Page 1

WIE14 WORKSHOP INTENSIF ENVELOPPES 2014 > IMR << the (re)design of external building skins in order to improve their resistance to climate change in the context of the challenges posed by Irish unfinished housing estates.>>

1


WIE14 WORKSHOP INTENSIF ENVELOPPES 2014 > IMR

<< the (re)design of external building skins in order to improve their resistance to climate change in the context of the challenges posed by Irish unfinished housing estates.>>

Jean Francois Blassel / Marc Mimram / Philippe Barthelemy / Fintan Duffy / Florian Musso / Stefan Giers / Chiara Tonelli / Alberto Raimondi/ Vivien Gimenez / Youssef Anastas

CREDITS LIVRET Vivien Gimenez & Youssef Anastas 2

3


SOMMAIRE 07 - LES INTENTIONS DU WORKSHOP INTENSIF 11 - DEROULEMENT PEDAGOGIQUE D’UN WORKSHOP 15 - SUJET / PLANNING / EQUIPES WIE 14 21 - SITE 29 - MOMENTS CLES 35 - PROJETS

SUMMARY 07 - THE AIM OF THE INTENSIVE WORKSHOP 11 - WORKSHOP PEDAGOGY 15 - TOPIC / PLANNING / TEAMS WIE 13 21 - SITE 29 - KEY MOMENTS 35 - PROJECTS

4

5


LES INTENTIONS DU WORKSHOP INTENSIF THE AIM OF THE INTENSIVE WORKSHOP 6

7


INTENTIONS C’est de l’impossibilité de détacher la question architecturale de la question technique et de la possibilité de faire de la technique un moteur d’invention architecturale, même modeste, qu’est né l’exercice intensif d’enveloppes. La plupart du temps, la durée d’un projet d’école d’architecture, limitée par le cadencement du calendrier universitaire, interdit de s’intéresser aux questions techniques d’un projet, sauf à en simplifier la dimension architecturale. Pour contourner cette conttradiction apparente, nous avons choisi de créer un exercice sous une triple contrainte :

INTENTIONS

- de temps, en limitant la durée de l’exercice radicalement,

This exercise in ‘intensive envelope’ was born out of an understanding that it is impossible to separate architectural considerations from technical ones, and that technique can serve as a motor for architectural invention, however modest that may be. Usually, the time allocated to projects in a school of architecture, which is determined by the rhythm of the university calendar, prevents their technical aspects from being considered in too great a detail, unless the architectural intentions are reduced in importance. In order to circumvent this apparent contradiction, we have chosen to create a project that encompasses three constraints:

- de lieu, en forçant un contexte à la fois précis et flou,

•The constraint of time; by radically limiting the project’s duration,

- et surtout, de thème, en focalisant la conception architecturale et technique, sur une toute petite partie du projet, en l’occurrence, un fragment d’enveloppe.

•The constraint of place; by imposing a context which can be both well-defined and open to interpretation,

Dans ces limites, l’exercice propose une interprétation environnementale de l’architecture, et de la technique qui lui est indissolublement liée, de deux façons complémentaires :

•And most importantly, the constraint of the theme, which focuses the architectural and technical design towards a small element of the project, in this case a fragment of the ‘envelope’, or building skin.

- la contribution substantielle, directe et indirecte, de l’architecture et de sa production dans l’empreinte environnementale de nos activités et de celle des bâtiments qui les abritent,

Within these limits, the exercise proposes an environmental interpretation of architecture and of those technical aspects with which it is indissociably linked. It proposes to do this in two complimentary ways:

- la compréhension, au sein d’une architecture particulière, du rôle critique de l’enveloppe dans les échanges énergétiques entre endoclimat du projet et macroclimat qui l’environne.

•The substantial contributions, both direct and indirect, that architecture, and its production make within the environmental footprint of our daily activities and that of the buildings that house them, and •An understanding, within the specifics of a particular architecture, of the critical role played by the building’s envelope in energy transfers between the project’s microclimate and the macroclimate surrounding it.

8

INTÉRÊTS ET LIMITES Ces deux aspects de l’enveloppe contribuent à situer le projet bien entendu géographiquement mais aussi culturellement. La réflexion sur le climat interne du projet ne relève pas de statistiques météorologiques et l’enveloppe n’est pas réduite à un dispositif technique dont il suffirait de manipuler quelques paramètres physiques pour atteindre un standard universel. L’enveloppe est l’outil d’un confort que l’architecture définit. Ainsi liée intrinsèquement à des pratiques, l’enveloppe est envisagée moins comme une limite sans épaisseur que comme une marge, dotée de dimensions et investie par des usages spécifiques. En tant que pédagogie, l’exercice propose un parcours cohérent et concis du très général, le climat, au très spécifique, une baie ou quelques panneaux de façade. Il s’appuie et alimente l’intérêt naturel de tout concepteur pour l’identité du projet, telle qu’elle se manifeste dans sa façade. L’échelle et la variété des préoccupations qui nourrissent la réflexion sur l’enveloppe élargissent le champ des possibles et repoussent une cristallisation précoce de son image ou de son graphisme. Le « régionalisme climatique » de l’exercice, dans un premier temps le programme est en effet exploré sous deux latitudes différentes, lui confère une dimension comparative. La démarche va du climat vers l’architecture, clarifiant le rôle d’outil technique de cette dernière. Le corps, origine de la technique, est doublement mis en jeu, par l’intermédiaire du confort d’abord mais aussi par la proximité au corps et la tactilité de l’enveloppe et de ses ouvertures. Enfin, la taille modeste des éléments considérés permet de les mettre au point de façon complète, en résolvant notamment des questions précises de matérialité et de mise en œuvre.

EDUCATIONAL INTEREST OF THE WORKSHOP AND ITS LIMITS These two aspects of envelope help to position the building not just geographically but also culturally. This reflection on the project’s internal climate is not just about meteorological data, and the envelope is not reduced to a mere technical device requiring the manipulation of a few physical parameters in order to attain some kind of universal standard. The envelope is a tool for creating conditions of comfort which the architecture itself defines. By linking it intrinsically to practice, the envelope is conceived not as a width-less boundary but more as a margin or threshold, having dimensions and able to house specific functions. From the pedagogical point-ofview, the exercise is structured in a coherent and precise way, from the general scale of climate to the very specific scale of the bay or façadepanel. It supports and reinforces the natural desire of every designer to give the project an identity, particularly in relation to its façade. The extent and variety of the issues which support this reflection around the notion of envelope tend towards a widening of possibilities which in turn discourages any premature ‘jumping to conclusions’ in graphic or imaging terms. The ‘climatic regionalism’of the exercise (intially the project is explored two or three different latitudes) gives it a comparative dimension. The exercise progresses from climate to architecture, clarifying the latter’s role in the technical design. The human body, which is the basis of all of our relationships to technology, is twice called into play: first via the requirements for conditions of comfort, and then by the positioning of this body in proximity to the tactile envelope and its openings. Finally, the reduced scale of these elements allows them to be finalised, particlarly resolving those specific questions relating to materiality and construction.

