merging with mainline traffic in addition to the close proximity of San Pablo Dam Road on-ramp and MacBryde avenue off-ramp. Additionally, a sharp curve in the eastbound direction upstream of the San Pablo Dam road interchange may contribute to the bottleneck. One embedded bottleneck occurs at Appian Way and is due to the on-ramp traffic merging with mainline traffic.

Weaving between San  Pablo Dam Rd on ‐ramp and  McBryde Ave off‐ramp;  sharp curve upstream of  San Pablo Dam Rd on ‐ramp

McBryde Ave

Figure 3–29 Westbound I-80 from San Pablo Dam to McBryde

I-80 Integrated Corridor Mobility Project Draft CSMP

- 73 -

January 15, 2009


Another bottleneck occurs between Cutting Boulevard and Gilman Street for a length of 3.5 miles between 6:45 AM and 9:45 AM. The bottleneck is due to Gilman Street on-ramp traffic merging with mainline traffic in addition to vehicular weaving between the on-ramp at Buchanan Street and the off-ramp at Gilman Street approximately 0.20 miles away, as shown in Figure 3–30 .

Buchanan St

Weaving between  Buchanan St on‐ramp  and Gilman St off‐ramp

Gilman St

Figure 3–30 Westbound I-80 at Gilman St

I-80 Integrated Corridor Mobility Project Draft CSMP

- 74 -

January 15, 2009


The third bottleneck occurs between University Avenue and the I-80/I-580/I-880 diverge between 6:15 AM and 10:45 AM. The bottleneck and resulting queue is due to the high diverge traffic volumes between the I-80/I-580/I-880 diverge and I-580/I-880 split. Three embedded bottlenecks occur at University Avenue, Ashby Street, and Powell Street. Figure 3–31 shows the I-80 westbound at the I-80/I-580/I-880 diverge.

Diverge to I‐80 westbound, I‐580  eastbound, I‐880 southbound

Figure 3–31 Westbound I-80 at I-80/I-580/I-880 diverge

I-80 Integrated Corridor Mobility Project Draft CSMP

- 75 -

January 15, 2009


The bottleneck at Powell Street occurs from 7:00 AM to 9:30 AM. The bottleneck is due to Powell Street on-ramp traffic merging with mainline traffic in addition to vehicular weaving to the Bay Bridge and I-580/I-880, as shown in Figure 3–32. The bottleneck at Ashby Street occurs due to the on-ramp traffic merging with mainline traffic in addition to weaving between the University Avenue and Ashby Street interchanges.

Merge at Powell St Onramp

Powell St

Figure 3–32 Westbound I-80 at Powell St

I-80 Integrated Corridor Mobility Project Draft CSMP

- 76 -

January 15, 2009


PM Peak Period In the westbound direction during the PM period, a queue would occur near the I-80/I-580/I-880 diverge and would result in a 3.0 mile long queue to Gilman Street. The queue would occur between 2:30 PM and 7:15 PM and is due to traffic from the I-80, I-580, and I-880 traveling along this stretch of I-80, which has many major merging and diverging points in close proximity. Additionally, one embedded bottleneck would occur at the Ashby Street interchange and would be the result of the on-ramp traffic merging with the mainline flow. Table 3-14 details the PM Westbound Bottlenecks and Queues. Table 3-14 PM Westbound Bottlenecks and Queues Queue Length (Postmile)

Duration

Bottleneck Location

Reason

I-80/I-580/I-880 Diverge

Heavy traffic to the I-580E/I-880S split (unlike the AM peak, there is no backup from the Bay Bridge Toll Plaza contributing to congestion in this area); many major merging and diverging points close to each other in the vicinity of this complex interchange.

8.95 to 11.95

2:30 PM to 7:15 PM

Ashby Street on-ramp traffic merging with mainline traffic

9.92 to 11.95

2:30 PM to 7:15 PM

Ashby Street* * Embedded bottleneck

I-80 Integrated Corridor Mobility Project Draft CSMP

- 77 -

January 15, 2009


4 MODELING APPROACH The modeling activities conducted for the I-80 CSMP involved a combination of applying travel demand models and microsimulation models. The travel demand models were used to generate projections of base and future traffic demands, and generate seed origin-destination (OD) trip matrices for the micro-simulation models. Forecast year within the travel demand model included 2005, 2015 and 2035. Micro-simulation models were used to conduct detailed operational analysis for various alternatives under 2015 demand conditions. The micro-simulation modeling process also involved development and calibration of existing conditions models. The modeling approach used for both the demand forecasting and the operational analysis are described further in the following subsections.

4.1 Forecasting Approach Because of the bi-county nature of the study corridor, the forecasting approach involved starting with the current ACCMA model, but enhancing it to better reflect land use conditions within Contra Costa County, as well current year (2008) network conditions. The land use data from the CCTA model were used to refine the ACCMA model for areas along the corridor within Contra Costa County. Consistent with the ACCMA model, the resulting “I-80 Regional” model included 2005, 2015 and 2035 forecast years. For each year, forecasts are available for the AM & PM Peak Hour, AM & PM 2-hr Peak Period, PM 4-hr Peak Period, and Daily conditions. The I-80 Regional model was used to generate future year traffic demands and develop future baseline travel demand trends. To support the operational analysis and micro-simulation modeling, a subarea extraction from the regional model was undertaken resulting in a “I-80 Corridor” model with a network matching that used for the micro-simulation. As part of the extraction process, AM and PM peak hour OD trip tables for the corridor were generated. For the simulation base-year (2008), the 2005 peak hour OD trip tables from the travel demand model were refined to obtain 2008 multi-hour O-D trip tables for each peak period (the AM peak period is 6:00 to 10:00 AM and the PM peak period is 2:00 to 7:00 PM). An OD matrix estimation (ODME) process was used to estimate 2008 hourly O-D trip tables based on 2008 hourly link demands and 2005 peak hour trip patterns. The hourly link demands are equal to hourly observed counts for uncongested links, but for congested links, hourly observed counts were adjusted to represent hourly link demands. These hourly OD trip tables were obtained used as seed OD trip tables within the base-year simulation AM and PM peak period models. The tables were then adjusted as necessary as part of the simulation model calibration process. For the 2015 forecast year, the base-year hourly calibrated OD trip tables were adjusted to incorporate the forecasted growth from the travel demand. The first step in this process was to calculate the peak-hour changes (2015 – 2008) in trip ends for each subarea zone. The Fratar method was then used to distribute these peak-hour changes to the base-year hourly calibrated OD trip tables. The base year model development process is illustrated in Figure 4–1, while the process for 2015 is illustrated in Figure 4–2. For 2035, it was agreed by the stakeholders that the forecasted growth would likely overload the micro-simulation model making comparisons between alternatives difficult to realistically determine. However, the 2035 regional travel demand models was used to develop baseline travel demand trends within the corridor.

I-80 Integrated Corridor Mobility Project Draft CSMP

- 78 -

January 15, 2009


Network  Geometries 2005 ACCMA Model

Code Simulation  Network

(Cube)

CCTA Land  Use Data

Signal Timing  Plans

TDF Model  Refinement

TDF Network  Refinement

Simulation  Network

I‐80 Regional Model

Check Consistency of Zone Structure

(Cube)

(Simulation Zones, Not TDF’s TAZs)

Run and Check Validation

Run Subarea Extraction

Corridor Boundary

(Cube)

(With Minor Streets)

Export to TransCAD (Network & Vehicle Peak Hour Trip Tables)

Observed  Counts

Run, Compare, and Adjust the  Model in TransCAD I‐80 Corridor Model with Minor  Streets (TransCAD)

Adjust Counts for  Congested Links

Run Subarea Extraction 

Corridor Boundary

(TransCAD)

(Without Minor Streets)

I‐80 Corridor Model (Network & Vehicle Peak Hour Trip Tables)

Hourly Link  Demands

Run ODME

Hourly O‐D  Trip Tables Reasonableness Check (Including Peaking Spreading & O‐D Shifting)

Seed O‐D Trip Tables  for Simulation Run and Calibrate  Simulation Model (Paramics) Other Observed Data Calibrated O‐D Trip Tables

Calibrated Simulation Network

Base‐year Simulation Model

Figure 4–1 Development of Base-Year Simulation Model. I-80 Integrated Corridor Mobility Project Draft CSMP

- 79 -

January 15, 2009


2015 ACCMA Model (Cube)

Refined Network from the Base‐ year “I‐80 Regional Model” (Cube) CCTA Land  Use Data

TDF Model  Refinement

Network Assumptions (2015)

2015 I‐80 Regional Model (Cube)

Run and Check Validation

Corridor Boundary

Run Subarea Extraction

(With Minor Streets)

(Cube)

Export to TransCAD (Network & Vehicle Peak Hour Trip Tables)

Run, Compare, and Adjust the  Model in TransCAD 2015 I‐80 Corridor Model with  Minor Streets (TransCAD) Corridor Boundary

Run Subarea Extraction 

(Without Minor Streets)

(TransCAD)

Base‐year I‐80 Corridor Model

2015 I‐80 Corridor Model

(Network & Vehicle Peak Hour Trip Tables)

(Network & Vehicle Peak Hour Trip Tables)

Base‐year Seed O‐Ds

2015 Seed O‐Ds

(Based on Simulation Zones)

(Based on Simulation Zones)

Identify Changes of Trip Productions and Trip  Attractions (at each Simulation Zone) Calibrated O‐D Trip Tables

Fratar Method

Calibrated Simulation Network

Base‐year Simulation Model Hourly O‐D  Trip Tables

Signal Timing Plans (optimized in Synchro)

Reasonableness Check (Including Peaking Spreading & O‐D Shifting)

2015 O‐D Trip Tables

2015 Simulation Network

Future‐year Simulation Model

Figure 4–2 Development of Future-Year Simulation Model

I-80 Integrated Corridor Mobility Project Draft CSMP

- 80 -

January 15, 2009


4.2 Operational Analysis Approach As noted above, detailed operational analysis of alternatives was conducted only for the 2015 forecast year. This analysis involved the development of micro-simulation models using the Paramics simulation software. In addition to the 2015 models, 2008 base-year models were developed. Models were developed for both the AM peak period (6:00 to 10:00 AM) and the PM peak period (2:00 to 7:00 PM). The simulation model network was illustrated previously in Figure 1-2, and encompasses the 21-mile segment of I-80 between the Bay Bridge Toll Plaza in Oakland and the Carquinez Bridge in Crockett. The network includes all the interchanges and freeway-tofreeway connectors along I-80, the major alternative parallel arterial (San Pablo Avenue), the roadway connectors between I-80 and San Pablo Avenue, and selected local intersections. The base-year simulation AM and PM peak period models were calibrated to the existing conditions (2008), followed the standard of practice presented in Traffic Analysis Toolbox Volume III: Guidelines for Applying Traffic Micro-simulation Modeling Software (July 2004) developed by the Federal Highway Administration (FHWA). More details about the simulation calibration can be found in the I-80 ICM Project Traffic Operations Analysis Report. Once the base-year simulation models were calibrated, the model network was revised to reflect assumed 2015 baseline conditions and the forecasted 2015 hourly O-D trip tables were applied to to represent 2015 No Build condition and 2015 Build conditions. Several Build alternatives were tested and reflect different combinations of the proposed I-80 ICM strategies. These I-80 ICM strategies include adaptive ramp metering, variable speed limits (VSL), and lane management control strategies. More detailed explanation can be found in the Traffic Operations Analysis Report. In order to simulate the I-80 ICM alternatives, DKS in conjunction with CLR Analytics and Quadstone (the Paramics software developers) developed and tested several plugins (special modules to model advanced ITS operational strategies) which include: •

Adaptive ramp metering plugin (tos.dll) to model the ramp metering system currently deployed in Caltrans District 4;

Variable speed limit feature (a feature added to Paramics version 6.6) to allow speed limit changes according to traffic conditions; and

Lane management control plugin (CLR_lanemanage.dll) to model the lane closure during incidents and drivers’ response to the lane closure messages shown in Changeable Message Signs or gantries

These special plugins were deployed in relevant 2015 simulation models to conduct operational analysis in simulation.

I-80 Integrated Corridor Mobility Project Draft CSMP

- 81 -

January 15, 2009


5 FUTURE BASELINE CONDITIONS This chapter summarizes the future baseline trends in Travel Demand, Mobility, Safety, Reliability, and Congestion for the I-80 study corridor. The trends examine the projected changes between existing conditions, 2015 (assuming completion of currently programmed and under construction projects), and 2035 (assuming only improvements up to 2015). The trends provide a foundation upon which to identify the need for and compare the performance of various improvement strategies for the corridor.

5.1 Baseline Improvement Projects The future year travel demand trend forecasts were developed using the I-80 travel demand model described in Chapter 4. That model is based primarily on the ACCMA model and includes a number of assumed roadway and transit network improvements for both 2015 and 2035. Those improvements that may most affect travel demand in the I-80 study corridor are listed in Table 5-1Error! Reference source not found.. Table 5-1 Improvement Projects Included in 2015 and 2035 Travel Demand Models Model  Year 

2015 

2035 

Project 

Description 

South San Francisco Ferry services 

Add new ferry services from Oyster Point to San Francisco  and Harbor Bay. 

I‐80 Eastbound HOV lane 

Construct EB HOV lane on I‐80 from where existing HOV  lanes end to Crockett interchange. 

Redwood City Ferry services 

Add new ferry services from Redwood City to San  Francisco and Harbor Bay. 

Telegraph/International Bus Rapid  Transit 

Bus rapid transit corridor from San Leandro BART to UC  Berkeley. 

Source:  ACCMA Travel Demand Model – network update  CCTA Travel Demand Model – perennial model update 

5.2 Travel Demand Trends The following sections detail the changes in Land Use, Freeway, Arterial, Mode Choice, and Transit Ridership demands by 2015 and 2035. 5.2.1 Land Use As shown in Table 5-2, between 2005 and 2015 the total number of households in Alameda and Contra Costa Counties would increase 9.3% from 910,443 to 995,512. By 2035 1,169,369 households are expected to be present in these two counties for a 28.4% increase from 2005. For the I-80 corridor, households would increase 7.0% from 113,407 in 2005 to 121,382 in 2015. In 2035 it is expected that 137,154 households would be present for an increase of 20.9% when compared to 2005.

I-80 Integrated Corridor Mobility Project Draft CSMP

- 82 -

January 15, 2009


As can be seen in Table 5-3, employment in Alameda and Contra Costa Counties would increase 14.7% between 2005 and 2015 rising from 1,123,521 to 1,289,161. For 2035, employment is expected to increase by 49.5% to 1,679,458. Within the I-80 corridor, 2005 employment is 126,335 and would increase by 14.4% to 144,530 in 2015 and 44.8% to 182,942 by 2035. Table 5-2 Household Growth  County 

2005 

2015 

% Growth 

2035 

% Growth 

Alameda  Contra Costa  Total     I‐80 Corridor 

545,250  365,193  910,443   113,407 

591,494  404,018  995,512   121,382 

8.5%  10.6%  9.3%   7.0% 

697,366  472,003  1,169,369    137,154 

27.9%  29.2%  28.4%   20.9% 

% Growth  15.7% 13.0%  14.7%    14.4% 

2035  1,110,956  568,502  1,679,458    182,942 

Source:  ACCMA Travel Demand Model – network update  CCTA Travel Demand Model – perennial model update 

Table 5-3 Employment Growth  County  Alameda  Contra Costa   Total     I‐80 Corridor 

2005  735,460  388,061  1,123,521    126,335 

2015  850,586 438,575  1,289,161    144,530 

% Growth  51.1% 46.5%  49.5%    44.8% 

Source:  ACCMA Travel Demand Model – network update  CCTA Travel Demand Model – perennial model update 

5.2.2 Freeway Demands As shown in Table 5-4, peak period demand on the I-80 study segment is forecasted to increase between 1% and 26% for the AM peak period and between 2% and 20% for the PM peak period from 2005 to 2015. For 2035 the freeway demand would increase between 11% and 68% for the AM peak period and between 15% and 42% for the PM peak period. In all cases, the higher growth rates apply to the off-peak direction of travel.