9


DEROULEMENT PEDAGOGIQUE D’UN WORKSHOP WORKSHOP PEDAGOGY 10

11


CORRESPONDANCE AVEC LES OBJECTIFS ERASMUS Ce projet est né d’une réflexion commune à nos trois écoles, sur le thème de l’enveloppe du bâtiment. Bien que chaque établissement traite des problématiques de développement durable dans le cadre de son programme de formation, l’objectif est de mettre en place, un exercice dont la nature consiste en un programme intensif concentré sur une dizaine de jours, le but étant de faire cohabiter et de rapprocher dans la pratique, des compétences et des points de vues différents comme dans un bureau d’études. Hormis l’architecture, les objectifs et les résultats escomptés nécessitaient une ouverture sur les disciplines de l’ingénierie des enveloppes, l’ingénierie climatique, la science physique, la science de l’environnement, le développement durable et les techniques du design. C’est pourquoi il est essentiel de regrouper des étudiants en architecture et en ingénierie tant d’un point de vue pédagogique que linguistique et intellectuel. Le choix d’organiser l’IP chaque année dans un des établissements partenaires renforce la découverte d’un autre mode d’enseignement et d’une culture différente enrichissante tant sur le plan professionnel que personnel. Au sein des équipes de travail on retrouve également des étudiants représentants une variété de nationalités et de cultures différentes. L’ip est un moment de rencontre et de réflexion sur des enjeux auxquels devront faire face les étudiants dans le monde du travail. En effet, le domaine de la construction et du bâtiment va aujourd’hui de pair avec les changements climatiques et le développement durable.

12

MATCHING THE OBJECTIVES OF THE ERASMUS PROGRAMME The project is the result of a shared reflection between our three schools around the theme of ‘building envelope’. While each school deals individually with issues relating to sustainability within its own teaching programme, the objective of this workshop is to set up an intensive 10-day programme the aim of which is to bring together in a practicebased way different competencies and different points-ofview, similar to those within a design team or bureau d’études. Apart from the discipline of Architecture, the objectives and their anticipated outcomes necessitate an openness towards other disciplines such as engineering, façade design, climate control, physics, environmental science, sustainability and industrial design. This is why the requirement to form mixed groups of students is so important and not just from the teaching point-of-view, but linguistically and intellectually also. The decision to hold the Workshop in a different member-school each year reinforces the importance of exposing the students to other ways of teaching and other cultural outlooks which is very enriching for them both on the personal and professional levels. The working groups themselves contain a variety of students of different languages and cultural backgrounds.The Workshop is a time to meet others and to reflect upon some of the real issues the students will face in their working lives. The reality we face is that we can no longer dissociate the whole area of building and construction from the issues relating to climate change and sustainaiblity.

PROJET Le projet consiste en un exercice intensif, de conception architecturale et technique d’une enveloppe délibérément localisée dans des zones climatiques différentes. L’enveloppe est considérée comme un élément de médiation climatique entre l’intérieur du bâtiment et son environnement, depuis les flux d’énergie et de matière qui déterminent ses propriétés thermiques et hygrométriques, jusqu’à ses aspects moins quantifiables, spatiaux et perceptifs, qui contribuent également à la constitution de l’endoclimat du projet.

CONTEXTE ET OBJECTIF Le contexte général de l’exercice est celui de l’enseignement de l’architecture et de la technologie des enveloppes dans nos établissements respectifs. Enseignement fortement marqué par la question générale du développement durable, de ses effets sur la conception des projets de bâtiments et tout particulièrement sur celle de leurs enveloppes, couverture et façades, lieux d’importants échanges énergétiques entre l’environnement et le bâtiment. Cet exercice commun s’intègre naturellement dans la progression pédagogique de chacun des programmes des établissements partenaires. Le projet vise à donner aux étudiants les outils intellectuels et pratiques, indispensables à la prise en compte des données climatiques dans la conception architecturale et technique des enveloppes. Les conférences et l’exercice de conception d’un objet architectural et construit proposés aux étudiants font apparaître le rôle clef que doivent tenir les processus d’échanges énergétiques et physiques dans la définition architecturale et constructive de l’enveloppe des bâtiments. Associant étudiants en architecture et élèvesingénieurs, le projet contribue à décloisonner ces formations. Outre les visites de sites dans chacun des trois pays, les journées

consacrées au projet comportent des conférences et des présentations organisées par l’institution hôte du workshop.

PROJECT

building’s envelope. By associating students of architecture, engineering and architectural technology, the project serves to open up these disciplines to each other. Apart from site visits in each of three countries, the workshop provides talks and presentations organised by the host institute every year.

The project itself involves an intensive architectural and technical exercise through designing a building envelope which is deliberately located in different climate zones, none are generally outside of the memberschools’ regions. The envelope is considered as a climatic mediation element between the interior of the building and its environment, taking into account energy and material transfers which determine its thermal and hygrometric properties, and including its less quantifiable aspects such as spatial and sensory, which also have a bearing on the project’s endoclimate.

CONTEXT AND OBJECTIVE The general context of the exercise is the teaching of Architecture and the Technology of the Envelope in our respective schools. This teaching is strongly influenced by the preoccupation of sustainability, its effects on the area of construction and particularly of the building skin and façades, which are the primary areas of energy transfer between the building and its environment. This project has been integrated into the teaching programme as part of a natural progression within the curriculum of each school. The project aims to provide the students with the pratical and intellectual tools indispensable to their ability to take climatic requirements into account in the architectural and technical design of building skins. The workshop programme combines daily lectures with studio tutorials to produce a designed proposal which is capable of being built and which demonstrates to the students the importance of taking these environmental transfers into account when undertaking any design of a 13


SUJET / PLANNING / EQUIPES WIE 14 TOPIC / PLANNING / TEAMS WIE 14

14

15


INTENTIONS

OBJECTIVES

PROJET

Au cours de l’intensif, nous abordons l’enveloppe du bâtiment comme un élément architectural à part entière. Pour réussir à l’explorer en profondeur dans les courts délais dont nous disposons, nous mettons dans la limite du possible entre parenthèses l’organisation interne du bâtiment et nous limitons à la conception architecturale et technique de l’enveloppe du bâtiment. Nous proposons d’envisager celleci de multiples façons et notamment celles-ci :

During the intensive workshop, we will reflect on the envelope of a building as a single architectural element. In order to explore this element in depth in such a short space of time we will attempt to put the question of the internal organisation of the building to one side, concentrating on the architectural and technical conception of the shell. We will consider; - the fundamental role of the envelope as the separating element between the external climate and that inside the building; a main factor in the comfort of its users. By extension, the shell`s function as energy filter and receptor, the efficacy of which directly influences the overall energy efficiency of the building. - the importance of the envelope`s architecture; the relationship between shape, orientation, openings and permeability in connection with technical performance. - technical sensitivity to changing internal and external climates from season to season, day to night and the physical organisation that makes it possible. - the necessary qualitative leap of the high-performance technical membrane to the volume of the envelope, a unique coexistence of elements with a wealth of potential uses. - the exterior viewpoint and the identity of a building through the use of shape, materials and techniques, considered especially through reha-

L’irlande a récemment connu un essor de la construction sans précédent. A son paroxisme, l’industrie du bâtiment livrait jusqu’à 60,000 nouvelles maisons par an, grâce à l’accés facile aux emprunts immobiliers des banques et à la hausse des prix de la propriété de 15% à 20% par an. Les banques comptaient sur la hausse constante du marché et à la volonté toujours stable de la population à acheter des nouvelles maisons. Lorsque l’inévitable crise financière frappa en 2008, beaucoup de ces chantiers ont tout simplement été abandonnés , périssent peu à peu et font aujourd’hui partie du paysage irlandais. Le modèle de logement social irlandais, à l’exception de rares appartements dans les grandes villes, consiste en une petite maison souvent non distinguable des logements voisins non sociaux. En fait, les autorités locales irlandaises ont eu le droit d’utiliser 20% des lotissement non sociaux pour les transformer en logements sociaux à bon marché. Dans ce cadre, les maisons individuelles ( ou les maisons en bande mitoyennes) sont le modèle de logements sociaux irlandais, prônant plutôt une intégration sociale qu’une typologie distinte. Dans cet environnement plutôt libre architecturalement, il vous est demandé de considérer quelles leçons pouvonsnous tirer de cette récente histoire et comment pourrions-nous les utiliser à bon escient. Malgré tout, le besoin en maisons demeure aussi important qu’il l’a toujours été. Ce sujet suggère qu’au lieu de se lancer dans une campagne de construction et se répandre sur encore plus de champs, devonsnous considérer la finition et le postequipement des constructions déjà existantes.

- le rôle fondateur de l’enveloppe en tant que séparation entre le climat externe au bâtiment et le climat interne au bâtiment dont découle en grande partie le confort des habitants. Corrélativement, sa fonction de filtre et capteur énergétique dont l’efficacité conditionne significativement la performance énergétique globale du bâtiment, - l’importance de l’architecture de l’enveloppe, des relations entre forme, orientation, ouvertures et porosités, pour ces performances techniques, - la sensibilité de ces performances et donc celle des organisations physiques qui les rendent possibles aux caractéristiques changeantes des climats internes et externes, entre jour et nuit et de saison en saison. - l’indispensable saut qualitatif de la membrane technique performancielle au volume de l’enveloppe, entre-deux au caractère unique, riche d’usages potentiels, - le point de vue extérieur et l’identité des bâtiments à travers l’emploi de formes, de matériaux et de techniques, tout particulièrement dans le cadre présent, celui de réhabilitations.

16

bilitation.

out of the housing market, the need for houses is as great as ever. This brief is proposing that instead of embarking on a new campaign of building on even more greenfield sites, we should consider the completion and retrofitting of those unfinished estates first.

PROJECT Ireland has recently gone through a construction boom unprecedented in its history. At its height, the building industry was providing up to 60,000 new house units a year thanks to easy access to mortgage loans from the banks and property price rises of 15% to 20% per annum. The banks were betting on the market constantly rising and people constantly wanting new houses. When the inevitable crash happened in 2008 many of these construction sites were simply abandoned and are now a common feature in the Irish landscape as they slowly deteriorate. The Irish social housing model,with the exception of rare apartment schemes within the bigger cities, is one of small houses, often indistinguishable from their ‘non-social’neighbours. Indeed, Irish local authorities had the right to avail of 20% of the number of units in these estates for the use of ‘social and affordable housing’. In this sense, individual houses (or their ‘semi-detached’ half-brother) are the Irish social housing model which aims more at social integration rather than a distinctive typology. In this relatively architecturefree environment therefore, you are being asked to consider what lessons we can learn from this recent history and what, if any benefits can be salvaged from these recent mistakes. While the bottom has fallen 17


GROUPE #1 NINA KLEBER LAURANE NERON MARCO PROIETTI JEREMY TOUMINE DAVID WHELAN

GROUPE #2

JESSICA TAZZI FRANCOIS SEIGNOL BJORN SWEDJEMARK FERDINAND GETZ

GROUPE #3

ANNA-LOUISE DUGGAN ANNA CHARPALI LUCA MARSEGLIA OLIVER HELLMUTH LOUISE DEGUINE

GROUPE #4

CATHAL FALLON SOPHIE JACQUEMIN MICHELA INFANTINO MARION MONTEL-CABRERA ARTHUR ROYER

GROUPE #10 EOGHAN HARFORD PHILIPP MUMME GAIA ERARIO HICHAM AMRANE OMRI GALRON

GROUPE #11

MATTHEW KEATING ANDREA PORCAI ANGELIKI GASINI VINCENT BLACTOT ALESSANDRO PORCAI

GROUPE #12 BRIAN WARD CRISTINA MALETTA STEPHAN MAUSE GOULVEN LE CORRE ANTHONY HOGAN

CALENDRIER ET EFFECTIF La durée de l’atelier cette année était de onze jours. L’effectif total d’environ 61 étudiants provenant de l’EAVT, WIT, TUM et ROMA TRE a été réparti en équipes de 5 personnes. L’encadrement de l’exercice intensif a été assuré par Jean-François Blassel, Philippe Barthelemy et Marc Mimram pour l’EAVT, Fintan Duffy pour WIT , Florian Musso pour la TUM, Chiarra Tonelli et Alberto Raimondi pour Roma TRE ,aidés de trois assistants, Stefan Giers, Youssef Anastas et Vivien Gimenez.

TIMETABLE AND PARTICIPANT NUMBERS The workshop lasted one week and the 61 participating students from ENSAVT, WIT (Waterford Institute of Technology), TUM (Technical University of Munich), and ROMA TRE were divided into groups of 5. The workshop was tutored by Jean-François Blassel, Philippe Barthelemy and Marc Mimram for the ENSAVT, Fintan Duffy for WIT, Florian Musso for the TUM, Chiarra Tonelli and Alberto Raimondi for Roma TRE, assisted by Stefan Giers, Youssef Anastas and Vivien Gimenez.