I-80 Integrated Corridor Mobility Project Draft CSMP

- 83 -

January 15, 2009


Table 5-4 Mainline Demands 2015 Demand 

Existing Demand  Mainline Location 

I‐80 Eastbound  Between University Ave   and Gilman St   Between San Pablo Dam   off and on ramps   Between Pinole Valley Rd   and SR 4   I‐80 Westbound  Between SR 4   and Pinole Valley Rd   Between San Pablo Dam   off and on ramps  Between Gilman St  and University Ave 

% Growth 

AM  Peak 2‐ Hr   

PM  Peak 2‐ Hr   

AM  Peak 2‐ Hr   

PM  Peak 2‐ Hr   

AM  Peak  2‐Hr   

14,244 

18,649 

16,223 

19,180 

14% 

3% 

6,462 

11,759 

8,123 

11,994 

26% 

6,369 

14,723 

8,049 

16,069 

 

 

 

15,848 

7,620 

12,389  17,274 

2035  Demand 

PM  AM  Peak  Peak 2‐ 2‐Hr  Hr     

% Growth 

PM  Peak 2‐ Hr   

AM  Peak  2‐Hr   

PM  Peak  2‐Hr   

16,823 

22,620 

18% 

21% 

2% 

9,632 

13,538 

50% 

15% 

26% 

9% 

10,697 

19,846 

68% 

35% 

 

 

 

 

 

 

 

17,566 

8,872 

11% 

16% 

21,276 

10,817 

34% 

42% 

8,959 

12,553 

9,810 

1% 

10% 

13,726 

10,530 

11% 

18% 

13,637 

18,220 

16,303 

6% 

20% 

21,560 

17,656 

25% 

30% 

Source:  I‐80 ICM Regional Model (modified version of ACCMA Travel Demand Model – refer to Chapter 4)   

Freeway demand is the total vehicle demand that uses a section of Interstate 80 within the study corridor. This includes vehicle trips with an origin and/or destination within the corridor and through trips where both the origin and destination of the trips exist outside the corridor. As detailed in Table 5-5, 2015 total freeway demand within the corridor is forecasted to increase by approximately 16% during both the AM peak period PM peak period. By 2035, total freeway demand within the corridor is forecasted to increase by approximately 72% during the AM peak period and approximately 65% during the PM peak period. Table 5-5 I-80 Corridor Freeway Demand (Vehicle Trips) Period 

Existing 

2015 

%Change 

2035 

%Change 

AM 2‐Hr 

106,884 

124,149 

16.2% 

183,833 

72.0% 

PM 2‐Hr 

110,608 

128,388 

16.1% 

181,931 

64.5% 

Source:  I‐80 ICM Regional Model (modified version of ACCMA Travel Demand Model – refer to Chapter 4)   

5.2.3 Arterial Demands As demand along the I-80 corridor increases, it is expected that demand along San Pablo Avenue will increase as well since it is the main parallel arterial to the I-80 study corridor. As detailed in Table 5-6, between the existing year and 2015, arterial demand will increase by a maximum of

I-80 Integrated Corridor Mobility Project Draft CSMP

- 84 -

January 15, 2009


68% between University Avenue and Gilman Street during the AM peak two-hour period and 55% between San Pablo Dam Road and McBryde Avenue during the PM peak two-hour period. For 2035, maximum arterial demand increase is expected to reach 137% between Pinole Valley Road and SR 4 in the AM peak two-hour period and 141% between San Pablo Dam and McBryde Avenue during the PM peak two-hour period. Table 5-6 Arterial Demands Existing Demand San Pablo Ave Location 

Between University Ave   and Gilman St  Between McBryde Ave    and San Pablo Dam  Between Pinole Valley Rd   and SR 4  Between SR 4  and Pinole Valley Rd   Between San Pablo Dam  and McBryde Ave  Between Gilman St  and University Ave  

AM  PM  Peak 2‐ Peak 2‐ Hr  Hr  1,780  3,794

2015 Demand 

% Growth 

AM  Peak 2‐ Hr  2,996

PM  Peak 2‐ Hr  3,765

AM  Peak  2‐Hr  68%

PM  Peak  2‐Hr  ‐1%

2035  Demand  AM  PM  Peak 2‐ Peak 2‐ Hr  Hr  3,165  3,793

% Growth  AM  Peak  2‐Hr  78%

PM  Peak  2‐Hr  0%

1,404 

2,690

1,886

3,000

34%

12%

2,422 

3,782

73%

41%

1,395 

3,926

1,545

4,334

11%

10%

3,309 

4,588

137%

17%

4,136 

1,456

4,243

1,636

3%

12%

5,621 

2,977

36%

104%

2,495 

987

3,202

1,534

28%

55%

3,663 

2,380

47%

141%

3,814 

2,762

3,825

3,621

0%

31%

4,175 

3,839

9%

39%

Source:  I‐80 ICM Regional Model (modified version of ACCMA Travel Demand Model – refer to Chapter 4)   

5.2.4 Mode Choice Mode choice demands have been compiled from the regional travel demand model in 2005, 2015, and 2035 and are summarized in Table 5-7. All mode choice options are expected to increase between 2005 and 2015, with transit demand expected to increase by over 20%. For travel within the I-80 corridor, drive alone demand will increase by 11.4%, rideshare with two people will increase by 13.6%, rideshare with three or more people will increase by 14.2%, truck use will increase by 13.1%, and transit use will increase by 20.2%. For 2035, travel demand within the I-80 corridor for each mode is projected to increase at rates greater than those for the region as a whole. Drive alone will increase by 59.6%, rideshare with two people will increase by 76.7%, rideshare with three or more people will increase by 93.2%, truck use will increase by 67.4%, and transit use will increase by 77.0% when compared to 2005 conditions.

I-80 Integrated Corridor Mobility Project Draft CSMP

- 85 -

January 15, 2009


Table 5-7 Daily Mode Choice Demands Regional  Mode 

Existing 

2015 

%Change 

2035 

%Change 

Drive Alone 

11,946,030 

13,182,434 

10.3% 

17,018,325 

42.5% 

Share 2 

3,791,688 

4,185,618 

10.4% 

5,310,763 

40.1% 

Share 3+ 

2,889,197 

3,195,879 

10.6% 

3,648,853 

26.3% 

Truck 

3,586,690 

3,865,525 

7.8% 

5,201,065 

45.0% 

Transit 

1,024,991  

1,261,657  

23.1% 

 1,779,518  

73.6% 

I‐80 Corridor1  Mode 

Existing 

2015 

%Change 

2035 

%Change 

Drive Alone 

610,912 

680,602 

11.4% 

974,754 

59.6% 

Share 2 

189,935 

215,834 

13.6% 

335,599 

76.7% 

Share 3+ 

139,556 

159,415 

14.2% 

269,688 

93.2% 

Truck 

96,803 

109,448 

13.1% 

162,019 

67.4% 

Transit 

165,771 

188,366 

13.6% 

293,375 

77.0% 

Note:   1. All trips traveling within the corridor, including through trips (both trips ends outside the corridor).  Source: I‐80 ICM Regional Model (modified version of ACCMA Travel Demand Model – refer to Chapter 4)   

5.2.5 Transit Ridership As mentioned in the previous section, transit demand is expected increase at a higher rate than other modes of transportation for both 2015 and 2035. The corresponding increase in transit use within the I-80 corridor is detailed in Table 5-8. Between 2005 and 2015, daily transit ridership is expected to increase by 12.3% while between 2005 and 2035 daily transit ridership is expected to increase by 64.4% Table 5-8 I-80 Corridor Daily Transit Ridership Growth1 2005 Daily  Ridership 

2015 Daily  Ridership 

% Growth 

2035 Daily  Riderships 

% Growth 

37690 

42956 

14.0% 

77908 

106.7% 

744 

1224 

64.5% 

3124 

319.9% 

AC Transit 

98306 

111092 

13.0% 

134190 

36.5% 

WestCAT 

14664 

14096 

‐3.9% 

31826 

117.0% 

Ferry 

3124 

3404 

9.0% 

6832 

118.7% 

Other 

7174 

8774 

22.3% 

11990 

67.1% 

161702 

181546 

12.3% 

265870 

64.4% 

Transit Provider  BART  Amtrak 

Total Corridor 

Note:   1. Combines boardings and alightings within Corridor.  Includes transfer but does not include through trips (both trips  ends outside the corridor).  Source:  I‐80 ICM Regional Model (modified version of ACCMA Travel Demand Model – refer to Chapter 4)   

I-80 Integrated Corridor Mobility Project Draft CSMP

- 86 -

January 15, 2009


5.3 Mobility Trends The section presents the trends in baseline mobility for three different levels of aggregation: 1. The I-80 Study Corridor: This consists of city streets, county roads, and state highways within the study area. 2. I-80 Freeway Mainline Only. 3. San Pablo Avenue only: San Pablo Avenue represents the primary alternate arterial route throughout a majority of the study corridor. Mobility is measured in terms of vehicle miles traveled (VMT), vehicle hours traveled (VHT), and vehicle hours of delay (VHD) as defined within the travel demand model. 5.3.1 I-80 Study Corridor Table 5-9 shows the trends in baseline mobility for the entire I-80 Corridor network (freeways, state highways, local streets). Demand is forecasted to increase, travel times will increase, delays will increase significantly, and speeds will decrease significantly under the baseline trends conditions (no further improvements to corridor after 2015). In 2035, the network VMT increases by approximately 38% and 33% during the respective AM and PM peak hours while the VHT increases by approximately 109% and 76% during the respective AM and PM peak hours. Table 5-9 I-80 Corridor Baseline Mobility Trends Mode 

Existing

2015

% Change

2035 

% Change

Vehicle Miles Travel  

981,290 

1,104,528 

13% 

1,351,200 

38% 

Vehicle Hour Travel  

28,776 

35,164 

22% 

60,048 

109% 

Vehicle Miles Travel  

1,055,642 

1,177,281 

12% 

1,408,368 

33% 

Vehicle Hour Travel  

33,873 

40,706 

20% 

59,775 

76% 

AM Peak Hour 

PM Peak Hour 

Source:  I‐80 ICM Regional Model (modified version of ACCMA Travel Demand Model – refer to Chapter 4)   

5.3.2 I-80 Freeway Mainline Table 5-10, Table 5-11, and Table 5-12 show the trends in baseline mobility for the I-80 Freeway Mainline within the study corridor. Demand is forecasted to increase, travel times will increase, delays will increase significantly, and speeds will decrease significantly under the baseline trends conditions (no further improvements to corridor after 2015). In 2035, the AM eastbound between Carquinez Bridge and SR 4 experiences the highest increase in traffic. VHT increases approximately 89% while the MVT increases by 120% compared to 2005.

I-80 Integrated Corridor Mobility Project Draft CSMP

- 87 -

January 15, 2009


2005

2015

2035

PM  AM  Eastbound  Eastbound 

Vehicle Miles of Travel  Vehicle Hours of Travel  Vehicle Hours of Delay  Average Vehicle Speed  Vehicle Miles of Travel  Vehicle Hours of Travel  Vehicle Hours of Delay  Average Vehicle Speed 

21,501 344 2 62 53,323 2,225 1,362 24

28,158 458 9 62 57,681 2,434 1,500 24

40,551 757 110 54 65,600 3,112 2,050 21

PM  AM    Westbound  Westbound 

Table 5-10 Performance Trends: Between Carquinez Bridge and SR 4 Performance Measure 

Vehicle Miles of Travel  Vehicle Hours of Travel  Vehicle Hours of Delay  Average Vehicle Speed  Vehicle Miles of Travel  Vehicle Hours of Travel  Vehicle Hours of Delay  Average Vehicle Speed 

59,912 2,263 1,342 26 27,265 425 5 64

62,186 2,405 1,448 26 31,465 497 13 63

74,771 4,223 3,073 18 40,139 680 63 59

Source:  I‐80 ICM Regional Model (modified version of ACCMA Travel Demand Model – refer to Chapter 4)   

For I-80 between SR 4 and Central Avenue, the AM eastbound segment experiences the highest VMT increase of 50% and a VHT increase of 98% when comparing the 2035 and existing conditions.

2005

2015

2035

PM  AM  Eastbound  Eastbound 

Vehicle Miles of Travel  Vehicle Hours of Travel  Vehicle Hours of Delay  Average Vehicle Speed  Vehicle Miles of Travel  Vehicle Hours of Travel  Vehicle Hours of Delay  Average Vehicle Speed 

68,616 1,151 46 60 130,666 4,190 2,095 31

84,834 1,556 190 55 136,758 4,873 2,682 28

103,174 2,278 621 45 160,494 7,733 5,163 21

PM  AM    Westbound  Westbound 

Table 5-11 I-80 Performance Trends: Between SR 4 and Central Avenue Performance Measure 

Vehicle Miles of Travel  Vehicle Hours of Travel  Vehicle Hours of Delay  Average Vehicle Speed  Vehicle Miles of Travel  Vehicle Hours of Travel  Vehicle Hours of Delay  Average Vehicle Speed 

134,039 4,240 2,090 32 89,934 1,803 350 50

141,138 5,110 2,849 28 99,213 2,138 537 46

164,239 9,774 7,146 17 109,030 2,586 831 42

Source:  I‐80 ICM Regional Model (modified version of ACCMA Travel Demand Model – refer to Chapter 4)   

Between Central Avenue and the Bay Bridge, the PM eastbound segment would experience the highest increase in VMT with an increase of 23% with a 90% increase in VHT.

I-80 Integrated Corridor Mobility Project Draft CSMP

- 88 -

January 15, 2009


PM  AM    PM  AM  Westbound  Westbound  Eastbound  Eastbound 

Table 5-12 I-80 Performance Trends: Between Central Avenue and the Bay Bridge Performance Measure  Vehicle Miles of Travel  Vehicle Hours of Travel  Vehicle Hours of Delay  Average Vehicle Speed  Vehicle Miles of Travel  Vehicle Hours of Travel  Vehicle Hours of Delay  Average Vehicle Speed 

2005 60,902 1,448 433 42 78,491 2,661 1,352 29

2015 69,254 2,099 944 33 80,653 2,912 1,567 28

2035 72,727 2,364 1,151 31 96,197 5,053 3,446 19

Vehicle Miles of Travel  Vehicle Hours of Travel  Vehicle Hours of Delay  Average Vehicle Speed  Vehicle Miles of Travel  Vehicle Hours of Travel  Vehicle Hours of Delay  Average Vehicle Speed 

84,662 2,580 1,162 33 68,016 1,588 444 43

87,950 2,998 1,524 29 76,475 2,220 934 34

101,844 5,105 3,396 30 80,738 2,975 1,617 27

Source:  I‐80 ICM Regional Model (modified version of ACCMA Travel Demand Model – refer to Chapter 4)   

5.3.3 San Pablo Avenue Table 5-13, Table 5-14 and Table 5-15 show the trends in baseline mobility for San Pablo Avenue from between the Carquinez Bridge and the Bay Bridge. Demand is forecasted to increase, travel times will increase, delays will increase significantly, and speeds will decrease significantly under the baseline trends conditions (no further improvements to corridor after 2015). Between 2005 and 2035, the highest increase in VMT between the Carquinez Bridge and SR 4 would occur during the AM peak period in the westbound direction. The VMT would increase from 3,947 to 11,010 for an increase of 179% with a VHT increase of 160%.

I-80 Integrated Corridor Mobility Project Draft CSMP

- 89 -

January 15, 2009


2005

2015

2035

PM  AM  Eastbound  Eastbound 

Vehicle Miles of Travel  Vehicle Hours of Travel  Vehicle Hours of Delay  Average Vehicle Speed  Vehicle Miles of Travel  Vehicle Hours of Travel  Vehicle Hours of Delay  Average Vehicle Speed 

670 19 ‐ 35 2,282 65 ‐ 35

706 20 ‐ 35 2,608 75 ‐ 35

1,082 31 ‐ 35 5,943 171 ‐ 35

PM  AM    Westbound  Westbound 

Table 5-13 San Pablo Avenue Performance Trends: Between Carquinez Bridge and SR 4 Performance Measure 

Vehicle Miles of Travel  Vehicle Hours of Travel  Vehicle Hours of Delay  Average Vehicle Speed  Vehicle Miles of Travel  Vehicle Hours of Travel  Vehicle Hours of Delay  Average Vehicle Speed 

3,947 113 ‐ 35 452 13 ‐ 35

8,305 241 ‐ 35 476 14 ‐ 35

11,010 324 ‐ 35 724 21 ‐ 35

Source:  I‐80 ICM Regional Model (modified version of ACCMA Travel Demand Model – refer to Chapter 4)   

Between SR 4 and Central Avenue, the highest increase in VMT from 2005 to 2035 is expected to occur during the AM peak hour in the eastbound direction. The VMT would increase by 112% while the VHT would increase by 113%.