GROUPE #5

MOSIEJ MONIKA MARIE-LAURE CARIOU QUENTIN BELLANCOURT JAN MARC CASTLUNGER DANIELE MARTINI

GROUPE #6

AMAURY LEFEVERE THI TRUONG MARINE FRANCESCHI BRIAN FITZGERALD NOEMI LUCIA DI VITA BERNHARD GEIGER

GROUPE #7

TOBIAS GRUND PATRICK O’CONNOR FABIANA CERROCHI ERWAN GUYOT VALENTINA LA MARRA

GROUPE #8

HENRY TRAVERS MARIKA PRETE VALENTIN GOETZ THADDEE TIBERGHIEN CAROLINA BRUNA

GROUPE #9

JAMES HEARNE PAOLA MILI LENZONI EMILIEN PONT LUCAS PESCHE CHARLOTTE OSTHELDER SOPHIE RAMME

18

19


SITE SITE

20

21


CLIMATE CHANGE AND ENVELOPPES DESIGN You are required to consider a number of ‘standard’ responses to the design of building skin in the current Irish house-building context. These include cavity wall construction, timber frame and single leaf masonry (in the traditional lexicon). You must consider the merits and disadvantages of each and understand their suitability to the Irish climate. You will be given data on our climate which is typically regarded as temperate and maritime, with wet, mild winters and (slightly) drier and warmer summers. Traditionally, the difference between winter and summer mean (average) temperatures is about 10°C. This makes it very different to a continental climate such as that experienced away from the coastlines of mainland northern Europe. However, this model is mutating in the face of rapid climate change. Last summer and this current winter have produced the type of weather which corresponds to one of the climate change scenarios for Ireland, namely hotter summers with possible water shortages (this happened) and wetter and stormier winters with widespread flooding (this is also happening). The traditional climate model is clearly giving way to a new one. How should the design of our building envelopes be modified to reflect this? The implications of these changes for our buildings include the following: • Drier weather in summer implies a need to better manage water run-off and storage, it also means more direct sunfall on south and west facing surfaces. This can serve to both dry out fabric as well as overheat interiors. • Wetter weather means more rainfall on roofs and walls. Rain combined with wind as storm frequency increases means more incidences of ‘driven rain’ – a feature of our weather where the rain can fall horizontally on facades as the wind drives it onto the building. This rain can penetrate facades to great depths, depending on the nature of the materials used. • The risks of flooding due to 22

water run-off from facades and hard external finishes, as well as the detailing of roofs and rainwater goods must be taken into account in this new building paradigm. • Heat losses through building fabric rise as wind speeds increase. This change will also have an effect therefore on the energy performance of buildings and will inevitably lead to requirements to upgrade current norms. • Coastal areas will bear the brunt of extreme weather events and buildings in these areas will also be subject to salt corrosion and windborne sand weathering. In parallel to the requirement for pragmatic responses to the changes brought on by the new climate models, the ongoing pursuit of more sustainable building materials and practice must not be neglected. Any new materials proposed must meet the ethical requirements for diminishing carbon footprint and impacts on the environment. We must carefully appraise our material choices before deciding if they are worthy of specification. More generally, our design proposals must, to paraphrase the Hippocratic oath, ‘firstly do no harm’ [to the environment and to our users] and in the true architectural sense; must postiviely enhance the lives of the inhabitants and the building’s relationship to its environment. When considering the design of this rehabilitated envelope therefore, keep in mind the following reflections: • How do we extend the envelope both literally and metaphorically to include the environment more fully in its remit? Can the notion of envelope be extended to encompass not just the roof and walls but adjoining surfaces as well? How much of the building’s surrounding environment must we include in our catchment in order to be able to control these processes of attenuation and control of the weather and its effects? • How can envelope become more than just a wind or rain-screen so that it can begin to serve as a spatial reorganiser bothe internally and externally? Can it be extended so that it starts to blur the distinction between the isolation of the units while creating new types of intermediate spaces?

• Can envelope become a means of physical resoration of community in the context of unfinished structures which had never been intended to promote community life? • Can a reinterpretation of envelope ‘solve’the problems of Ireland’s unfinished estates?

23


ENVELOPE DESIGN FOR EXTREME CLIMATE CHANGE WEATHERS 24

25


CAN ENVELOPE BECOME A MEANS OF PHYSICAL RESORATION OF COMMUNITY? 26

27


MOMENTS CLES KEY MOMENTS

28

29


DECOUVRIR L’IRLANDE DISCOVERING IRELAND

VISITE DE SITE SITE VISIT

During the period of the workshop, a visit has been organised to discover Ireland’s architecture, and more specifically typology and energy efficient strategies applied to realistic projects. On the way to Dublin, students had the opportunity to visit a social housing project, understand the typology and the organisation of ireland’s social housing. In Dublin, where social housing has a quite different urban context, the visit was focused on a project built for and with the community living in it in a participative process.

The studied site was in Tramore, a coastal city near Waterford where wind and rain are reaching extreme conditions. the combination of both results into som exxtreme constraints architecturally speaking. For instance, strong wind blowing during a rainy season implicates a nearly horiontal flow of rain on the house facade.

30

31


PRESENTATION INTERMEDIAIRE INTERMEDIATE PRESENTATION On March the 5th an intermediate presentation was planned under the form of a general projects review by teachers from every school and attended by all students. The first step of th project was, for the students, understanding the stakes of building an enveloppe in the social and climatic context of Ireland. The approach was illustrated by climatic data and housing functioning analysis.

PRESENTATION FINALE FINAL PRESENTATION On the 10th of March, the final presentation took place in the WIT with all representing professors from France, Ireland, Italy, and Germany. Even though the architectural answer to the topic was difficult to find, the Jury appreciated the work on experimental yet imminent and serious subject as etreme climate change.

32

33


PROJETS PROJECTS

34

35


IN-BETWEEN SPACE 1

INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES 2014 Waterford Institute of Technology Ecole d’Architecture de la Ville et des Territoires Technische Universität München Universita Roma-Tré

IN-BETWEEN SPACE

GROUPE 1

Nina KLEBER. Laurane NERON. Marco PROIETTI. Jérémy TOUMINE. David WHELAN.

INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES 2014 Waterford Institute of Technology Ecole d’Architecture de la Ville et des Territoires Technische Universität München Universita Roma-Tré

PROJECT TITLE

GROUPE 1

Nina KLEBER. Laurane NERON. Marco PROIETTI. Jérémy TOUMINE. David WHELAN.

N

N

SOLAR ANALYSIS

CLIMATE ANALYSIS

MORNING (9am)

Sun path, northern facades and in-between spaces experience little daylight.

AFTERNOON (3pm)

March 6

25°

15°

Different angle of solar radiation depending on the time of the year.

June 21

60°

30°

December 21 10°

Shine Architecture, Tec de Monterrey Retrofit, Mexico

WIND ANALYSIS Average temperature in winter is 6° with stormy weather. With summer being 15° on average.

We create common enclosed entrance and common winter garden protected against the elements

PLAN 1/100

Tramore experiences a lot of rainfall averaging 1000mm per annum.

Nagler Florian, Werkhalle Bobingen

Déperditions solaires

Existant

Heat losses (Watt) ΔT x U x A Opac leef Glass 21/03/14 9571 14065 21/06/14 0 0 21/12/14 9576 14073

Delta T 279,82 23636,50733 0 23649,17789

279,97

Calculation/ comparison of the heat loss/transmission Solar gain

SITE PLAN 1/500 AA41 et ALL, 9 Houses, Prix de Bretagne 2013

FRONT VIEW 1/200

SECTION 1/50

Page 1

Idea of closing open in-between space

EXISTING HOUSE AXONOMETRY

Possible wind prevention strategy and rainwater collection strategy

SITE PLAN 1:200

36

PROJECT AXONOMETRY

37


Rainwater Drain depth 140mm and width 115mm with a varition of slope

Drain flashing Steel beam as per enginneers specification INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES 2014 Steel and Glulam beam connection Waterford Institute of Technology as per engineers specification. Ecole d’Architecture de la Ville et des Territoires 16mm thick Laminated glass panels Technische Universität München 400mmx500mm Universita Roma-Tré

PROJECT TITLE

GROUPE 1

Nina KLEBER. Laurane NERON. Marco PROIETTI. Jérémy TOUMINE. David WHELAN.

65mm of rigid insulation

170mm Woolen Insulation Internal plasterboard finish Rainwater Drain depth 140mm and width 115mm with a varition of slope

100mm Rigid Insulation Breather membrane 50mm Cavity

Drain flashing Concrete Blockwork, mortar joints

Steel beam as per enginneers specification Rainwater Drain depth 140mm and width 115mm with a varition of slope

Steel and Glulam beam connection as per engineers specification.

Pre-cast concrete column 100mmx200mm

16mm thick Laminated glass panels Drain flashing 400mmx500mm

Horizontal Cedar Wood clad 40mmx15mm fixed to conrete column.

Steel beam as per enginneers specification Steel and Glulam beam connection as per engineers specification. 16mm thick Laminated glass panels 400mmx500mm 65mm of rigid insulation

170mm Woolen Insulation Internal plasterboard finish

100mm Rigid Insulation Breather membrane Aluminum snap-on cosmetic cap EPDM gasket seals 10x12mm RA24 EPDM foam strip fitted between cap screws Aluminium screw-on pressure plate

50mm Cavity

65mm of rigid insulation

170mm Woolen Insulation

Concrete Blockwork, mortar joints

Internal plasterboard finish

100mm Rigid Insulation Breather membrane 50mm Cavity

Pre-cast concrete column 100mmx200mm Aluminum Fixing

Detail A Scale 1:20

Aluminum fixed to beam Cedar Wood clad Horizontal 40mmx15mm fixed to conrete Glulam Beamcolumn. 50x90mm

Concrete Blockwork, mortar joints

Detail B Scale 1:5 Pre-cast concrete column 100mmx200mm

text pointing out the purpose of the above doc

SECTION 1/20

DETAIL 1/5

Horizontal Cedar Wood clad 40mmx15mm fixed to conrete column.

Glulam Beam 50x90 with various lengths Aluminium fixing as per enginneers specification

Aluminum snap-on cosmetic cap

Aluminium frame attached to fixing

EPDM gasket seals 10x12mm RA24 EPDM foam strip fitted between cap screws

Water resistance silicone bead

Aluminium screw-on pressure plate

Aluminum snap-on cosmetic cap Aluminum Fixing

EPDM gasket seals Aluminum to beam 10x12mm RA24fixed EPDM foam strip fitted between Glulam Beam 50x90mm cap screws

Aluminium screw-on pressure plate Aluminum Fixing Detail D Scale 1:5

Detail C Scale 1:5

Aluminum fixed to beam

Steel connector

Glulam Beam 50x90mm

Rainwater drain fixing to beam Glulam Beam 70x90mm Glulam Beam 50x90 with various lengths Aluminium fixing as per enginneers specification Aluminium frame attached to fixing Water resistance silicone bead

Glulam Beam 50x90 with various lengths Aluminium fixing as per enginneers specification Aluminium frame attached to fixing Water resistance silicone bead

Steel connector Rainwater drain fixing to beam Glulam Beam 70x90mm Steel connector Rainwater drain fixing to beam Glulam Beam 70x90mm

38

MODEL [SCALE 1:20]

39


AERODYNAMIC 2

INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES Waterford Institute of Technology Ecole d’Architecture de la Ville et des Territoires Technische Universitats Munchen Universita Roma-Tré

2014

GROUPE #2

Tozzi Jessicq Seignol François Swedjemark Bjoern Getz Ferdinand

INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES

PROJECT TITLE :

AERODYNAMIC

ANALYSIS Masterplan Scale : 1/500

CLIMATE STRATEGY

average wind direction

Waterford Institute of Technology Ecole d’Architecture de la Ville et des Territoires Technische Universitats Munchen Universita Roma-Tré

2014

GROUPE #2

Tozzi Jessicq Seignol François Swedjemark Bjoern Getz Ferdinand

PROJECT TITLE AERODYNAMIC

PROJECT

PROJECT Transversal Section, Scale 1/50 :

permanent presence of wind whole year - 4,5 - 7 beaufort - heat loss at the wall - damage of the wall - can`t open the window for ventilation average wind direction is south west

average wind speed - Tramore

driven rain causes damage and heat loss house is not protected enough on south-west side - rarely use of outer space - can`t controll water runoff from façade during heavy rain

average temperqture per month - Tramore

CONCEPT DRAWINGS Step 1 :

Step 2 :

- The existing Houses

- Filling the gap for a best energetic and thermic aspect . Saving up to 20 % Energy - Rehabilitated the spaces between each houses

Zoom Masterplan Scale : 1/200

Master Plan, Scale 1/200 :

Step 3 : -Setting an envelope against the wind Step 4 : -A curve shape alows the envelope to be more stable against the wind. - Reduce the size of the envelope, - Less material for a maximal impact - Cration of a commun space under the envelope (garden)

The environement aspect :

The architectural aspect :

Longitudinal Section, Scale 1/200 :

- Keep the initial view -Creation of a commun space (garden) - Extent the private surface of each house with a cover space

40

41


AMIC

PROJECT TITLE

INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES Waterford Institute of Technology Ecole d’Architecture de la Ville et des Territoires Technische Universitats Munchen Universita Roma-Tré

Details

Section of the structure : Scale 1/50

AERODYNAMIC

GROUPE #2

DETAIL 1/5

Tozzi Jessicq Seignol François Swedjemark Bjoern Getz Ferdinand

Section of the roof : Scale 1/5

Section of the ground : Scale 1/5

Perspectives Outiside view of the project :

Inside view of the project :

MODEL [SCALE 1:20]

PROJECT AXONOMETRY

42

43


MIXING ENVELOPE 3

INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES 2014 Waterford Institute of Technology Ecole d’Architecture de la Ville et des Territoires Technische Universitats Munchen Universita Roma-Tré

1:200 PROJECT HOUSE PLAN

MIXING ENVELOPE

GROUPE 3

Anna-Louise Duggan, Anna Charpali, Luca Marseglia, Oliver Hellmuth, Louise Deguine