2005

2015

2035

PM  AM  Eastbound  Eastbound 

Vehicle Miles of Travel  Vehicle Hours of Travel  Vehicle Hours of Delay  Average Vehicle Speed  Vehicle Miles of Travel  Vehicle Hours of Travel  Vehicle Hours of Delay  Average Vehicle Speed 

9,274 261 ‐ 35 32,010 1,125 169 28

10,867 309 ‐ 35 33,187 1,806 812 18

19,625 555 ‐ 35 35,511 2,128 1,045 17

PM  AM    Westbound  Westbound 

Table 5-14 San Pablo Avenue Performance Trends: Between SR 4 and Central Avenue Performance Measure 

Vehicle Miles of Travel  Vehicle Hours of Travel  Vehicle Hours of Delay  Average Vehicle Speed  Vehicle Miles of Travel  Vehicle Hours of Travel  Vehicle Hours of Delay  Average Vehicle Speed 

33,481 1,643 638 20 11,734 338 ‐ 35

34,373 1,588 544 22 15,258 447 ‐ 34

38,674 3,490 2,279 11 24,502 728 ‐ 34

Source:  I‐80 ICM Regional Model (modified version of ACCMA Travel Demand Model – refer to Chapter 4)   

I-80 Integrated Corridor Mobility Project Draft CSMP

- 90 -

January 15, 2009


For the segment between Central Avenue and the Bay Bridge from 2005 to 2035, the largest increase in VMT would occur during the AM peak period in the eastbound direction. The VMT would increase by 109% and the VHT is forecasted to increase by 390%.

2005

2015

2035

PM  AM  Eastbound  Eastbound 

Vehicle Miles of Travel  Vehicle Hours of Travel  Vehicle Hours of Delay  Average Vehicle Speed  Vehicle Miles of Travel  Vehicle Hours of Travel  Vehicle Hours of Delay  Average Vehicle Speed 

8,081 270 ‐ 30 17,089 891 261 19

13,920 508 33 27 17,887 708 55 25

16,882 1,321 711 13 19,778 1,300 551 15

PM  AM    Westbound  Westbound 

Table 5-15 San Pablo Avenue Performance Trends: Central Avenue to Bay Bridge Performance Measure 

Vehicle Miles of Travel  Vehicle Hours of Travel  Vehicle Hours of Delay  Average Vehicle Speed  Vehicle Miles of Travel  Vehicle Hours of Travel  Vehicle Hours of Delay  Average Vehicle Speed 

14,061 614 113 23 13,038 438 ‐ 30

16,212 763 183 21 17,391 641 32 27

20,032 3,213 2,449 6 19,336 986 261 20

Source:  I‐80 ICM Regional Model (modified version of ACCMA Travel Demand Model – refer to Chapter 4)   

5.4 Safety Trends A tool to forecast collision rates within the I-80 corridor does not exist. A simple, but often-used, approach is to assume that collision rates will remain at existing levels and that the number of collisions will increase on par with the forecasted increase in VMT. With this approach, the projected 10% growth in daily VMT between the existing year and 2015 would result in a similar 10% increase in collisions on the study corridor of I-80. Between the existing year and 2035, VMT is expected to increase by 35% resulting in a similar 35% increase in collisions along the I-80 study corridor. The resulting number of collisions, by segment and year, are presented in Table 516. Table 5-16 Collisions on I-80 Study Corridor Segment 

Number of Collisions  Existing  2015  2035 

Limits 

Bay Bridge Toll Plaza/Powell 

926 

1,019 

1,259 

Powell/Buchanan‐580 

2,270 

2,497 

3,087 

580‐Buchanan/San Pablo Dam Road 

1,077 

1,185 

1,465 

San Pablo Dam Road/SR 4 

1,290 

1,419 

1,754 

SR 4/Carquinez Bridge 

722 

794 

982 

 Source: DKS Associates, 2010 

I-80 Integrated Corridor Mobility Project Draft CSMP

- 91 -

January 15, 2009


5.5 Reliability Trends With the increase in daily vehicular traffic and the resulting increase in VMT and VHT, more collisions and traffic incidents would occur. Consequently, the increase in traffic collisions and incidents would result in varying but largely increasing travel times thus reducing the overall reliability of the I-80 project corridor.

5.6 Congestion and Bottleneck Trends The I-80 freeway experiences traffic volumes reaching 312,000 vehicles per day and an average of 20,000 hours of delay daily. The freeway is at or near capacity during peak periods with segments of the corridor operating poorly fro several hours every weekday. The congestion on the roadway network contributes to an increase in accidents rates, including rear-end accidents on both freeway and local arterials. These, along with other corridor incidents, contribute to delays for transit services operating along the corridors. The combined effect of the incidents (including accidents) and the congestion hinders efficient response times and creates secondary accidents. Bottlenecks on I-80 are associated with high mainline volumes, high ramp volumes, geometric conditions, close spacing of ramps, short weaving distances and presence of toll plaza in the vicinity. As described in Chapter 3, there are several existing bottleneck locations in both directions within the corridor. These existing bottlenecks are summarized in Table 5-17. Table 5-17 Existing Bottlenecks in the I-80 Study Corridor No. 

Direction 

Bottleneck Location  Location 

Active Period  AM Peak  PM Peak 

Eastbound 

Pinole Valley Road 

 

Eastbound 

Appian Way 

 

X* 

Eastbound 

Richmond Parkway 

 

X* 

Eastbound 

San Pablo Avenue 

 

Eastbound 

Carlson Boulevard 

 

Eastbound 

Gilman Avenue 

 

Eastbound 

University Avenue 

X* 

Eastbound 

Ashby Avenue 

 

X* 

Westbound 

San Pablo Dam Road 

 

10 

Westbound 

Appian Way 

X* 

 

11 

Westbound 

Gilman Street 

 

12 

Westbound 

University Avenue 

X* 

 

13 

Westbound 

Ashby Street 

X* 

X* 

14 

Westbound 

Powell Street 

X* 

 

15 

Westbound 

I‐80/I‐580/I‐880 Diverge 

 

* = Embedded bottleneck   Source: DKS Associates, 2010 

I-80 Integrated Corridor Mobility Project Draft CSMP

- 92 -

January 15, 2009


For 2015 the total travel demand within the corridor is forecasted to increase by approximately 10% during the AM peak period and 6% in the PM peak period. In 2035, the I-80 westbound traffic demands during the AM peak hour are projected to increase by 54% to 60% between SR 4 and Carquinez Bridge. In the western portion of the corridor, where there is congestion in existing conditions, the peak hour growth rates are projected in the range of 30% to 45%. During the PM peak hour, the I-80 eastbound traffic demands are projected to increase by 25% to 40% along the entire freeway. Table 5-18 and Table 5-19 summarize the demand-to-capacity (D/C) ratio for each freeway link and for each forecast year as derived from the travel demand model. These tables show the results for the eastbound and westbound directions respectively. This information provides insight into future conditions and congestion levels within the corridor. With no expected capacity-increasing projects proposed for I-80, increased demand in the future may be expected to lead directly to increased levels of congestion. For the most part this will manifest itself in the form of more severe congestion and queues associated with existing bottlenecks. The results from the operational analysis of 2015 indicate that the existing bottlenecks are still present but with longer queues and longer time to clear the queues than is currently the case. This finding is supported by the results in Tables 5-18 and 5-19 that generally show increased d/c ratios for those segments where congestion currently occurs. These higher ratios suggest that queues associated with existing bottlenecks would increase in length and severity in both the AM and PM peak periods. With the significant growth projected for 2035, the I-80 corridor is expected to operate under extreme congested conditions. While this would undoubtedly mean more severe congestion associated with existing bottlenecks, new bottlenecks may also emerge. In both the Am and PM peaks, several additional segments are projected to experience d/c ratios greater than 0.8. During the 2035 AM peak, this includes eastbound segments between Hilltop Drive and SR 4, and westbound segments east of SR 4. During the 2035 PM peak hour, these new segments include some eastbound segments east of SR 4, and westbound segments around Pinole Valley Road. In addition to the recurring congestion in the future, non-recurrent congestion related to incidents is also projected to increase. Many arterials in the corridor also experience recurrent congestion, particularly in sections that appear to be used by traffic avoiding recurring congestion and bottlenecks on nearby freeway segments. These arterials also experience considerable non-recurrent congestion when there is an incident on a parallel section of freeway. These conditions are also expected to worsen in the future.

I-80 Integrated Corridor Mobility Project Draft CSMP

- 93 -

January 15, 2009


Table 5-18 I-80 Corridor Eastbound Demand/Capacity Ratio Segment  Mainline (Start) EB off to Toll Plaza (at left)  Mainline EB off to SB I‐880/Grand Ave  Mainline EB on from Toll Plaza  Mainline EB off to I‐580 E  Mainline EB on from I‐580 W  Mainline EB off to Powell St  Mainline EB on from I‐880 N   Mainline EB on from Powell St  Mainline EB off to Shellmound St / Ashby Ave  Mainline EB on fr WB Ashby Ave/Potter St  Mainline EB off to University/Eastshore Hwy  Mainline EB on from WB University  Mainline EB off to Gilman St  Mainline EB on from Gilman St  Mainline EB off to Buchanan St  Mainline EB off to WB 580  Mainline EB on fr Buchanan St  Mainline EB off to Central Ave  Mainline EB on from Central Ave  Mainline EB off to Carlson Blvd  Mainline EB on from Carlson Blvd  Mainline

I-80 Integrated Corridor Mobility Project Draft CSMP

Existing  0.58    0.58    0.45    0.45   0.44    0.54    0.67    0.63    0.66    0.67    0.71    0.61    0.66    0.62    0.55    0.62    0.41    0.44    0.41    0.46    0.45    0.50 

AM Peak Hour  2015 0.65    0.65    0.49    0.49   0.47    0.57    0.68    0.68    0.71    0.73    0.77    0.68    0.73    0.71    0.62    0.70    0.48    0.52    0.48    0.53    0.52    0.58 

- 94 -

2035  0.68    0.68    0.50    0.51   0.46    0.56    0.71    0.74    0.78    0.80    0.83    0.73    0.79    0.74    0.71    0.80    0.58    0.67    0.61    0.69    0.63    0.71 

PM Peak Hour  2015  Existing  0.82  0.83      0.82  0.83      0.69  0.67      0.69  0.67      0.69  0.66      0.62  0.60      0.74  0.73      0.68  0.67      0.74  0.74      0.83  0.83      0.89  0.91      0.83  0.83      0.93  0.94      0.91  0.94      0.83  0.86      0.94  0.97      0.72  0.75      0.77  0.78      0.69  0.70      0.75  0.77      0.72  0.73      0.81  0.82 

2035  1.11    1.11    0.79    0.79   0.89    0.75    0.86    0.81    0.97    1.08    1.20    1.08    1.20    1.22    1.10    1.15    0.91    1.00    0.86    0.97    0.88    1.01 

January 15, 2009


Segment  EB off to Potrero Ave  Mainline EB loop on fr EB Cutting Blvd  Mainline EB diag on fr WB Cutting Blvd  Mainline EB HOV diag on fr cutting Blvd  Mainline EB loop off to WB McDonald  Mainline EB off to San Pablo Ave  Mainline EB on from San Pablo Ave  Mainline EB off to Amador‐Solano  Mainline EB off to San Pablo Dam  Mainline EB on from San Pablo Dam  Mainline EB off to El Portal Dr  Mainline EB on from El Portal Dr  Mainline EB off to Hilltop Dr  Mainline EB loop on fr EB Hilltop Dr  Mainline EB diag on fr WB Hilltop Dr  Mainline EB off to Richmond Pkwy  EB off HOV to Richmond Pkwy  Mainline EB loop on fr EB Richmond Pkwy  EB diag on fr WB Richmond Pkwy  Mainline EB off to Appian Way  Mainline EB loop on fr EB Appian  EB diag on fr WB Appian  Mainline EB off to Pinole Valley Rd  Mainline EB on from Pinole Valley Rd  Mainline

I-80 Integrated Corridor Mobility Project Draft CSMP

Existing    0.47    0.40    0.36    0.36    0.42    0.49    0.46    0.55    0.49    0.55    0.50    0.44    0.48    0.51    0.53      0.49      0.46    0.55      0.50    0.58    0.64 

AM Peak Hour  2015   0.55    0.48    0.43    0.42    0.49    0.58    0.53    0.64    0.58    0.64    0.60    0.52    0.56    0.59    0.61      0.56      0.53    0.62      0.56    0.67    0.58 

- 95 -

2035    0.68    0.59    0.53    0.53    0.62    0.71    0.64    0.77    0.68    0.76    0.73    0.63    0.70    0.74    0.80      0.72      0.66    0.79      0.70    0.84    0.72 

PM Peak Hour  2015  Existing      0.75  0.78      0.65  0.72      0.60  0.66      0.61  0.63      0.71  0.73      0.81  0.83      0.77  0.79      0.92  0.94      0.83  0.85      0.92  0.95      0.86  0.89      0.75  0.78      0.81  0.84      0.86  0.93      0.88  0.91          0.78  0.82          0.79  0.83      0.89  0.94          0.79  0.83      0.92  0.99      0.96  0.83 

2035    0.89    0.76    0.73    0.74    0.87    0.95    0.89    1.08    0.97    1.11    1.01    0.93    0.95    1.07    1.11      1.06      1.02    1.17      1.04    1.25    1.04 

January 15, 2009


Segment  EB off to EB RTE 4/Willow  Mainline EB on fr RTE 4  Mainline EB loop off to Willow Ave   Mainline EB on from Willow Ave  Mainline EB off to Cummings Skyway  Mainline EB on from Cummings Skyway  Mainline

Existing    0.66    0.69    0.64    0.69    0.65    0.66 

AM Peak Hour  2015   0.56    0.60    0.55    0.59    0.56    0.57 

2035    0.71    0.80    0.69    0.74    0.69    0.72 

0.62    0.48 

0.54    0.47 

0.69    0.60 

EB loop off to San Pablo Ave  Mainline EB on fr San Pablo Ave  Mainline (End)

PM Peak Hour  2015  Existing      0.93  0.76      0.98  0.79      0.88  0.69      0.92  0.73      0.89  0.71      0.98  0.78    0.95  0.76      0.74  0.67 

2035    1.02    1.03    0.89    0.92    0.81    0.99  0.94    0.85 

Source:  I‐80 ICM Regional Model (modified version of ACCMA Travel Demand Model – refer to Chapter 4)   

   

I-80 Integrated Corridor Mobility Project Draft CSMP

- 96 -

January 15, 2009


Table 5-19 I-80 Corridor Westbound Demand/Capacity Ratio Segment  Mainline (Start) WB off to San Pablo Ave  Mainline WB loop on fr San Pablo Ave  Mainline WB off to Cummings Skyway  Mainline WB on from Cummings Skyway  Mainline WB off to Willow Ave  Mainline WB on from Willow Ave  Mainline WB off to WB RTE 4  Mainline WB on fr EB/WB on fr WB 4  Mainline WB off to Pinole Valley Rd  Mainline WB on from Pinole Valley Rd  Mainline WB off to Appian Way  Mainline WB On from Appian Way  Mainline WB off to Richmond Pkwy  Mainline WB loop on fr Richmond Pkwy  Mainline WB on HOV from Richmond Pkwy  Mainline WB off to Hilltop Dr  Mainline WB loop on fr WB Hilltop Dr  Mainline WB diag on fr EB Hilltop Dr  Mainline WB off to El Portal Dr  Mainline WB on from El Portal Dr  Mainline WB off to San Pablo Dam  Mainline

I-80 Integrated Corridor Mobility Project Draft CSMP

Existing  0.65    0.62    0.63    0.60    0.60    0.59    0.66    0.64    0.71    0.86    0.75    0.90    0.80    0.82    0.87    0.89    0.87    0.74    0.76    0.92    0.83    1.00 

AM Peak Hour  2015 0.66    0.59    0.57    0.61    0.61    0.59    0.67    0.68    0.78    0.94    0.82    0.96    0.85    0.87    0.92    0.94    0.91    0.78    0.80    0.96    0.86    1.02 

- 97 -

2035  1.03    0.91    0.94    0.82    0.94    0.83    1.01    1.05    1.11    1.30    1.10    1.29    1.13    1.18    1.21    1.23    1.06    0.95    1.00    1.12    1.05    1.21 

PM Peak Hour  2015  Existing  0.40  0.45      0.39  0.43      0.41  0.46      0.40  0.45      0.40  0.45      0.37  0.43      0.43  0.48      0.41  0.46      0.55  0.60      0.63  0.70      0.57  0.63      0.60  0.66      0.55  0.61      0.57  0.63      0.66  0.71      0.66  0.72      0.61  0.66      0.56  0.61      0.58  0.64      0.64  0.69      0.59  0.63      0.67  0.72 

2035  0.59    0.57    0.60    0.57    0.58    0.54    0.61    0.58    0.70    0.80    0.72    0.75    0.69    0.74    0.85    0.86    0.79    0.71    0.71    0.78    0.70    0.80 