1:500 MASTER PLAN

Ti

WIND STRATEGY

Te

20 SOLAR STRATEGY

5

2. Version kW/ha per Person

4

Solare Einstrahlung südwest Sommer 301,5 Winter 70,35

süd Sommer Winter

Durchschnitt 185,925

Durchschnitt

Ti

RAIN STRATEGY

3. Version

Persons Ps (W/m²) Vs

201 93

355 1 workplace

Total kWh/a

6

1200 2184

7200

13104

energy consumption per Person per week (kw/h) 5,5 Worktime in weeks 52 Total kWh/a

9,059155 provided workplaces

147

energy distibution cooling ventilation lighting equipment kitchen others

Te

0,5 20 5 0,2 0,5 Photovoltaic Energy Production : Solare Einstrahlung südwest süd Surface of P.V. panels: 26.8 m2 301,5 3216 kWh/a Sommer TotalSommer energy production: süd 70,35 Winter Winter

0-2% 9-11% 37-43% 31-37% 4-6% 7-12%

1 10 40 34 5 10

cooling ventilation lighting equipment kitchen others

ENERGY DISTRIBUTION 201 93

10 % others

1% cooling

10 %ventilation

5 % kitchen

Average workspace energy per person: durchsichtig 1139,25 PC: Durchschnitt 177 kWh/a 185,925 Monitors: 136 kWh/a Printers: 136 kWh/a

AIR-FLOW STRATEGY

Durchschnitt

147

34 % equipment

40 % lighting

QHeatKWH/A = 𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇 +=> 𝑄𝑄𝑄𝑄𝐿𝐿𝐿𝐿 9−PERSONS 0,95 � (𝑄𝑄𝑄𝑄𝑆𝑆𝑆𝑆 + 𝑄𝑄𝑄𝑄𝐿𝐿𝐿𝐿) TOTAL : 355 0,5 0,2 � Q = ���� 0,5 HeatA HEAT DEMAND CALCULATIONS N � �

QT = ∑ 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶 � 𝑈𝑈𝑈𝑈𝐶𝐶𝐶𝐶𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶 � 𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥𝑤𝑤𝑤𝑤 + 𝑈𝑈𝑈𝑈𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 � 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 � 𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 � 𝑇𝑇𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 � 0,95 = 7727,5 kWh/a QL = süd 𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑅𝑅𝑅𝑅 � 𝑤𝑤𝑤𝑤 � 𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 � 𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 � 𝑇𝑇𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 � 0,95

durchsichtig 1139,25 QS = ∑ (𝐴𝐴𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 � 𝑔𝑔𝑔𝑔𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 � 𝑟𝑟𝑟𝑟 � 𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠 QI = 22 � 𝐴𝐴𝐴𝐴𝑁𝑁𝑁𝑁 = 2149,7 kWh/a

𝑗𝑗𝑗𝑗 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

= 3139,6 kWh/a

QHeat = 𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇 + 𝑄𝑄𝑄𝑄𝐿𝐿𝐿𝐿 − 0,95 � (𝑄𝑄𝑄𝑄𝑆𝑆𝑆𝑆 + 𝑄𝑄𝑄𝑄𝐿𝐿𝐿𝐿) = 1991,1 kWh/a QHeatAN=

����� ��

QI

QL

= 6681,2 kWh/a

QT

= 19,96 kWh/a

-

QS

=

QH

QT = ∑ 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶 � 𝑈𝑈𝑈𝑈𝐶𝐶𝐶𝐶𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶 � 𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥𝑤𝑤𝑤𝑤 + 𝑈𝑈𝑈𝑈𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 � 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 � 𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 � 𝑇𝑇𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 � 0,95

44

QL = 𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑅𝑅𝑅𝑅 � 𝑤𝑤𝑤𝑤 � 𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 � 𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 � 𝑇𝑇𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 � 0,95

QS = ∑ (𝐴𝐴𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 � 𝑔𝑔𝑔𝑔𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 � 𝑟𝑟𝑟𝑟 � 𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠 QI = 22 � 𝐴𝐴𝐴𝐴𝑁𝑁𝑁𝑁

𝑗𝑗𝑗𝑗 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

45


INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES 2014 Waterford Institute of Technology Ecole d’Architecture de la Ville et des Territoires Technische Universitats Munchen Universita Roma-Tré

MIXING ENVELOPE

GROUPE 3

Anna-Louise Duggan, Anna Charpali, Luca Marseglia, Oliver Hellmuth, Louise Deguine

cover sheet insulated steel profile

vents

wall construction plaster 10mm concrete bricks 100mm insulation EPS 100mm concrete bricks 100mm plaster 10mm

roof construction rafter vapour permeable foll timber battens tiles new roof construction BIM spacers kalwall panels 70mm

EXISTING AND PROPOSED EAVES CONNECTION SECTION 1:5

spacers

kalwall panel 70mm

joist hanger

insulated steel profile

sliding door Schüco ASS 50

GSEducationalVersion

floor construction timpled sheeting perimeter insulation XPS 160mm bitumen sheeting rigid insulation 200mm reinforced concrete 200mm

insulated steel profile

MODEL [scale 1:20] 1:20 PROPOSED ROOF SECTION

46

ROOF AND GROUND CONNECTIONS 1:5 SECTION

47


SLIDE 4

4

ground floor | 1:50

48

first floor | 1:50

49


4

MODEL [scale 1:20]

50

51


SOLERGY 5

INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES 2014

GROUPE 5

Waterford Institute of Technology Ecole d’Architecture de la Ville et des Territoires Technische Universitat Munchen Universita Roma-Tré

MOSIEJ Monika CARIOU Marie-Laure BELLANCOURT Quentin CASTLUNGER Jan Marc MARTINI Daniele

SOLERGY

SOLERGY

INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES 2014

Principals issues spotted

Global localisation

N

Recuperation of the water and view on the landscape

Average rainfalls

Average temperatures

New glazed facade

Adaptation to the orientation

FIRST FLOOR 1:100

GROUND FLOOR 1:100

N

Current ventilation system

SITE PLAN 1:1000

Proposed ventilation system

CROSS SECTION 1:200

A’

Current solar gain

CROSS SECTION AA’ 1:50

Proposed solar gain 26%

27%

QL

Solar energy gain - before

Solar energy gain - after

QI 12% QS

QS [kWh/a]

_ _

_

2119,65

Transmission losses - before

74%

QS [kWh/a]

4865,17

A

Transmission losses - after

61%

QT [kWh/a] QT

Energetic balance before

10926,39

QT [kWh/a]

Ventilation losses

QH

10100,51 Internal gains

QL [kWh/a]

5850,29

Heating demand - before

QI [kWh/a]

4580,93

Heating demand - after

27%

26%

QHeiz [kWh/a]

QI

QL

_

QS

QHeiz [kWh/a]

6977,02

Heating related to surface AN - after

__

QHeiz [kWh/m2a]