January 15, 2009


Segment  WB on from San Pablo Dam  Mainline WB off to McBryde Ave  Mainline WB on from Solano Ave/Humbildt St  Mainline WB off to Barrett  Mainline WB on from Barrett  Mainline WB off HOV to Cutting Blvd  WB off to Cutting Blvd  Mainline WB on from Potrero Ave  Mainline WB off to Carlson Blvd  Mainline WB on from Carlson Blvd  Mainline WB off to Central Ave  Mainline WB on from Central Ave  Mainline WB off to Cleveland St  Mainline WB on fr John T Know Fwy / I‐580 S  Mainline WB on fr Buchanan St  Mainline WB off to Gilman St  Mainline WB on from Gilman St  Mainline WB off to University CD  Mainline WB on fr University CD  Mainline WB off to EB Ashby Ave/Frontage Rd  Mainline WB on fr WB Ashby Ave/Frontage Rd  Mainline WB off to Captain/Frontage/Powell  Mainline WB HOV off to I‐80W nearby Toll Plaza  Mainline

I-80 Integrated Corridor Mobility Project Draft CSMP

Existing    0.88    1.08    0.91    1.09    0.92      0.99    1.07    1.03    1.05    1.02    1.05    1.03    0.89    0.79    1.04    1.06    1.01    1.04    1.00    0.85    0.82    0.85 

AM Peak Hour  2015   0.90    1.11    0.94    1.12    0.95      1.03    1.11    1.05    1.10    1.04    1.10    1.08    0.92    0.83    1.06    1.11    1.03    1.08    1.02    0.88    0.84    0.86 

- 98 -

2035    1.06    1.21    1.09    1.25    1.14      1.19    1.33    1.15    1.36    1.22    1.36    1.34    1.14    1.09    1.33    1.44    1.38    1.39    1.25    1.09    1.03    1.00 

PM Peak Hour  2015  Existing      0.62  0.65      0.70  0.73      0.59  0.62      0.65  0.70      0.57  0.61          0.61  0.65      0.66  0.70      0.59  0.63      0.61  0.65      0.53  0.57      0.56  0.61      0.50  0.55      0.54  0.62      0.50  0.56      0.62  0.70      0.65  0.72      0.56  0.63      0.62  0.68      0.58  0.64      0.58  0.62      0.54  0.58      0.61  0.65 

2035    0.71    0.80    0.68    0.73    0.65      0.70    0.76    0.67    0.71    0.62    0.69    0.64    0.68    0.63    0.74    0.80    0.66    0.75    0.68    0.64    0.61    0.68 

January 15, 2009


Segment  WB loop on fr Captain/Frontage/WB Powell  Mainline WB off to I‐580 E/I‐880 S  Mainline  WB diag on fr EB Powell  Mainline  WB HOV on from I‐80W (rejoin)  Mainline  WB on from I‐580 W  Mainline  WB HOV off to Toll Plaza (Bus only)  Mainline  WB off to Maritime  WB off to Toll Plaza parking area  Mainline  WB on from I‐880 N/Maritime  WB on from I‐880 N/Maritime (HOV)  Mainline (at Toll Plaza‐‐exclude bus lane)  Off to Toll plaza office  Mainline (End) 

Existing    0.90    0.64    0.66    0.66    0.47    0.54      0.52      0.27    0.97 

AM Peak Hour  2015   0.91    0.63    0.65    0.66    0.47    0.54      0.52      0.28    1.01 

2035    1.07    0.71    0.75    0.73    0.63    0.72      0.64      0.39    1.40 

PM Peak Hour  2015  Existing      0.88  0.94      0.38  0.38      0.46  0.46      0.40  0.39      0.43  0.45      0.49  0.51          0.48  0.50          0.26  0.28      0.93  1.00 

2035    1.01    0.38    0.46    0.40    0.47    0.54      0.52      0.30    1.09 

Source:  I‐80 ICM Regional Model (modified version of ACCMA Travel Demand Model – refer to Chapter 4)   

I-80 Integrated Corridor Mobility Project Draft CSMP

- 99 -

January 15, 2009


6 IMRPOVEMENT STRATEGIES 6.1 Candidate Strategies and Constraints Existing traffic demand on I-80 exceeds the capacity on several segments during both peak periods. The congestion on the freeway causes the traffic queue on the on-ramps to back up onto the local arterial network increasing the overall system congestion. For 2015, the total travel demand within the corridor is forecasted to increase by approximately 10% during the AM peak period and 6% in the PM peak period. By 2035, demands on some segments of I-80 in the study corridor are forecasted by up to 60%. With this level of growth, conditions along I-80 are expected to worsen considerably. This will result in not only the increased severity of congestion associated with existing bottlenecks, but also congestion occurring in more areas and in the offpeak direction. Conditions on the arterials in the corridor are also expected to worsen. The most direct approach for mitigating these impacts, and to improve mobility and reliability within the corridor, is to add or expand freeway capacity by adding lanes. However, the potential for expansion is constrained physically (constrained on both sides by water and development) and institutionally. The majority stakeholders do not support roadway widening due to the: •

High cost associated with right of way acquisition, roadway construction and roadway operation and maintenance.

Significant environmental impacts associated with the roadway construction and roadway operation and maintenance.

Potential for the increased capacity to lead to an increase in vehicles using the corridor.

Given this limitation, and the magnitude of projected growth, it is expected that some of the demand will shift to other times (expand the peak period) and some forecasted trips will not occur. However, it is still expected that the demand will grow beyond what the baseline roadway system, plus minor improvements, can accommodate. Therefore there is a need to look focus on strategies that: •

Maximize the efficiency of the existing roadway system.

Encourage increased use of other modes.

Reduce the occurrence and impact of incidents.

Reduce or manage peak period vehicle travel demand.

The types of strategies can be applied in the I-80 corridor to address existing and forecasted deficiencies include: Freeway and Arterial Geometric Improvements, Freeway and Arterial Management and Operations Improvements, Transit Improvements, Non-Motorized Mode Improvements, Demand Management Strategies, Traveler Information Improvements, Goods Movement Policies, ITS Improvements.

I-80 Integrated Corridor Mobility Project Draft CSMP

- 100 -

January 15, 2009


6.2 I-80 ICM Project Improvements The CMIA-funded I-80 Integrated Corridor Mobility (ICM) Project incorporates elements that address all of the objectives listed above. The project uses State-of-the-Practice Intelligent Transportation System (ITS) technologies to enhance the effectiveness of the existing transportation network in both freeway and parallel arterials in Alameda and Contra Costa Counties. The project will create a balanced network with an emphasis on system reliability and efficiency through multi-modal solutions. Proposed project sub-systems include: •

Freeway Management System (FMS)

Arterial Management System

Transit Management System

Traveler Information System

Traffic Surveillance Monitoring System

Incident Management System

Commercial Vehicle Operations (CVO)

and

The strategies proposed to improve the corridor represent a multi-pronged approach to managing the different challenges along the corridor. The system components of the I-80 ICM project are listed in Table 6-1.

I-80 Integrated Corridor Mobility Project Draft CSMP

- 101 -

January 15, 2009


Table 6-1 I-80 ICM Project System Components System Component

Element

Freeway Management System

Adaptive Ramp Metering; Enforceable Variable Speed Limit Signs; Changeable Message Signs; Lane Use Signs; Ramp meters with HOV bypass for transit access only; Transit Signal Priority ; Transit/traffic traveler information at BART stations; Coordinated traffic signal systems, TMC for local jurisdictions Vehicle detection system; incident response plan; diversion management 511 enhancement, SMART Corridor ATIS enhancement, Changeable Message Signs , Highway Advisory Radio CCTV cameras, vehicle detection system Future preferential treatment of CVO, value pricing

Transit Management System

Arterial Management System Incident Management System Traveler Information System Traffic Surveillance and Monitoring System Commercial Vehicle Operations

Purpose End of queue warning, optimize flow of traffic, reduce delay, decrease accidents, merge control, decrease arterial spillover, and improve safety Improve travel time reliability, reduce travel time, encourage mode shift

Optimize traffic flow on arterials, maximize coordination Decrease number of accidents, decrease incident response time, and decrease incident recovery time Enhanced traveler information for all users Minimize diversion during incident Traffic Monitoring to support other systems Best time use of freeway by commercial vehicle users

6.2.1 Expected Benefits of the Project A detailed traffic operations analysis of the I-80 ICM Project freeway elements was conducted to support the Caltrans project approval and environmental assessment processes. This analysis examined 2015 No Project and With Project conditions utilizing the corridor micro-simulation model. A number of project alternatives were examined, including: ramp metering only, queue warning with variable speed limit only and the combination of ramp metering and queue warning. Various incident scenarios were also tested to assess the impacts of the proposed incident lane management strategy. The results from that analysis are detailed in the I-80 ICM Project Traffic Operations Analysis Report (draft, October 2009) and are summarized below. The analysis indicates that under 2015 conditions Ramp Metering significantly improves freeway operations and provides an overall benefit to operations in the corridor. Specific findings from the analysis indicate that Ramp Metering: •

decreases the hours of delay on westbound I-80 by over 20% during both the AM and PM peak periods.

•

increases speeds on westbound I-80 by 9% during the AM peak, and by 15% during the PM peak.

I-80 Integrated Corridor Mobility Project Draft CSMP

- 102 -

January 15, 2009


provides only modest benefit in the eastbound direction during the PM peak period due to the congestion pattern (the primary congested segment is located at the start of the corridor) and the all-green operation at several on-ramps, notably those in the Emeryville/Berkeley area.

shifts some delay to the on-ramps and arterial approaches, but would still yield an overall reduction in network hours of delay of 9% during the AM peak and 6% during the PM peak.

produces average meter delays of about 30 seconds per vehicle during both the AM peak and PM peak.

generates additional delays of over 1 minute and queue spillback onto local streets at a limited number of locations. In these cases, modifications can be made to the ramp metering rates and/or meter designs to mitigate or minimize these ramp delays and arterial impacts.

is expected to have a generally minimal impact on trips originating within Contra Costa or Alameda Counties and destined for the points beyond the corridor boundaries during the AM peak period. Journey travel times for a broad sample of such trips indicate that in most cases ramp meter delay is offset by mainline speed improvement resulting in negligible change in overall travel time.

will provide a benefit during the PM peak period to those trips destined for points within Contra Costa or Alameda Counties

will not result in the diversion of trips from the freeway to parallel routes such as San Pablo, but can keep traffic on the freeway by discouraging drivers from hopping off the freeway and back on.

will have an insignificant or minor impact to the arterial network as a whole and San Pablo, in particular, with respect to hours of delay and average speeds.

can lead to accident rate reductions of 20% to 50%1. The benefits of an accident rate reduction include a lower number of injuries and fatalities, a decrease in property damage costs, and a reduction in non-recurring delay.

can produce greenhouse benefits in the form of reduced emissions and fuel consumption as a result of reduced congestion and smoother flow.

Queue warning with Variable Speed Limit (VSL) signs alone alternative was tested for the AM peak period only. That analysis indicates that during the AM peak period, VSL alone: • reduced the hours of delay for the westbound I-80 segment from Central to 580/880 Split by 8%. •

1

increased delay on the upstream segments leading to a slight increase in the total hours of delay on westbound I-80.

Freeway Management and Operations Handbook, FHWA, 2003 (revised 2006)

I-80 Integrated Corridor Mobility Project Draft CSMP

- 103 -

January 15, 2009


will have an insignificant impact on network-wide performance, as well as on the performance of the ramps and arterials.

will not result in the diversion of trips fromI-80 to parallel routes such as San Pablo because freeway speeds would still be higher than those on the parallel arterials.

offers potentially significant safety benefits by reducing accidents caused by sudden changes in speed (by reducing speeds before vehicles reach the back of a queue) and by abrupt lane changes (by reducing the speed differential between lanes and therefore the incentive to change lanes). Rear-end accident rate reductions of 25% to 30% have been reported in areas where VSL/speed harmonization has been implemented2.

may provide greenhouse benefits in the form reduced emissions and fuel consumption as a result of the smoothing of traffic speeds and reduction in the frequency and severity of deceleration-acceleration cycles

When Ramp Metering + VSL were tested in combination, the lowering of freeway speeds due to VSL offsets some of the performance improvements achieved through Ramp Metering alone, notably for upstream segments. This is expected as the VSL strategy involves lowering the speed limit and speeds on the freeway upstream of congested areas in order to reduce the occurrence of sudden and significant drops in speed, thus smoothing the flow of traffic and improving safety. However, when the speed limits are lowered in upstream areas which may otherwise be operating at free flow conditions, the average speeds in these segments are decreased leading to an increase in delay compared to the original speed limit. The evaluation results for the combined Ramp Metering + VSL alternative indicate that:

2

during the AM peak period, the hours of delay on westbound I-80 would be reduced by 5% overall, and by 7% within the more highly-congested segment from Central to 580/880 Split when compared to the base.

during the PM peak period, the hours of delay on I-80 would be reduced by 8% in the westbound direction, with negligible change (1%) in the eastbound direction.

impacts to the ramps and arterials, including San Pablo, mimic those for the Ramp Metering alone alternative.

for many trips originating within Contra Costa or Alameda Counties and destined for the points beyond the Bay Bridge or the 580/880 split, ramp meter delay is offset by mainline speed improvement resulting in negligible change in overall travel time during the AM Peak period.

during the PM peak period, trips destined to points within Contra Costa or Alameda Counties would benefit from the improved freeway operations associated with the ICM strategies, notably Ramp Metering.

Freeway Management and Operations Handbook, FHWA, 2003 (revised 2006)

I-80 Integrated Corridor Mobility Project Draft CSMP

- 104 -

January 15, 2009


offers potentially significant additional safety benefits by reducing accidents caused by sudden changes in speed (by reducing speeds before vehicles reach the back of a queue) and by abrupt lane changes (by reducing the speed differential between lanes and therefore the incentive to change lanes). Rear-end accident rate reductions of 25% to 30% have been reported in areas where VSL has been implemented3.

may provide additional greenhouse benefits in the form reduced emissions and fuel consumption as a result of the smoothing of traffic speeds and reduction in the frequency and severity of deceleration-acceleration cycles

6.3 Roadway Geometric Improvements As noted above, due to the physical and institutional constraints major capacity expansion is unlikely, but smaller improvements are possible that may address some deficiencies. Potential freeway improvements include auxiliary lanes, ramp modifications and ramp intersection modifications. Surface streets improvements could include adding new roadways in the eastern end of the corridor where higher growth is projected in future years. Potential improvements may also include the widening of existing roadway and intersections. Potential roadway geometric improvement projects, as derived from existing planning and programming documents, plus the results from the 2015 traffic analysis simulation results and 2035 travel demand forecasts, include the following: Ramp Modifications:  • Buchanan Street: Modify westbound on‐ramp to I‐80 WB from HOV lane to general purpose lane  • El Portal Drive: Convert proposed eastbound on‐ramp HOV priority lane to general purpose lane or widen  ramp to provide second general purpose lane.  • Richmond Parkway: Convert proposed eastbound on‐ramp HOV lane to a general purpose lane  • Ashby Avenue: Modify eastbound on‐ramp to EB I‐80 to allow traffic from Ashby to use both metered  lanes.   • San Pablo Avenue: Reconfigure eastbound on‐ramp to increase storage length.  • SR 4: Construct direct connectors between westbound I‐80 and eastbound SR 4  • Powell Street: Widen eastbound off‐ramp  • University Avenue: Modify eastbound on‐ramp to provide a second general‐purpose lane at the meter.  • Cutting Boulevard: Construct new connector ramps to the Del Norte BART station  Interchange Improvements: • Powell Street: Allow westbound left turn and southbound through for the westbound off‐ramp  • Gilman Street: Convert interchange to roundabout (Planned Project)  • Central Avenue: Shift a portion of on‐ramp and off‐ramp traffic to the I‐580 interchange with Central Ave  • Pinole Valley Road:  Provide a right turn lane on eastbound on‐ramp and bus turnout/shelter on  westbound ramp  • SR 4: Construct direct connectors between westbound I‐80 and eastbound SR 4  • McBryde Avenue: Upgrade and improve  • San Pablo Dam Road: Upgrade and improve  • El Portal Drive: Upgrade and improve  • Cutting Boulevard: Construct new connector ramps to the Del Norte BART station  3

Freeway Management and Operations Handbook, FHWA, 2003 (revised 2006)

I-80 Integrated Corridor Mobility Project Draft CSMP

- 105 -

January 15, 2009


Mainline auxiliary lanes:  • San Pablo Dam Road off‐ramp to El Portal Drive on‐ramp in the eastbound direction  • Hilltop Drive off‐ramp to Richmond Parkway on‐ramp in the eastbound direction  • Potrero Avenue off‐ramp to Carlson Boulevard on‐ramp in the westbound direction 

6.4 System Management Improvements The primary objective of System Management improvements is to get maximum benefit out of the existing system. Examples of System Management improvements or strategies include ramp metering, managed lanes, shoulder use, variable speed limit signs, congestion pricing, traffic signal improvements, freeway/ramp/surface street signal coordination, incident management, and reversible lane control. The proposed I-80 ICM Project is focused on the implementation of several System Management strategies, plus systems that can support the implementation of additional or expanded strategies in the future. The project also includes integration with the East Bay SMART Corridors Program (a joint Alameda and Contra Costa County ITS program) and the Caltrans District 4 Transportation Management Center (TMC).