68%

45%

QT

10411,13

Heating selated to surface AN - before

28%

Energy Standard

52,06 >50kWh/m2a = A3

QHeiz [kWh/m2a] Energy Standard

N

33,51 >25kWh/m2a = A2

QH

Energetic balance after

52

SITE PLAN 1:200

EXISTING HOUSE AXONOMETRY

PROJECT AXONOMETRY

text pointing out the purpose of the above doc

53


INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES

SOLERGY

UNRAVELED ELEVATION

JONCTION WITH THE ROOF - VENTILATION DETAIL 1: 5

SOLAR PROTECTION DETAIL 1: 5

FACADE DETAIL 1: 20

MODEL [scale 1:20]

JONCTION WITH THE GROUND - VENTILATION DETAIL 1: 5

54

55


Tramore Town

INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES 2014

WATER POWER 6

Plan Scale 1-2500 ON BUILDING ENVELOPES 2014 INTENSIVE INTERNATIONALSiTeWORKSHOP

Waterford of Technology THE MASTER PLAN (SCALE 1:2500)Institute IT BECOMES CLEAR THAT THE EXISTING RESIDENCES ARE SEPARATED AND PERTAIN TO BE INDIVIDUAL Brian Fitzgerald d’Architecture de la Ville et desARE Territoires T THEY STILL THEY CANEcole NOT BE USED INDIVIDUALLY AS THEY NOT BUILT FLEXIBLILY, SO BY BRINGING THOSE DWELLINGS TOGETHER, THEY MAY BE USED IN DIFFERENT WAYS Technische Universitats Munchen

Roma-Tre E ADAPTED ENVELOPE Università HAS TO PREPARE FOR THE LOCAL WEATHER WITH ITS SALT CONTAINING AIR AND THE UPCOMING CLIMATE CHANGES ICH WILL INCLUDE A RISE OF THE AVERAGE TEMPERATURE FROM 6° TO 8° C IN WINTER AND 15° TO 18° IN SUMMER KEEP THOSE CHANGES AS SMALL AS POSSIBLE, THE REGARDED HOUSINGS CAN BE FED BY A CENTRAL HEATING SYSTEM ST IMPORTANT CLIMATIC CHANGES (TO US): MORE WIND, MORE RAIN

GROUP #6

Amaury Lefevere Noemi Lucia Di Vita Thi Truong Bernhard Geiger Marine Franceschi

Waterford Institute of Technology Ecole d’Architecture de la Ville et des Territoires Technische Universitats Munchen Università Roma-Tre

GROUP #6 Brian Fitzgerald Amaury Lefevere Noemi Lucia Di Vita Thi Truong Bernhard Geiger Marine Franceschi

N HUMIDITY 100% 80%

Relative Humidity

N

60% 40% 20% 0%

Jan

Feb

Mar

Mar

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Average Humidity Over One Year

W

E TEMPERATURE

W

Temperature

20° C

E

10° C

Max.

Min. 0° C

Jan

Feb

Mar

Mar

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Jul

Aug

Sep

Oct

Nov

Dec

Average Min. & MAx. Temperature Over One Yr.

S PERCIPITATION

Percipitation

200mm

GSEducationalVersion

100mm

concePT Diagram

0mm

Jan

S

Feb

Mar

Mar

May

Jun

Average Monthly Percipitation Over One Yr.

sion

SO, THE WIND SPEED, WHICH IS GENERALLY HIGH IN IRELAND AND IN ESPECIALLY IN EXPOSED AREAS NEAR THE SEA, WILL RISE AND THEREFORE CAUSE MORE HEAT LOSSES TROUGH CONVECTION E PROPOSED INTERVENTION CAN AVOID WIND TUNNELS AND SO CALM THE SPACE BEYOND THE HOUSING WELL AS REDUCE THE BUILDINGS SURFACE, WHICH MEANS LESS AREA TO BE ATTACKED BY THE WIND

First Floor

20

A

Axonometrie

10

B

B

N

0

Compacity

Climate Strategy

JAN

FEB

MAR

Water Storage Concept

APR

MAY

JUN

JUL

AUG

SEP

OKT

NOV

DEC

Master Plan 1:1000

NFALL IS TO INCREASE, BUT YET CLEAN WATER IS BECOMING SCARCE AS THERE IS AN IMBALANCE IN THE DEMAND FOR AND THE DISTRIBUTION OF WATER LLECTED AND STORAGE RAINWATER CAN THEREFORE REDUCE THIS LACK WHEN USED FOR SEWERAGE, WASHING OR GARDEN WATERING D REDUCING AT THE SAME TIME OVER FLOODING OF THE AREA WHEN IT RAINS IN EXCESS. GSEducationalVersion

A

Ground Floor N

Section 1:200 Interior Perspective View Diagram of Ground Floor

8713

7908

Diagram of First Floor

2747

5339

2485

6119

Cross Section AA - 1:50

N

Plan 1:200

56

1

Section 1-50 1 : 50

57


INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES 2014 Waterford Institute of Technology Ecole d’Architecture de la Ville et des Territoires Technische Universitats Munchen Università Roma-Tre

GROUP #6 Brian Fitzgerald Amaury Lefevere Noemi Lucia Di Vita Thi Truong Bernhard Geiger Marine Franceschi

1

2

Exterior Perspective View

Cross Section BB - 1:20

Existing Roof Build-Up 200 X 300 Thrutone Roof Slates On 40 x 40 Roofing Battens @ 150mm c/c On Type 5U Breather Sarking Felt Lapped Over Ridge To Min. 250mm On 50X175mm Timber Rafters @ 600mm C/C. 44x175mm Ceiling Joistd @ 400mm C/C With 175mm Quilted Insulation With 12mm Foilbacked Plasterboard Skim Coated & Painted to Clients Spec.

12

150

12

12

25

170

NOTE: REFER TO ENGINEERS DETAIL FOR ROOF LOADING

Proposed Roof Build-Up

Existing Wall Build-Up

Standing Seam Zinc Roof on 20mm Marine Ply on 40mm Air Ventilation Gap Formed By Timber Battens Waterpoor Membrane on 20mm Marine Ply on 150mm Kingspan Expanded Ridgid Insulation Tapered to a Fall of 5 Deg. To Make Roof Slope on 20mm Marine Ply on 150mm 150x150mm UB Roof Beams With Quilted Insulation on Vapour Barrier on 12mm Foilbacked Plasterboard Skim Coated & Painted to Clients Spec.

5mm External Render On 100mm Concrete Block Outer Leaf on 40mm Air Ventilation Gap on 5mm Stainless Steel Wall Ties 60mm Kingspan Expanded Ridgid Insulation On 100mm Concrete Block Inner Leaf on 5mm Internal Render Painted to Clients Spec.

200

5

100

40

60

100

MODEL [SCLAE 1:20]

5

Detail - 1-5e

1.

1

Eaves Detail - 1:5

2.