I-80 Integrated Corridor Mobility Project Draft CSMP

- 106 -

January 15, 2009


Table 6-12 summarizes the benefits associated with various system management strategy, and identifies whether the strategies are currently included in the I-80 ICM Project. All the system management strategies listed in Table 6-4 were considered in the I-80 ICM Concept of Operations. Some of the strategies were not included in the I-80 ICM project due to funding, timing and institutional constraints. The strategies that were not included in the I-80 ICM project can be considered as possible future improvements. The following system management projects and strategies are the recommended for future consideration in the I-80 corridor: Freeway Management  • Cummings Skyway to Cutting Boulevard: Shoulder utilization in the westbound direction for incident  management and transit vehicles  • Corridor‐wide: I‐80 ICM Project‐Freeway Elements  • Corridor‐wide: connector metering at I‐580 eastbound interchange  • Corridor‐wide: Freeway shoulder use to add additional capacity during periods of congestion and /or  during an incident  • Corridor‐wide: Implement lane management in eastbound direction for non‐recurring conditions  • Implement Congestion Pricing (note: BATA is currently considering a congestion pricing scheme for the  Bay Bridge)  • Corridor‐wide: Convert HOV lanes to Express Lanes  Arterial Management  • I‐80 ICM Project‐Arterial Elements  • Carlson Boulevard: Signalize I‐80 ramp intersections   • Gilman Street: Signalize I‐80 ramp intersections   • San Pablo Avenue: Extend SMART Corridor  • Corridor‐wide: Enhance/implement freeway/ramp meter/surface street signal coordination 

I-80 Integrated Corridor Mobility Project Draft CSMP

- 107 -

January 15, 2009


Junction control Construction site management Adaptive ramp metering Dynamic rerouting Traffic signal synchronization Centralized traffic signal management Improved incident response Reversible lanes High Occupancy Vehicle Lanes Express Lanes

● ●

● ●

● ●

● ●

● ●

● ● ●

Reduction in fuel consumption Included in the I-80 ICM project?

No

No

No No

No

Yes

Yes

Yes

Yes

Yes

Reduction in emissions

Delay onset of freeway breakdown Reduction in traffic noise

Increased trip reliability

More uniform driver behavior

Decreased headways

More uniform speeds

Decrease in secondary accidents Decrease in incident sensitivity

Decrease in primary accidents

Speed harmonization Automated speed enforcement Freeway shoulder use Dynamic lane markings Dynamic merge control Queue warning

Increased capacity

Increased throughput

System Management Strategy

● ●

Yes

Yes

Yes

No

Yes

No

Table 6-2 System Management Strategies and Benefits

6.5 Transit Improvements The travel demand forecasts suggest that transit demand will increase by 20% by the year 2015, and more than double by 2035. Even with this growth, auto travel demand is also expected to grow leading to more severe congestion in the corridor. There are currently a number of transit and facilities in the corridor. To accommodate the forecasted growth and, ideally, promote even greater transit mode share to help reduce congestion on the roadway network, improvements to the transit system will be necessary. Improvements may include enhancing or expanding the existing services and facilities, implementing new services, and constructing new facilities. Other improvements include supporting strategies such as transit signal priority (TSP) and

I-80 Integrated Corridor Mobility Project Draft CSMP

- 108 -

January 15, 2009


transit/HOV lanes that facilitate the flow of transit vehicles on the roadway network. A critical component of these improvements will be the provision of parking at transit centers, rail stations and park-and-ride facilities. Several transit improvements are already included in the programmed/planned projects in the corridor. Potential I-80 improvements include: Ferry:  • • • Rail:  • BART:  • • • • •

Provide service between Berkeley/Albany and San Francisco  Provide service between Richmond and San Francisco  Provide service between Hercules and San Francisco  Hercules: Construct Capitol Corridor train station  Berkeley: Improve Ashby Station to support Ed Roberts Campus and future TOD  Richmond: Provide transportation improvements on the east side of the Richmond Station to  accommodate TOD  El Cerrito: Provide real‐time transit information displays  System‐wide: Provide additional or new parking capacity  Extend to Richmond Hilltop and Hercules 

Bus  • • • •

Northern Alameda County: Improve AC transit facilities including  new operating system  Expand WestCAT service including purchase of vehicles  Install WestCAT‐furnished real‐time transit information displays  Purchase new express buses for I‐80 express service to be provided by AC transit, Vallejo  Transit, and WestCAT   • Expand Bus Rapid Transit from Richmond Parkway Transit Center to Hercules  Transit Centers  • Relocate and expand Hercules Transit Center, including relocation of park and ride facility and  construction of express bus facilities  • Construct Phase 2 of Hercules Inter‐modal Station   Other Measures  • I‐80 ICM Project‐Transit elements 

6.6 Non-Motorized Mode Improvements Non-motorized mode of travel is an alternative to both auto and transit modes. The I-80 freeway corridor exceeds the maximum trip length for bicycle trips and pedestrian travel. Nonmotorized travel is more appropriate for short trips and may reduce surface street traffic. Alameda County bicycle plan and Contra Costa countywide bicycle and pedestrian plan includes plans for improving bicycle and pedestrian circulation appear to be the best available improvement options for non-motorized travel. Currently, bicycles are allowed on BART during non-peak hours as there is no exclusive room for bicycles on BART. Provision of exclusive bicycle cars on BART or reserving some room on regular BART car options should be considered. Improving bicycle parking, providing more bicycle lockers at BART stations might encourage people to take bicycles to BART stations. This might reduce the parking demand at BART stations and reduce short trips on surface streets.

I-80 Integrated Corridor Mobility Project Draft CSMP

- 109 -

January 15, 2009


Proposed non-motorized mode improvements within the I-80 corridor include: Pedestrian  • Richmond: Install pedestrian count‐down signals, improve sidewalk conditions, construct mid‐ block lighted crossings, and landscape Nevin Avenue, Barrett Ave & other areas  • El Cerrito: Develop pedestrian, transit stop and streetscape improvements along San Pablo  Avenue  • Improve pedestrian access and safety for transit access routes.  • Close the Bay Trail gaps along Richmond Parkway between Pennsylvania Avenue and Gertude  Avenue, north of Freethy Blvd to Payne Drive, from Payne to Cypress, and from Pinole Shores  to Parker Ave  Bicycle  • Richmond: Construct Class I Bicycle Trail from Carlson Blvd to I‐80 along abandoned railroad  property  • Improve bike detection in the corridor.  • Provide exclusive right‐of‐way for bikes wherever feasible to enhance bike safety.  • Provide more room for bikes on BART. This will facilitate in the extension of hours that bike  riders can use BART services and reduce the parking demand at BART stations.    • Increase the availability of bike lockers and bike parking at BART stations.  Other  • Berkeley: Improve Ashby/I‐80 interchange/Aquatic Park Access streetscaping, bicycle, and  pedestrian facilities 

6.7 Demand Management Strategies Federal Highway Administration recognizes that managing demand can no longer stop at encouraging travelers to change their travel mode from driving alone to choosing a carpool, public transit, or other commute alternative. Managing demand today is about providing all travelers, regardless of whether they drive alone, with choices of location, route, and time, not just mode of travel. The contemporary concept of travel demand management encompasses broader set of transportation goals due to need to manage demand in multiple situations and conditions as well as the influence of information and the technologies to deliver it. Real-time travel information evaluations show that – armed with real-time travel information – a significant number of travelers alter their original route, departure-time, and even mode choices, reducing the demand for already congested facilities and maximizing the use of underutilized alternatives.4

4

FHWA, Office of Operations, Overview of Travel Demand Management Program

I-80 Integrated Corridor Mobility Project Draft CSMP

- 110 -

January 15, 2009


All the other strategies listed in this chapter are methods to manage traffic demand. The I-80 corridor has no right of way to increase capacity to the roadway network. Therefore, it is more critical to pay attention to the strategies to shift the demand to other modes, to non-peak hours and possible means to reduce the demand. The possible strategies for the I-80 corridor include: •

Worksite flextime allows employees to set their own arrival and departure time to/from work – within established time boundaries agreed to by their employer. In congested areas like I-80 corridor, it may encourage employees to avoid the most congested travel times, reducing the demand on roadway and/or transit systems during peak-demand periods. Telecommuting: Telework programs and policies at the worksite from structured, formally-implemented telework programs and policies to more informal telework arrangements established between individual employees and their direct supervisors.

Transit-Oriented and Pedestrian Oriented Design: Focusing a mix of land uses, such as employment, housing, restaurants, services, retail and more in well designed, pedestrian friendly and/or near transit connections can reduce demand for vehicle travel and reduce trip distances.

Live Near Work Incentive Programs: Live near work programs provide incentives for employees to live near their place of employment. Examples include down payment assistance, location efficient mortgages and rent subsidies. By providing housing close to employment, this program can lower the costs of commuting, lessen the pressure on infrastructure, and generate more pedestrian traffic in business districts.

Live Near Transit Mortgage Incentives: Live near transit programs offer mortgage incentives to encourage residential location near transit facilities. The programs recognize that household transportation expenses can be lower for residences well served by public transportation, and allow homebuyers to use these transportation savings as additional borrower income in qualifying for a home mortgage

These options are well recognized by stakeholder agencies in the corridor is and are already pursuing to the extent feasible. This CSMP will not investigate these options, but will recognize that they will be an important contribution by the stakeholder agencies to the long term success of the CSMP.

6.8 Traveler Information Traveler information systems collect data for various purposes, such as monitoring freeways, incident management etc. These data has secondary use to influence travelers trip making decisions when processed and custom packaged. Figure 6-1 illustrates the effects of traveler information on trip making decisions. As illustrated in Figure 6-2, traveler information benefits include avoiding congestion, reducing uncertainty and stress, saving time, and improving travel safety.

I-80 Integrated Corridor Mobility Project Draft CSMP

- 111 -

January 15, 2009


Figure 6-1 Effect of Traveler Information on Travel Source: Managing Demand through Travel Information Services, FHWA

Figure 6-2 Benefits of Traveler Information Source: Managing Demand through Travel Information Services, FHWA

Currently, traveler information on I-80 corridor is provided via CMS, HAR, telephone and the internet. CMS and HAR systems are used to provide real time information and directions to the driver, plus they are used to advise about upcoming events. These systems are controlled from Caltrans District 4 Transportation Management Center. The internet is used to provide more detailed information to the public. The primary method of sharing information on the Internet and the telephone is via the Bay Area 511 system. The 511 system receives real time

I-80 Integrated Corridor Mobility Project Draft CSMP

- 112 -

January 15, 2009


information from detectors, CCTV cameras and from some management applications. This information is then analyzed and used to display meaningful, up to the minute information. I-80 ICM project will provide more ITS devices to disseminate the information to travelers. The future recommendations for I-80 corridor is to extend the capability of traveler information to emerging personalized devices and in vehicle navigation system to influence the traveler timing, destination, and route of a trip, not just the choice of transportation mode. Specific recommendations also include providing devices at bus transit and rail stations to disseminate the traveler and transit information.

6.9 Goods Movement Policies Trucks and other heavy vehicles use I-80 to move goods in the Bay Area and to northern California. The Port of Oakland and other important industrial and commercial facilities are located along the corridor or are linked by the I-80 freeway. During the peak periods, heavy truck traffic can consume road capacity which contributes significantly to congestion. Because of the importance of efficient freight movement to the economy, the needs of this group will be factored into the solution; moreover, the solution must be consistent with the Bay Area good movements’ strategies while still allowing the corridor to meet its congestion and safety goals. Improving the commercial vehicle operators’ safety, efficiency, mobility and travel times are the most important goals for this group of users. Some of the possible solutions are explained below. 6.9.1 Roadway Time of Day Restrictions Due to the severe congestion on I-80 freeway during morning and afternoon peak period, commercial vehicles can be restricted to use the road network at the busies hour at the most congested sections of the freeway. Some trucks can choose not be restricted by this rule by paying a certain fee and obtain a special sticker/license for driving during the rush hour. The institutional issues and the fee will need to be studied in more detail to make this solution feasible. 6.9.2 Lane Restrictions Because trucks and passenger cars have significantly difference operation pattern, when possible trucks should be separated from passenger vehicles. For I-80, the following options can be considered: • Exclusive lanes – Designate a lane for exclusive truck use. Passenger cars can not use the truck lane while truck can only use the truck lane. • Suggested exclusive lane – Truck can only use the designated truck lane while passenger cars do not have restriction • Mixed lane— only trucks are allowed to use the designated truck lane, and only passenger cars are allowed to use the designated passenger car lane. The other lane in the middle can be used by both truck and passenger cars.

I-80 Integrated Corridor Mobility Project Draft CSMP

- 113 -

January 15, 2009


The selection of the lane designation options will need to be calculated with special benefit/cost model with input of truck volume, passenger car volume, highway characterizes, and incident history. 6.9.3 Remote Transfer Sites Remote transfer sites can be considered where the commercial vehicles can hold the load until the traffic conditions on road and conditions at port are favorable for load transfer.

6.10 ITS Improvements ITS is used typically for traffic management, incident management, and collecting and disseminating traveler information. The corridor does not have a full ITS deployment, but it does include some field elements such as detection, CCTV cameras, highway advisory radio (HAR) and changeable message signs (CMS). The devices are owned and maintained by the jurisdiction in which they are located. Currently on arterials there is relatively little monitoring coverage by closed circuit television cameras. While most signalized intersections have detection for local control, additional detection would be required to monitor traffic fully. The existing communication between field elements along I-80 and the Caltrans District 4 TMC is achieved using leased-line telecommunications services from AT&T. Caltrans CCTV cameras utilize ISDN lines while other freeway ITS field devices employ GPRS modems. Local jurisdiction traffic signals are interconnected along the project corridor via a hardwired twistedpair communication system. Most of the jurisdictions are not equipped with agency-owned fiber optic communications networks. Arterial field devices deployed along San Pablo Avenue as part of the East Bay Smart Corridors Program use a combination of leased wire line and wireless services from AT&T to connect to the ACCMA Data Center in San Francisco. The majority of field devices located along arterials connecting I-80 and San Pablo Avenue do not currently have any communications infrastructure. The I-80 ICM project includes various ITS elements as listed in various sections of strategies explained above. Caltrans District 4 Deployment Approach Caltrans District 4 has established the following approach for positioning ITS field elements along the I-80 freeway corridor for the I-80 ICM project. •

Ramp Metering Stations: Caltrans District 4 recently completed a Ramp Meter Development Plan (RMDP) which identifies specific ramp meter deployment locations. Caltrans plans to meter all freeway onramps in the I-80 corridor. Freeway to freeway metering in the I-80 corridor needs to be studied further to determine the feasibility of implementation. Vehicle Detection Stations: On the freeway mainline, the detectors will be placed at regular intervals in support of the existing Freeway Performance Measurement System (PeMS) detection system. Loop detectors will be placed at the on ramps as per the requirements of the adaptive ramp metering. CCTV Cameras: Color CCTV cameras, both fixed and Pan/Tilt/Zoom (PTZ) will be located along the freeway. These cameras will be placed at strategic locations to assist

I-80 Integrated Corridor Mobility Project Draft CSMP

- 114 -

January 15, 2009


Caltrans District 4 and local agencies monitor and manage traffic, incidents and events. The cameras will be mounted either on sign structures or on standalone poles. All the onramps will have video monitoring. •

• •

Changeable Message Sign (CMS): Considered at decision points upstream of freeway-tofreeway interchanges and to support active traffic management strategies. CMS may provide information such as warning and alerts, travel time on freeways and on transit, available parking information, port information for commercial vehicles and comparative travel times between different modes. Highway Advisory Radio: Spaced at 4.5 mile intervals that will provide full coverage of the highway. Changeable message signs are deployed at locations within the HAR transmitter’s operating range. Center to Center communication between Caltrans TMC and the TMC’s for local jurisdictions.

Due to financial, institutional, and construction timing constraints full ITS improvements in I-80 corridor are not proposed in the I-80 ICM project. The recommended ITS improvements in future include: • New sign structures to support additional lane use signals • Additional CCTV cameras to fill the gaps in arterial monitoring coverage • Additional detection, emergency vehicle pre-emption and transit signal priority to extend existing bus rapid transit and bus rapid transit in the corridor

I-80 Integrated Corridor Mobility Project Draft CSMP

- 115 -

January 15, 2009


7 IMPLEMENTATION PLAN This chapter presents the draft timeline for implementing the proposed projects and strategies identified in the previous chapter. For the purposes of this CSMP, near-term is defined as 0 to 10 years, intermediate term is defined as 10 to 20 years, and long-term is defined as 20 to 30 years. The near-term, intermediate term and long term strategies are shown in Table 7-1. It is important to note that because of the time needed to plan, build consensus, design, get environmental clearance, fund and build projects, many of those identified fall into the intermediate or longterm timeframe.

7.1 Near-term Those projects and strategies recommended for implementation in the near-term include those that have secured funding, obtained environmental clearance, are under design, or do not require significant physical work or funding. The focus of near-term improvements is the I-80 ICM which encompasses system management and transit improvements. Other near-term improvements include those in the areas of converting HOV lanes to general purpose lanes, revised land use strategies, and express buses for the I-80 corridor.

7.2 Intermediate Term Those projects and strategies recommended for intermediate term implementation are those which have support but have not acquired funding, have on-going environmental clearance or design, or do not require significant physical work or funding. Proposed projects include minor to moderate geometric improvements, improved connectors between roadways, signalization of unsignalized interchange intersections, and an increase in public transit service

7.3 Long-Term Longer-term projects includes those requiring more significant physical work and thus funding, and those that require considerable consensus-building and may face more significant institutional issues. Key projects include major public transportation expansion, additional roadway capacity, revised goods movement strategies, and large-scale ITS improvements.

I-80 Integrated Corridor Mobility Project Draft CSMP

- 116 -

January 15, 2009


Table 7-1 I-80 CSMP Proposed Project Implementation Timeline Implementation Timeframe Near‐ Intermediate‐ Long‐ Term  Term  Term 

Proposed Projects  Roadway Geometric Improvements  Ramp Modifications:  • Buchanan Street: Modify westbound on‐ramp to I‐80 WB from HOV  lane to general purpose lane  • El Portal Drive: Convert proposed eastbound on‐ramp HOV priority lane  to general purpose lane or widen ramp to provide second general  purpose lane.  • Richmond Parkway: Convert proposed eastbound on‐ramp HOV lane to  a general purpose lane  • Ashby Avenue: Modify eastbound on‐ramp to EB I‐80 to allow traffic  from Ashby to use both metered lanes.   • San Pablo Avenue: Reconfigure eastbound on‐ramp to increase storage  length.  • Powell Street: Widen eastbound off‐ramp  • University Avenue: Modify eastbound on‐ramp to provide a second  Freeway   general‐purpose lane at the meter.  Geometric  Interchange Improvements: Improvements  • Powell Street: Allow westbound left turn and southbound through for  the westbound off‐ramp  • Gilman Street: Convert interchange to roundabout (Planned Project)  • Central Avenue: Shift a portion of on‐ramp and off‐ramp traffic to the I‐ 580 interchange with Central Ave  • Pinole Valley Road:  Provide a right turn lane on eastbound on‐ramp  and bus turnout/shelter on westbound ramp  • SR 4: Construct direct connectors between westbound I‐80 and  eastbound SR 4  • McBryde Avenue Interchange: Upgrade and improve  • San Pablo Dam Road Interchange: Upgrade and improve  • El Portal Drive Interchange: Upgrade and improve  • Cutting Boulevard: Construct new connector ramps to the Del Norte  BART station 

I-80 Integrated Corridor Mobility Project Draft CSMP

- 117 -

Reference  Document 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

     

X  X  X 

3  3  3 

 

 

January 15, 2009


Proposed Projects  Mainline auxiliary lanes: • San Pablo Dam Road off‐ramp to El Portal Drive on‐ramp in the  eastbound direction  • Hilltop Drive off‐ramp to Richmond Parkway on‐ramp in the eastbound  direction  • Potrero Avenue off‐ramp to Carlson Boulevard on‐ramp in the  westbound direction  Other:  • Corridor‐wide: Convert HOV lanes to express  • Carlson Boulevard: Reconstruction and restriping to add a 6’ median  from Tehama Avenue to San Jose Avenue  Arterial   • Central Hercules: Improve and expand arterials for express bus and rail  Geometric  transit facilities to support transit‐oriented development   Improvements  • San Pablo Avenue at University Avenue, Cutting Boulevard, Richmond  Parkway, and Roosevelt Avenue: Arterial widening where additional  operational improvements are necessary  System Management and Operations Improvements  • Cummings Skyway to Cutting Boulevard: Shoulder utilization in the  westbound direction for incident management and transit vehicles  • Corridor‐wide: I‐80 ICM Project‐Freeway Elements  • Corridor‐wide: connector metering at I‐580 eastbound interchange  Freeway  • Corridor‐wide: Freeway shoulder use to add additional capacity during  Management   periods of congestion and /or during an incident  • Corridor‐wide: Implement lane management in eastbound direction for  non‐recurring conditions  • Implement Congestion Pricing (note: BATA is currently considering a  congestion pricing scheme for the Bay Bridge)  • I‐80 ICM Project‐Arterial Elements  • Carlson Boulevard: Signalize I‐80 ramp intersections   Arterial  • Gilman Street: Signalize I‐80 ramp intersections   Management  • San Pablo Avenue: Extend SMART Corridor  • Corridor‐wide: enhance/implement freeway/ramp meter/surface  street signal coordination 

I-80 Integrated Corridor Mobility Project Draft CSMP

- 118 -

Implementation Timeframe Near‐ Intermediate‐ Long‐ Term  Term  Term       

Reference  Document   

 

 

 

 

 

 

 

 

 

   

   

  X 

  1 

 

 

 

 

 

 

 

 

 

 

 

 

X  X 

   

   

5   

 

 

 

 

 

 

 

X       

  X  X  X 

       

6       

 

 

January 15, 2009


Implementation Timeframe Near‐ Intermediate‐ Long‐ Term  Term  Term 

Proposed Projects  Transit Improvements    Ferry:  • • • Rail:  • BART:  • • • • • •

Provide service between Berkeley/Albany and San Francisco  Provide service between Richmond and San Francisco  Provide service between Hercules and San Francisco  Hercules: Construct Capitol Corridor train station  Berkeley: Improve Ashby Station to support Ed Roberts Campus and  future TOD  Richmond: Provide transportation improvements on the east side of  the Richmond Station to accommodate TOD  El Cerrito: Provide real‐time transit information displays  System‐wide: Provide additional or new parking capacity  Extend to Richmond Hilltop and Hercules  Additional infill stations to fill in gaps between the existing stations 

Bus  •

Northern Alameda County: Improve AC transit facilities including  new  operating system  • Expand WestCAT service including purchase of vehicles  • Install WestCAT‐furnished real‐time transit information displays  • Purchase new express buses for I‐80 express service to be provided by  AC transit, Vallejo Transit, and WestCAT   • Expand Bus Rapid Transit from Richmond Parkway Transit Center to  Hercules  • Bus Transit connections between new ferry terminals  Transit Centers  • Relocate and expand Hercules Transit Center, including relocation of  park and ride facility and construction of express bus facilities  • Construct Phase 2 of Hercules Inter‐modal Station   Other Measures  • I‐80 ICM Project‐Transit elements 

I-80 Integrated Corridor Mobility Project Draft CSMP

- 119 -

Reference  Document 

             

  X    X       

  X  X  X    X   

  1  1  1    1   

 

 

 

 

         

X  X       

  X  X  X   

6         

 

 

   

X  X 

   

1  6 

 

 

 

   

X   

X   

   

 

 

    X 

     

X     

1    6 

January 15, 2009


Implementation Timeframe Near‐ Intermediate‐ Long‐ Term  Term  Term 

Proposed Projects  Non‐Motorized Mode Improvements    Pedestrian  • Richmond: Install pedestrian count‐down signals, improve sidewalk  conditions, construct mid‐block lighted crossings, and landscape Nevin  Avenue, Barrett Ave & other areas  • El Cerrito: Develop pedestrian, transit stop and streetscape  improvements along San Pablo Avenue  • Improve pedestrian access and safety for transit access routes.  • Close the Bay Trail gaps along Richmond Parkway between  Pennsylvania Avenue and Gertude Avenue, north of Freethy Blvd to  Payne Drive, from Payne to Cypress, and from Pinole Shores to Parker  Ave  Bicycle  • Richmond: Construct Class I Bicycle Trail from Carlson Blvd to I‐80 along  abandoned railroad property  • Improve bike detection in the corridor.  • Provide exclusive right‐of‐way for bikes wherever feasible to enhance  bike safety.  • Provide more room for bikes on BART. This will facilitate in the  extension of hours that bike riders can use BART services and reduce  the parking demand at BART stations.    • Increase the availability of bike lockers and bike parking at BART  stations.  Other  • Berkeley: Improve Ashby/I‐80 interchange/Aquatic Park Access  streetscaping, bicycle, and pedestrian facilities  Demand Management/Land Use Strategies    • Implement the Transit Commute Benefits Promotion to encourage the  region‐wide ridesharing marketing program to promote tax‐saving  opportunities for employers and employees as specified in the IRS code  section  • Encourage public and private agencies to implement flex work  schedules to give more travel choices for the employees  

I-80 Integrated Corridor Mobility Project Draft CSMP

- 120 -

Reference  Document 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

January 15, 2009


Implementation Timeframe Near‐ Intermediate‐ Long‐ Term  Term  Term 

Proposed Projects  •

Incentive programs to agencies, that encourage carpool and non‐auto  travel modes  • Encourage transit‐oriented development (TOD) around BART stations  and other transit centers   • Promote urban infill development   Traveler Information Improvements    • I‐80 ICM Project – CMS and Highway Advisory Radio  • Extend traveler information dissemination to in vehicle navigation  systems and other personalized devices   Goods Movement Strategies    • Cummings Skyway Truck Climbing Lane Extension: Extend truck  climbing lane in the eastbound direction to allow faster moving  vehicles to safely pass slow moving trucks climbing existing 10% grade   • N. Richmond Truck Route: Extension of Soto Street from Market  Avenue to Parr Boulevard  • Dynamic Truck restrictions in conjunction with queue warning  • Coordinate with commercial vehicle information source to support I‐80  ICM Commercial Vehicle Operations System  • Signage to designate truck routes and time of day restrictions   • Construct satellite freight consolidation facility  ITS Improvements    • Additional Connector metering  • Expand existing surveillance and monitoring  • Install additional Changeable Message Signs (CMSs)  • Install additional Highway Advisory Radio (HAR) transmitters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

X   

X  X 

   

       

X  X  X  X 

  X  X  X 

       

Reference Documents:  1: Transportation 2035 Plan for the San Francisco Bay Area, April, 2009 2: Alameda County Transportation Improvement Program Map, August 2009 3: Contra Costa County Transportation Improvement Program Map, August, 2009 4: Contra Costa Countywide Comprehensive Transportation Plan, 2009 5: I‐80 Integrated Corridor Mobility –Concept of Operations, November, 2009 6: I‐80 Integrated Corridor Mobility Project‐San Pablo Avenue Corridor and Transit Operation and Management, Project Concept Report, 2009   

I-80 Integrated Corridor Mobility Project Draft CSMP

- 121 -

Reference  Document 

January 15, 2009


Appendix A BART Service


Station 

BART Line 

From  

To 

Ashby 

Orange   Red 

Richmond  Richmond 

Fremont  Millbrae 

Downtown  Berkeley 

Orange  Red 

Richmond  Richmond 

Fremont  Millbrae 

El Cerrito del  Norte 

Orange  Red 

Richmond  Richmond 

Fremont  Millbrae 

El Cerrito  Plaza 

Orange  Red 

Richmond  Richmond 

Fremont  Millbrae 

MacArthur 

Orange  Red  Yellow 

Fremont  Millbrae  SFO 

North  Berkeley 

Orange  Red 

Richmond  Richmond  Pittsburg/  Bay Point  Richmond  Richmond 

Richmond 

Orange 

Richmond 

Fremont 

Red 

Richmond 

Millbrae 

Rockridge 

Yellow 

Pittsburg/  Bay Point 

SFO 

West  Oakland 

Yellow 

Pittsburg/  Bay Point  Fremont  Richmond  Dublin/  Pleasanton 

SFO 

Green  Red  Blue 

Fremont  Millbrae 

Daly City  Millbrae  Millbrae 

Frequency NB from 4:45 AM to 1:00 AM with 5‐minute to 30‐ minute headway,  SB from 4:27 AM to 12:30 AM with 15‐minute to 30‐ minute headway  NB from 4:48 AM to 12:51 AM with 5‐minute to 30‐ minute headway,  SB from 4:25 AM to 12:30 AM with 15‐minute to 30‐ minute headway  NB from 4:57 AM to 1:00 AM with 5‐minute to 30‐ minute headway,  SB from 4:16 AM to 12:30 AM with 15‐minute to 30‐ minute headway  NB from 4:54 AM to 12:57 AM with 5‐minute to 30‐ minute headway,  SB from 4:19 AM to 12:23 AM with 15‐minute to 30‐ minute headway  NB from 4:42 AM to 12:45 AM with 15‐minute  headway,  SB from 4:31 AM to 12:45 AM with 15‐minute  headway  NB from 4:50 AM to 12:54 AM with 5‐minute to 30‐ minute headway,  SB from 4:22 AM to 12:26 AM with 15‐minute to 30‐ minute headway  SB from 4:12 AM to 12:16 AM with 15‐minute to 30‐ minute headway 

NB from 4:45 AM to 12:48 AM with 5‐minute to 30‐ minute headway,  SB from 4:34 AM to 12:32 AM with 15‐minute  headway  NB from 4:33 AM to 12:32 AM with 15‐minute  headway,  SB from 4:39 AM to 12:53 AM with 15‐minute  headway 

Connection to Bus Services AC Transit routes 9,15,18, and the regional All  Nighter 

AC Transit routes  1,1R,7,9,15,18,19,51,52L,65,67,79,  800  AC Transit routes 7,71,72,76, and 376  WestCAT routes 30Z, J, JL, JPX, JR, JX, and the  regional All Nighter  Golden Gate Transit routes 40 and 42  Fairfield‐Suisun route 90  AC Transit routes 52L, 72, 79, and regional All  Nighter 

AC Transit routes 1, 12,14,15,18,57, and All Nighter 

AC Transit routes 19,88, and regional All Nighter 

AC Transit routes 1,11,12,13,14,15,18,  19,40,71,72,76, and 376  Golden Gate Transit rout 42   Regional All Nighter  AC Transit routes 7,51,59,851, and regional All  Nighter 

AC Transit routes 13,19,62, and regional All Nighter 


Appendix B Bus Service


Provider 

Route 

WestCAT 

JX 

WestCAT 

WestCAT 

From 

To 

Hercules Transit  Center  Hercules Transit  Center 

El Cerrito del Norte  BART Station  El Cerrito del Norte  BART Station 

JPX 

Hercules Transit  Center 

El Cerrito del Norte  BART Station 

WestCAT 

30Z 

El Cerrito del Norte  BART Station 

downtown Martinez

WestCAT 

C3 

WestCAT 

LYNX 

Hercules Transit  Center  Rodeo/Hercules 

WestCAT 

10 

Pinole‐Contra Costa  College  San Francisco Transbay Terminal  Gem Street

WestCAT 

11 

WestCAT 

12 

WestCAT 

13 

WestCAT 

14 

Hercules Transit  Center 

WestCAT 

15 

WestCAT 

16 

Hercules Transit  Center  Richmond Parkway  Transit Center 

Hercules Transit  Center  Hercules Transit  Center  Hercules Transit  Center  Hercules Transit  Center 

Rodeo/Hercules Redwood Street Coronado

Portion where I‐80 is  used  I‐80 from Cutting  Blvd to Sycamore Ave  I‐80 from Cutting  Blvd to Sycamore Ave 

Service Description 

Weekdays, from 5:25 AM to 8:41 AM and from  3:41 PM to 7:57 PM with 15‐minute headway.  Weekdays, from 4:47 AM to 12:30 AM with 15‐ minute headway during the peak hour and 30‐ minute headway during the off‐peak.  I‐80 from Cutting  Weekdays, from 6:00 AM to 8:00 PM with 30‐ Blvd to Sycamore Ave  minute headway during the peak period and  60‐minute headway during the off peak.    I‐80 from Cutting  Weekdays, from 6:00 AM to 8:13 PM with 30‐ Blvd to SR 4  minute headway during the peak hour and  one‐hour headway during the off‐peak.  This route does not  Weekdays, from 7:25 AM to 10:15 PM with 60‐ run on I‐80  minute headway  I‐80 from Bay Bridge  Weekdays, from 5:00 AM to 8:20 AM and from  to Willow Ave  3:30 PM to 7:45 PM with 15‐minute headway.  This route does not  Weekdays, from 5:47 AM to 7:27 PM with 30‐ run on I‐80  minute headway  This route does not  Weekdays, from 5:46 AM to 9:57 PM with 30‐ run on I‐80  minute headway throughout the day.   This route does not  Weekdays, from 5:30 AM to 7:30 PM with 30‐ run on I‐80  minute headway throughout the day,   This route does not  Weekdays, from 5:50 AM to 7:30 PM with 30‐ run on I‐80  minute headway during peak hours and one– hour headway during the off peak.   This route does not  Weekdays only, from 5:50 AM to 7:30 PM with  run on I‐80  30‐minute headway. 

Pheasant Drive,  Sparrow Drive,  Falcon Way, and  Refugio Valley  Road  North Shore Business  This route does not  Park, Rodeo  run on I‐80  Pinole Valley Area This route does not  run on I‐80 

Weekdays, from 5:40 AM to 9:08 PM with 30– minute headway.  Weekdays, from 5:29 AM to 8:48 PM with 30‐ minute headway 

2007  Ridership  121,655 456,114

74,251

68,151

52,075 124,071 29,449 98,263 38,990 57,350

48,405

52,388 93,690


Route 

WestCAT 

17 

WestCAT 

18 

WestCAT 

19 

Hercules Transit  Center 

AC Transit 

San Francisco  Transbay 

Princeton Plaza  Shopping Center 

From Bay Bridge to  Buchanan St. 

AC Transit 

Rockridge BART 

Berkeley BART /El  Cerrito Del Norte  BART 

This route does not  run on I‐80 

AC Transit 

70 

Contra Costa College

Richmond BART

This route does not  run on I‐80 

AC Transit 

71 

El Cerrito Del Norte  BART 

Richmond BART/  Richmond Parkway  Transit Center 

This route does not  run on I‐80 

El Cerrito Del Norte  BART/Richmond  BART/Castro Street 

This route does not  run on I‐80 

Contra Costa College

This route does not  run on I‐80  This route does not  run on I‐80 

AC Transit 

From  Richmond Parkway  Transit Center  Tara Hills 

72/72M  Oakland 14th  St/Broadway 

AC Transit 

72R 

AC Transit 

74 

Jack London Square Hall Ave& Marina  Way 

To 

Portion where I‐80 is  used  This route does not  run on I‐80  This route does not  run on I‐80 

Provider 

Del Monte Shopping  Center  Richmond Parkway  Transit  Center/Hilltop Mall  Hilltop Mall

Richmond BART/  Orinda BART 

This route does not  run on I‐80 

Service Description  Weekdays, from 6:20 AM to 7:11 PM with 60‐ minute headway  Weekdays, from 6:00 AM to 7:50 PM with 70‐ minute headway.  Weekdays, from 6:15 AM to 6:45 PM with 30‐ minute headway and on Saturday from 8:35  AM to 7:10 PM with 40‐minute headway.  Weekdays, from 5:20 AM to 8:15 AM on the  westbound with 25‐minute headway and from  3:10 PM to 9:00 PM on the eastbound with 15‐ minute headway.  Weekdays, from 6:22 AM to 8:55 PM with 20‐ minute headway during the peak hour and 30‐ minute headway during the off‐peak.  Weekends, from 8:00 AM to 8:00 PM with 60‐ minute headway  Weekdays, from 5:41AM to 11:11 PM with 30‐ minute headway.  Weekends, from 5:55 AM to 10:55 PM with  60‐minute headway.  Weekdays, from 5:16 AM to 7:42 PM with 30‐ minute headway.  Weekends, from 6:12 AM to 8:27 PM with 60‐ minute headway.  Weekdays, from 5:00 AM to 7:42 PM with 15‐ minute headway.  Weekends, from 6:12 AM to 8:27 PM with 60‐ minute headway.  Weekdays only, from 6:00 am to 7:20 pm with  12‐minute headway.  Weekdays, from 5:42 AM to 11:20 PM with 30‐ minute headway.  Weekends, from 7:50 AM to 5:20 PM with 30‐ minute headway on the northbound and 60‐

2007  Ridership  10,771 15,864

59,400

175,695

467,690

400,248

389,721

2,730,143

1,733,490 426,438


From 

To 

Portion where I‐80 is  used 

Provider 

Route 

AC Transit 

76 

Richmond Parkway  Transit Center 

Richmond BART/ El  Cerrito Del Norte  BART 

AC Transit 

376 

El Cerrito Del Norte  BART 

Richmond  This route does not  BART/Pinole Business  run on I‐80  Park 

This route does not  run on I‐80 

Service Description  minute headway on the southbound. Weekdays, from 6:34 AM to 8:13 PM with 30‐ minute headway.  Weekends from 7:50 AM to 5:20 PM with 30‐ minute headway on the northbound and 30‐ minute headway on the southbound.  Evening only, from 8:20 PM to 2:19 AM with  30‐minute headway. 

2007  Ridership  687,745

70,752  


Appendix C Preservation Data


County 

Begin  PM 

End  PM 

Length 

Pave  Type 

Direction 

ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA 

1.763  1.763  2.255  2.255  2.657  2.657  2.801  2.801  3.391  3.391 

2.255  2.255  2.657  2.657  2.801  2.801  3.391  3.391  3.451  3.451 

0.492  0.492  0.402  0.402  0.144  0.144  0.590  0.590  0.060  0.060 

Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible 

Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only 

ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA 

3.451  3.451  3.513  3.513  3.517  3.517  3.576  3.576  3.721  3.721  3.786  3.786  3.844  3.844  3.955  3.955  3.959  3.959  3.990  3.990  4.315  4.315  4.410  4.410  5.490  5.490 

3.513  3.513  3.517  3.517  3.576  3.576  3.721  3.721  3.786  3.786  3.844  3.844  3.955  3.955  3.959  3.959  3.990  3.990  4.310  4.315  4.410  4.410  5.490  5.490  5.836  5.836 

0.062  0.062  0.004  0.004  0.059  0.059  0.145  0.145  0.065  0.065  0.058  0.058  0.111  0.111  0.004  0.004  0.031  0.031  0.325  0.325  0.095  0.095  1.080  1.080  0.346  0.346 

Flexible  Flexible  Bridge  Bridge  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Bridge  Bridge  Flexible  Flexible  Bridge  Bridge  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible 

Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only 

ALA  ALA 

5.836  5.836 

6.190  6.190 

0.354  0.354 

Flexible  Flexible 

Right Roadbed Only  Left Roadbed Only 

ALA  ALA 

6.190  6.190 

6.620  6.620 

0.430  0.430 

Flexible  Flexible 

Right Roadbed Only  Left Roadbed Only 

Triggered  Lane  Defect  Miles  0.984  HIGH ABC  0.984  FINE RAVEL  0.804  HIGH ABC  0.804  FINE RAVEL  0.000  GOOD CONDITION  0.288  FINE RAVEL  0.000  GOOD CONDITION  1.180  FINE RAVEL  0.000  GOOD CONDITION  0.120  FINE  NO DISTRESS  0.000  OBSERVED  0.124  FINE RAVEL  0.000  N/A Bridge  0.000  N/A Bridge  0.000  GOOD CONDITION  0.118  FINE RAVEL  0.000  GOOD CONDITION  0.290  FINE RAVEL  0.000  GOOD CONDITION  0.130  FINE RAVEL  0.000  N/A Bridge  0.000  N/A Bridge  0.000  GOOD CONDITION  0.222  FINE RAVEL  0.000  N/A Bridge  0.000  N/A Bridge  0.000  GOOD CONDITION  0.062  FINE RAVEL  0.000  GOOD CONDITION  0.650  FINE RAVEL  0.000  GOOD CONDITION  0.285  RIDE  0.000  GOOD CONDITION  2.160  FINE RAVEL  0.000  GOOD CONDITION  0.692  HIGH ABC  ALL A, NO B, OPEN  0.708  CRKS  0.708  HIGH ABC  ALL A, NO B, OPEN  0.860  CRKS  0.860  HIGH ABC 

IRI

110 168 123 135 89 146 127 173 134 149 144 118 N/A N/A 128 124 145 136 153 151 132 119 120 127 N/A N/A 83 N/A 121 156 123 334 123 131 133 183 166 128 143 125


County 

Begin  PM 

End  PM 

Length 

Pave  Type 

Direction 

ALA  ALA 

6.620  6.620 

6.679  6.679 

0.059  0.059 

Bridge  Bridge 

Right Roadbed Only  Left Roadbed Only 

Triggered  Lane  Miles  0.000  0.000 

ALA  ALA 

6.679  6.679 

6.899  6.899 

0.220  0.220 

Flexible  Flexible 

Right Roadbed Only  Left Roadbed Only 

0.440  0.000 

ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC 

6.899  6.899  7.032  7.032  7.136  7.136  7.784  7.784  7.999  7.999  0.000  0.000  0.002  0.002  0.008  0.008  0.216  0.216  0.254  0.254  1.067  1.067  1.467  1.467  1.671  1.671  1.717  1.717  2.040  2.040  2.076  2.076  2.527  2.527  2.532  2.532  2.567 

7.032  7.032  7.136  7.136  7.771  7.771  7.999  7.999  8.036  8.036  0.002  0.002  0.008  0.008  0.216  0.216  0.254  0.254  1.067  1.067  1.467  1.467  1.671  1.671  1.717  1.717  2.040  2.040  2.076  2.076  2.527  2.527  2.532  2.532  2.567  2.567  2.619 

0.133  0.133  0.104  0.104  0.635  0.635  0.215  0.215  0.037  0.037  0.002  0.002  0.006  0.006  0.208  0.208  0.038  0.038  0.813  0.813  0.400  0.400  0.204  0.204  0.046  0.046  0.323  0.323  0.036  0.036  0.450  0.450  0.005  0.005  0.035  0.035  0.052 

Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Bridge  Bridge  Flexible  Flexible  Flexible  Bridge  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Bridge  Bridge  Flexible  Flexible  Bridge  Flexible  Flexible  Flexible  Bridge  Flexible  Flexible  Flexible  Flexible 

Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only 

0.266  0.000  0.208  0.000  1.270  1.270  0.430  0.430  0.074  0.074  0.004  0.004  0.000  0.000  0.416  0.416  0.076  0.000  1.626  1.626  0.800  0.800  0.408  0.408  0.000  0.000  0.646  0.646  0.000  0.072  0.902  0.902  0.000  0.010  0.070  0.070  0.052 

IRI Defect  N/A Bridge  N/A Bridge  ALL A, NO B, OPEN  CRKS  GOOD CONDITION  ALL A, NO B, OPEN  CRKS  GOOD CONDITION  FINE RAVEL  GOOD CONDITION  FINE RAVEL  FINE RAVEL  FINE RAVEL  FINE RAVEL  FINE RAVEL  FINE RAVEL  FINE RAVEL  FINE RAVEL  N/A Bridge  N/A Bridge  FINE RAVEL  FINE RAVEL  FINE RAVEL  N/A Bridge  FINE RAVEL  FINE RAVEL  FINE RAVEL  FINE RAVEL  FINE RAVEL  FINE RAVEL  N/A Bridge  N/A Bridge  FINE RAVEL  FINE RAVEL  N/A Bridge  FINE RAVEL  FINE RAVEL  FINE RAVEL  N/A Bridge  FINE RAVEL  FINE RAVEL  FINE RAVEL  RIDE 

236 205 113 103 98 86 103 142 115 157 110 115 N/A N/A 112 159 N/A 148 154 134 N/A 185 116 119 106 121 157 162 171 145 130 135 N/A N/A 119 106 N/A N/A N/A N/A 232


County 

Begin  PM 

End  PM 

Length 

Pave  Type 

Direction 

CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC 

2.567  2.619  2.619  2.643  2.643  2.822  2.822  2.853  2.853  2.961  2.961  2.989  2.989  3.067  3.067  4.067  4.067  4.667  4.667  5.246  5.246  5.276  5.276  5.567  5.567  6.262  6.262  6.264  6.264  6.267  6.267  6.725  6.725  7.067  7.067  7.158  7.158 

2.619  2.643  2.643  2.822  2.822  2.853  2.853  2.961  2.961  2.989  2.989  3.067  3.067  4.067  4.067  4.667  4.667  5.246  5.246  5.276  5.276  5.567  5.567  6.262  6.262  6.264  6.264  6.267  6.267  6.725  6.725  7.067  7.067  7.158  7.158  7.767  7.767 

0.052  0.024  0.024  0.179  0.179  0.031  0.031  0.108  0.108  0.028  0.028  0.078  0.078  1.000  1.000  0.600  0.600  0.579  0.579  0.030  0.030  0.291  0.291  0.695  0.695  0.002  0.002  0.003  0.003  0.458  0.458  0.342  0.342  0.091  0.091  0.609  0.609 

Flexible  Bridge  Bridge  Flexible  Flexible  Bridge  Bridge  Flexible  Flexible  Bridge  Bridge  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Bridge  Bridge  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible 

Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only 

CC  CC  CC  CC  CC 

7.767  7.767  8.508  8.508  8.530 

8.508  8.508  8.530  8.530  8.567 

0.741  0.741  0.022  0.022  0.037 

Flexible  Flexible  Bridge  Bridge  Flexible 

Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only 

Triggered  Lane  Defect  Miles  0.052  RIDE  0.000  N/A Bridge  0.000  N/A Bridge  0.358  FINE RAVEL  0.358  FINE RAVEL  0.000  N/A Bridge  0.000  N/A Bridge  0.108  RIDE  0.108  RIDE  0.000  N/A Bridge  0.000  N/A Bridge  0.156  FINE RAVEL  0.156  FINE RAVEL  0.000  GOOD CONDITION  2.000  FINE RAVEL  0.000  GOOD CONDITION  1.200  FINE RAVEL  1.158  FINE RAVEL  1.158  FINE RAVEL  0.000  N/A Bridge  0.000  N/A Bridge  0.582  FINE RAVEL  0.582  FINE RAVEL  1.390  FINE RAVEL  1.390  FINE RAVEL  0.004  FINE RAVEL  0.004  FINE RAVEL  0.006  FINE RAVEL  0.006  FINE RAVEL  0.916  FINE RAVEL  0.916  FINE RAVEL  0.684  FINE RAVEL  0.684  FINE RAVEL  0.182  FINE RAVEL  0.182  FINE RAVEL  1.218  FINE RAVEL  1.218  FINE RAVEL  MISC. UNSEALED  0.741  CRACKS  1.482  FINE RAVEL  0.000  N/A Bridge  0.000  N/A Bridge  0.037  MISC. UNSEALED 

IRI

252 N/A 193 168 179 N/A 186 264 239 N/A N/A 117 124 110 122 114 154 122 151 N/A N/A 123 125 102 149 N/A N/A N/A N/A 130 151 112 120 212 128 129 140 135 145 N/A N/A N/A


County 

Begin  PM 

End  PM 

Length 

Pave  Type 

Direction 

Triggered  Lane  Miles 

CC 

8.530 

8.567 

0.037 

Flexible 

Left Roadbed Only 

0.074 

CC  CC 

8.567  8.567 

9.122  9.122 

0.555  0.555 

Flexible  Flexible 

Right Roadbed Only  Left Roadbed Only 

0.555  0.555 

CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC 

9.122  9.122  9.267  9.267  9.712  9.712  9.847  9.847  9.848  9.848  10.046  10.046  10.101 

9.267  9.267  9.712  9.712  9.847  9.847  9.848  9.848  10.046 10.046 10.101 10.101 10.685

0.145  0.145  0.445  0.445  0.135  0.135  0.001  0.001  0.198  0.198  0.055  0.055  0.584 

Flexible  Flexible  Flexible  Flexible  Bridge  Bridge  Bridge  Bridge  Flexible  Flexible  Bridge  Bridge  Flexible 

Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only 

0.145  0.145  0.890  0.445  0.000  0.000  0.000  0.000  0.396  0.396  0.000  0.000  1.168 

CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC 

10.101  10.685  10.685  10.701  10.701  10.717  10.717  10.725  10.725  10.729  10.729  11.667  11.667  11.697  11.697  11.703  11.703  12.131  12.131  12.140  12.140  12.667  12.667 

10.685 10.701 10.701 10.717 10.717 10.725 10.725 10.729 10.729 11.667 11.667 11.697 11.697 11.703 11.703 12.131 12.131 12.140 12.140 12.667 12.667 12.729 12.729

0.584  0.016  0.016  0.016  0.016  0.008  0.008  0.004  0.004  0.938  0.938  0.030  0.030  0.006  0.006  0.428  0.428  0.009  0.009  0.527  0.527  0.062  0.062 

Rigid  Bridge  Bridge  Bridge  Bridge  Rigid  Rigid  Bridge  Bridge  Rigid  Rigid  Rigid  Rigid  Bridge  Bridge  Rigid  Rigid  Bridge  Bridge  Rigid  Rigid  Rigid  Rigid 

Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only 

0.000  0.000  0.000  0.000  0.000  0.016  0.016  0.000  0.000  1.876  1.876  0.060  0.060  0.000  0.000  0.856  0.856  0.000  0.000  1.054  1.054  0.062  0.124 

IRI Defect  CRACKS  FINE RAVEL  MISC. UNSEALED  CRACKS  MOD ABC & PAT  MISC. UNSEALED  CRACKS  MOD ABC & PAT  FINE RAVEL  MOD ABC & PAT  N/A Bridge  N/A Bridge  N/A Bridge  N/A Bridge  FINE RAVEL  MOD ABC & PAT  N/A Bridge  N/A Bridge  FINE RAVEL  UNSEALED CRACKS  OR  N/A Bridge  N/A Bridge  N/A Bridge  N/A Bridge  THIRD ST. CRKNG  SLAB CRACKING  N/A Bridge  N/A Bridge  THIRD ST. CRKNG  SLAB CRACKING  SLAB CRACKING  SLAB CRACKING  N/A Bridge  N/A Bridge  SLAB CRACKING  SLAB CRACKING  N/A Bridge  N/A Bridge  SLAB CRACKING  SLAB CRACKING  THIRD ST. CRKNG  SLAB CRACKING 

156 134 140 90 103 116 116 134 147 N/A N/A 148 246 266 N/A 128 157 166 N/A N/A N/A N/A N/A 148 132 N/A N/A N/A N/A 87 106 69 146 97 94 N/A N/A 113 136


CC  CC 

12.729  13.015 12.729  13.015

0.286  0.286 

Rigid  Rigid 

Right Roadbed Only  Left Roadbed Only 

Triggered  Lane  Miles  0.286  0.572 

CC  CC  CC  CC 

13.015  13.015  13.489  13.489 

13.489 13.489 14.139 14.139

0.474  0.474  0.650  0.650 

Flexible  Rigid  Bridge  Bridge 

Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only 

0.948  0.948  0.000  0.000 

County 

Begin  PM 

End  PM 

Length 

Pave  Type 

Direction 

ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA 

1.763  1.763  2.255  2.255  2.657  2.657  2.801  2.801  3.391  3.391 

2.255  2.255  2.657  2.657  2.801  2.801  3.391  3.391  3.451  3.451 

0.492  0.492  0.402  0.402  0.144  0.144  0.590  0.590  0.060  0.060 

Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible 

Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only 

ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA 

3.451  3.451  3.513  3.513  3.517  3.517  3.576  3.576  3.721  3.721  3.786  3.786  3.844  3.844  3.955  3.955  3.959  3.959  3.990  3.990  4.315  4.315 

3.513  3.513  3.517  3.517  3.576  3.576  3.721  3.721  3.786  3.786  3.844  3.844  3.955  3.955  3.959  3.959  3.990  3.990  4.310  4.315  4.410  4.410 

0.062  0.062  0.004  0.004  0.059  0.059  0.145  0.145  0.065  0.065  0.058  0.058  0.111  0.111  0.004  0.004  0.031  0.031  0.325  0.325  0.095  0.095 

Flexible  Flexible  Bridge  Bridge  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Bridge  Bridge  Flexible  Flexible  Bridge  Bridge  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible 

Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only 

County 

Begin  PM 

End  PM 

Length 

Pave  Type 

Direction 

IRI Defect  THIRD ST. CRKNG  SLAB CRACKING  MISC. UNSEALED  CRACKS  SLAB CRACKING  N/A Bridge  N/A Bridge 

Triggered  Lane  Defect  Miles  0.984  HIGH ABC  0.984  FINE RAVEL  0.804  HIGH ABC  0.804  FINE RAVEL  0.000  GOOD CONDITION  0.288  FINE RAVEL  0.000  GOOD CONDITION  1.180  FINE RAVEL  0.000  GOOD CONDITION  0.120  FINE  NO DISTRESS  0.000  OBSERVED  0.124  FINE RAVEL  0.000  N/A Bridge  0.000  N/A Bridge  0.000  GOOD CONDITION  0.118  FINE RAVEL  0.000  GOOD CONDITION  0.290  FINE RAVEL  0.000  GOOD CONDITION  0.130  FINE RAVEL  0.000  N/A Bridge  0.000  N/A Bridge  0.000  GOOD CONDITION  0.222  FINE RAVEL  0.000  N/A Bridge  0.000  N/A Bridge  0.000  GOOD CONDITION  0.062  FINE RAVEL  0.000  GOOD CONDITION  0.650  FINE RAVEL  0.000  GOOD CONDITION  0.285  RIDE 

154 132 176 126 N/A N/A IRI

110 168 123 135 89 146 127 173 134 149 144 118 N/A N/A 128 124 145 136 153 151 132 119 120 127 N/A N/A 83 N/A 121 156 123 334


County 

Begin  PM 

End  PM 

Length 

Pave  Type 

Direction 

ALA  ALA  ALA  ALA 

4.410  4.410  5.490  5.490 

5.490  5.490  5.836  5.836 

1.080  1.080  0.346  0.346 

Flexible  Flexible  Flexible  Flexible 

Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only 

ALA  ALA 

5.836  5.836 

6.190  6.190 

0.354  0.354 

Flexible  Flexible 

Right Roadbed Only  Left Roadbed Only 

ALA  ALA  ALA  ALA 

6.190  6.190  6.620  6.620 

6.620  6.620  6.679  6.679 

0.430  0.430  0.059  0.059 

Flexible  Flexible  Bridge  Bridge 

Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only 

ALA  ALA 

6.679  6.679 

6.899  6.899 

0.220  0.220 

Flexible  Flexible 

Right Roadbed Only  Left Roadbed Only 

ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  ALA  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC 

6.899  6.899  7.032  7.032  7.136  7.136  7.784  7.784  7.999  7.999  0.000  0.000  0.002  0.002  0.008  0.008  0.216  0.216  0.254  0.254  1.067  1.067  1.467  1.467  1.671  1.671  1.717 

7.032  7.032  7.136  7.136  7.771  7.771  7.999  7.999  8.036  8.036  0.002  0.002  0.008  0.008  0.216  0.216  0.254  0.254  1.067  1.067  1.467  1.467  1.671  1.671  1.717  1.717  2.040 

0.133  0.133  0.104  0.104  0.635  0.635  0.215  0.215  0.037  0.037  0.002  0.002  0.006  0.006  0.208  0.208  0.038  0.038  0.813  0.813  0.400  0.400  0.204  0.204  0.046  0.046  0.323 

Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Bridge  Bridge  Flexible  Flexible  Flexible  Bridge  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Bridge  Bridge  Flexible 

Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only 

Triggered  Lane  Defect  Miles  0.000  GOOD CONDITION  2.160  FINE RAVEL  0.000  GOOD CONDITION  0.692  HIGH ABC  ALL A, NO B, OPEN  0.708  CRKS  0.708  HIGH ABC  ALL A, NO B, OPEN  0.860  CRKS  0.860  HIGH ABC  0.000  N/A Bridge  0.000  N/A Bridge  ALL A, NO B, OPEN  0.440  CRKS  0.000  GOOD CONDITION  ALL A, NO B, OPEN  0.266  CRKS  0.000  GOOD CONDITION  0.208  FINE RAVEL  0.000  GOOD CONDITION  1.270  FINE RAVEL  1.270  FINE RAVEL  0.430  FINE RAVEL  0.430  FINE RAVEL  0.074  FINE RAVEL  0.074  FINE RAVEL  0.004  FINE RAVEL  0.004  FINE RAVEL  0.000  N/A Bridge  0.000  N/A Bridge  0.416  FINE RAVEL  0.416  FINE RAVEL  0.076  FINE RAVEL  0.000  N/A Bridge  1.626  FINE RAVEL  1.626  FINE RAVEL  0.800  FINE RAVEL  0.800  FINE RAVEL  0.408  FINE RAVEL  0.408  FINE RAVEL  0.000  N/A Bridge  0.000  N/A Bridge  0.646  FINE RAVEL 

IRI

123 131 133 183 166 128 143 125 236 205 113 103 98 86 103 142 115 157 110 115 N/A N/A 112 159 N/A 148 154 134 N/A 185 116 119 106 121 157 162 171 145 130


County 

Begin  PM 

End  PM 

Length 

Pave  Type 

Direction 

CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC 

1.717  2.040  2.040  2.076  2.076  2.527  2.527  2.532  2.532  2.567  2.567  2.619  2.619  2.643  2.643  2.822  2.822  2.853  2.853  2.961  2.961  2.989  2.989  3.067  3.067  4.067  4.067  4.667  4.667  5.246  5.246  5.276  5.276  5.567  5.567  6.262  6.262  6.264  6.264  6.267  6.267  6.725 

2.040  2.076  2.076  2.527  2.527  2.532  2.532  2.567  2.567  2.619  2.619  2.643  2.643  2.822  2.822  2.853  2.853  2.961  2.961  2.989  2.989  3.067  3.067  4.067  4.067  4.667  4.667  5.246  5.246  5.276  5.276  5.567  5.567  6.262  6.262  6.264  6.264  6.267  6.267  6.725  6.725  7.067 

0.323  0.036  0.036  0.450  0.450  0.005  0.005  0.035  0.035  0.052  0.052  0.024  0.024  0.179  0.179  0.031  0.031  0.108  0.108  0.028  0.028  0.078  0.078  1.000  1.000  0.600  0.600  0.579  0.579  0.030  0.030  0.291  0.291  0.695  0.695  0.002  0.002  0.003  0.003  0.458  0.458  0.342 

Flexible  Bridge  Flexible  Flexible  Flexible  Bridge  Flexible  Flexible  Flexible  Flexible  Flexible  Bridge  Bridge  Flexible  Flexible  Bridge  Bridge  Flexible  Flexible  Bridge  Bridge  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Bridge  Bridge  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible  Flexible 

Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only 

Triggered  Lane  Defect  Miles  0.646  FINE RAVEL  0.000  N/A Bridge  0.072  FINE RAVEL  0.902  FINE RAVEL  0.902  FINE RAVEL  0.000  N/A Bridge  0.010  FINE RAVEL  0.070  FINE RAVEL  0.070  FINE RAVEL  0.052  RIDE  0.052  RIDE  0.000  N/A Bridge  0.000  N/A Bridge  0.358  FINE RAVEL  0.358  FINE RAVEL  0.000  N/A Bridge  0.000  N/A Bridge  0.108  RIDE  0.108  RIDE  0.000  N/A Bridge  0.000  N/A Bridge  0.156  FINE RAVEL  0.156  FINE RAVEL  0.000  GOOD CONDITION  2.000  FINE RAVEL  0.000  GOOD CONDITION  1.200  FINE RAVEL  1.158  FINE RAVEL  1.158  FINE RAVEL  0.000  N/A Bridge  0.000  N/A Bridge  0.582  FINE RAVEL  0.582  FINE RAVEL  1.390  FINE RAVEL  1.390  FINE RAVEL  0.004  FINE RAVEL  0.004  FINE RAVEL  0.006  FINE RAVEL  0.006  FINE RAVEL  0.916  FINE RAVEL  0.916  FINE RAVEL  0.684  FINE RAVEL 

IRI

135 N/A N/A 119 106 N/A N/A N/A N/A 232 252 N/A 193 168 179 N/A 186 264 239 N/A N/A 117 124 110 122 114 154 122 151 N/A N/A 123 125 102 149 N/A N/A N/A N/A 130 151 112


County 

Begin  PM 

End  PM 

Length 

Pave  Type 

Direction 

CC  CC  CC  CC  CC 

6.725  7.067  7.067  7.158  7.158 

7.067  7.158  7.158  7.767  7.767 

0.342  0.091  0.091  0.609  0.609 

Flexible  Flexible  Flexible  Flexible  Flexible 

Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only 

Triggered  Lane  Miles  0.684  0.182  0.182  1.218  1.218 

CC  CC  CC  CC 

7.767  7.767  8.508  8.508 

8.508  8.508  8.530  8.530 

0.741  0.741  0.022  0.022 

Flexible  Flexible  Bridge  Bridge 

Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only 

0.741  1.482  0.000  0.000 

CC  CC 

8.530  8.530 

8.567  8.567 

0.037  0.037 

Flexible  Flexible 

Right Roadbed Only  Left Roadbed Only 

0.037  0.074 

CC  CC 

8.567  8.567 

9.122  9.122 

0.555  0.555 

Flexible  Flexible 

Right Roadbed Only  Left Roadbed Only 

0.555  0.555 

CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC 

9.122  9.122  9.267  9.267  9.712  9.712  9.847  9.847  9.848  9.848  10.046  10.046  10.101 

9.267  9.267  9.712  9.712  9.847  9.847  9.848  9.848  10.046 10.046 10.101 10.101 10.685

0.145  0.145  0.445  0.445  0.135  0.135  0.001  0.001  0.198  0.198  0.055  0.055  0.584 

Flexible  Flexible  Flexible  Flexible  Bridge  Bridge  Bridge  Bridge  Flexible  Flexible  Bridge  Bridge  Flexible 

Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only 

0.145  0.145  0.890  0.445  0.000  0.000  0.000  0.000  0.396  0.396  0.000  0.000  1.168 

CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC 

10.101  10.685  10.685  10.701  10.701  10.717  10.717  10.725  10.725  10.729  10.729  11.667 

10.685 10.701 10.701 10.717 10.717 10.725 10.725 10.729 10.729 11.667 11.667 11.697

0.584  0.016  0.016  0.016  0.016  0.008  0.008  0.004  0.004  0.938  0.938  0.030 

Rigid  Bridge  Bridge  Bridge  Bridge  Rigid  Rigid  Bridge  Bridge  Rigid  Rigid  Rigid 

Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only 

0.000  0.000  0.000  0.000  0.000  0.016  0.016  0.000  0.000  1.876  1.876  0.060 

IRI Defect  FINE RAVEL  FINE RAVEL  FINE RAVEL  FINE RAVEL  FINE RAVEL  MISC. UNSEALED  CRACKS  FINE RAVEL  N/A Bridge  N/A Bridge  MISC. UNSEALED  CRACKS  FINE RAVEL  MISC. UNSEALED  CRACKS  MOD ABC & PAT  MISC. UNSEALED  CRACKS  MOD ABC & PAT  FINE RAVEL  MOD ABC & PAT  N/A Bridge  N/A Bridge  N/A Bridge  N/A Bridge  FINE RAVEL  MOD ABC & PAT  N/A Bridge  N/A Bridge  FINE RAVEL  UNSEALED CRACKS  OR  N/A Bridge  N/A Bridge  N/A Bridge  N/A Bridge  THIRD ST. CRKNG  SLAB CRACKING  N/A Bridge  N/A Bridge  THIRD ST. CRKNG  SLAB CRACKING  SLAB CRACKING 

120 212 128 129 140 135 145 N/A N/A N/A 156 134 140 90 103 116 116 134 147 N/A N/A 148 246 266 N/A 128 157 166 N/A N/A N/A N/A N/A 148 132 N/A N/A N/A


County 

Begin  PM 

End  PM 

Length 

Pave  Type 

Direction 

CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC  CC 

11.667  11.697  11.697  11.703  11.703  12.131  12.131  12.140  12.140  12.667  12.667  12.729  12.729 

11.697 11.703 11.703 12.131 12.131 12.140 12.140 12.667 12.667 12.729 12.729 13.015 13.015

0.030  0.006  0.006  0.428  0.428  0.009  0.009  0.527  0.527  0.062  0.062  0.286  0.286 

Rigid  Bridge  Bridge  Rigid  Rigid  Bridge  Bridge  Rigid  Rigid  Rigid  Rigid  Rigid  Rigid 

Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only 

Triggered  Lane  Miles  0.060  0.000  0.000  0.856  0.856  0.000  0.000  1.054  1.054  0.062  0.124  0.286  0.572 

CC  CC  CC  CC 

13.015  13.015  13.489  13.489 

13.489 13.489 14.139 14.139

0.474  0.474  0.650  0.650 

Flexible  Rigid  Bridge  Bridge 

Right Roadbed Only  Left Roadbed Only  Right Roadbed Only  Left Roadbed Only 

0.948  0.948  0.000  0.000 

IRI Defect  SLAB CRACKING  N/A Bridge  N/A Bridge  SLAB CRACKING  SLAB CRACKING  N/A Bridge  N/A Bridge  SLAB CRACKING  SLAB CRACKING  THIRD ST. CRKNG  SLAB CRACKING  THIRD ST. CRKNG  SLAB CRACKING  MISC. UNSEALED  CRACKS  SLAB CRACKING  N/A Bridge  N/A Bridge 

N/A 87 106 69 146 97 94 N/A N/A 113 136 154 132 176 126 N/A N/A


http://www.wcctac.org/wp-content/uploads/2009/03/CSMP-report-ver-1-011910  

http://www.wcctac.org/wp-content/uploads/2009/03/CSMP-report-ver-1-011910.pdf

Advertisement
Read more
Read more
Similar to
Popular now
Just for you