Foundation Detail - 1:5

Eaves Detail 1:5

58

GSEducationalVersion

59


ADD-ON 7

GROUP 7

GROUP 7

Names: Fabiana Cerocchi, Erwan Guyot, Tobi Grund, Valentina La Marra, Patrick O’Connor

Names: Fabiana Cerocchi, Erwan Guyot, Tobi Grund, Valentina La Marra, Patrick O’Connor

Detail B

A

A’

Detail A

Study of the wind | December Existing plan | Ground floor

New plan | Ground floor | Scale 1:100

Diagram of the sun | December 09:00

Diagram of the sun | June 09:00

Diagram of the sun | December 12:00

Diagram of the sun | June 12:00

Diagram of the sun | December 15:00

Diagram of the sun | June 15:00

New plan | First floor | Scale 1:100

Existing plan | First floor

Site Plan | Scale 1:500

Section A-A’ | Scale 1:50

Site Section | Scale 1:200

Existing axonometric | SE view

Texture Salt

Sand Project axonometry | SE view

Wind Driven rain

Project axonometry | SW view

Existing axonometric | SW view

Site Plan | Scale 1:200

60

61


GROUP 7

Names: Fabiana Cerocchi, Erwan Guyot, Tobi Grund, Valentina La Marra, Patrick O’Connor

Detail D

Detail C

Detail D | Scale 1:5

Detail C | Scale 1:5

Section A - A’ | Scale 1:20

Function of the layers | Hermann Kaufmann

Detail A | Scale 1:5

MODEL [scale 1:50] Detail B | Scale 1:5

3D view of the external

62

63


BIOCURTAIN 8

INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES

2014

GROUP 8

BIO-CURTAIN

INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES

Carolin Bruns Valentin Goetze Marika Prete Henry Travers Thaddée Tiberghien

Waterford Institute of Technology Ecole d’Architecture de la Ville et des Territoires Technische Universität München Universita Roma-Tré

2014

GROUP 8

Carolin Bruns Valentin Goetze Marika Prete Henry Travers Thaddée Tiberghien

Waterford Institute of Technology Ecole d’Architecture de la Ville et des Territoires Technische Universität München Universita Roma-Tré

BIO-CURTAIN A

SITE SECTION 1/200

N

N

SITE PLAN 1/200

Ground Floor Plan 1/100 intervention in red

SITE PLAN 1/500

N

A

CLIMATIC PROBLEMS RAIN

A

- flood problems - danger of leaking parts WIND

water sluices plants

- cooling down the surface - wind channels between the houses - uncomfortable (cold) SUN - overheating (summer) - amount of natural lights (summer) - internal sun protection

collected water is pumped up to the upper tank

Rain water is collected in a tank

RAIN + WIND - driving rain may penetrate - cracks in the structure - noisy

collected water is pumped up to the toilets

CHINESE’S REEDS - MISCANTHUS - Bio mass - up to 4 m growth - high heat value - 8000 l fuel oil per HA (rape seed only 3000) - protects against wind and erosion - Energy Efficiency: - Reed 1/15; Rapes 1/2; Maize 1/5 - after 5 years - first harvest - with a lifetime of 20 years no storage required

collected rain water

N

GROUND FLOOR 1/100

First Floor Plan 1/100 intervention in red

Type of Plant

Average Height

Wind Protection

Salt Protection

Energy Efficiency

Harvesting Season

Drying Time

Common Reed Miscanthus Ivy Marrom Grass Gorse

2 - 2.5 mm 3 - 4 mm 10-11 mm 0.3 - 0.5 mm 1m

4/5 4/5 2/5 1/5 2/5

yes yes yes yes yes

1:10 1:15 1:5 1:0,7 1:2

Sept-Oct Sept All year July-Aug July-Aug

3-4 weeks N/A N/A 5 weeks N/A

A

A/V- RATIO

of Fuel oil demand area ( liter/ year)

surrounding surface (m)

Volume

A/V-Ratio

House Type “B”

413,97 m

710,94 m

0,58

House Type “D”

496,99 m

870,35

0,57

B+D

998,38 m

2504,94

0,4

Type of house

Floor area (m

Number of dweller

3352

B1

123

2

11

1554

4080

B2

123

3

11

1630

D1

150

3

10

1938

D2

150

4

10

2014

77672

Number of Fuel oil demand houses in area ( liter/ year)

Total Fuel oil demand for the whole area

74544

Reduction

3128 (-4,03%) Sun: Summer (61,15°)

64

Sun: Winter (14,27°)

Sun: Summer (61,15°)

Sun: Winter (14,27°)

Elevation 1/50

65


INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES 2014 Waterford Institute of Technology Ecole d’Architecture de la Ville et des Territoires Technische Universität München Universita Roma-Tré

BIO-CURTAIN

GROUP 8

Carolin Bruns Valentin Goetze Marika Prete Henry Travers Thaddée Tiberghien

INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES Waterford Institute of Technology Ecole d’Architecture de la Ville et des Territoires Technische Universität München Universita Roma-Tré

BIO-CURTAIN

2014

GROUP 8

Carolin Bruns Valentin Goetze Marika Prete Henry Travers Thaddée Tiberghien

Section 1/20

Detail 1/5

66

67


MODEL [scale 1:20]

68

69


THE RESIDENTIAL 9

INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES 2014 Waterford Institute of Technology Ecole d’Architecture de la Ville et des Territoires Technische Universitats Munchen Universita Roma-Tré

INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES 2014

The Residential Building Envelope

GROUPE 9

Waterford Institute of Technology Ecole d’Architecture de la Ville et des Territoires Technische Universitats Munchen Universita Roma-Tré

Creating an improved architectural connection to the landscape by breaking existing architectural boundaries and integrating a green wall to a new polycarbonate envelope.

James Hearne Paola Linzoni Milli Charlotte Osthelder Lucas Pesche Emilien Pont Sophie Ramm

GROUPE 9

James Hearne Paola Linzoni Milli Charlotte Osthelder Lucas Pesche Emilien Pont Sophie Ramm

The Residential Building Envelope Creating an improved architectural connection to the landscape by breaking existing architectural boundaries and integrating a green wall to a new polycarbonate envelope.

Plan Groundfloor 1/100

N

N

Climate changing in Waterford region

Plan First Floor 1/100

Tramore context analysis

N

Building Climate Control

Site Plan 1/500

Gigon & Guyer - Witchtrach - 2004

Deppisch Architetten - Munich - 2010

Gabriel Verd - Almeria - 2007

Architectural problems (Disconnection)

N

Site Plan 1/200 - BEFORE

N

R. Ricciotti - Bandol - 2002

N

Technological problems (Weather conditions)

Perspective section 1/50

N

Site Plan 1/200 - AFTER

Site Plan 1/200 - BEFORE

70

Site Plan 1/200 - AFTER

71


INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES 2014 Waterford Institute of Technology Ecole dâ&#x20AC;&#x2122;Architecture de la Ville et des Territoires Technische Universitats Munchen Universita Roma-TrĂŠ

The Residential Building Envelope

GROUPE 9

Creating an improved architectural connection to the landscape by breaking existing architectural boundaries and integrating a green wall to a new polycarbonate envelope.

James Hearne Paola Linzoni Milli Charlotte Osthelder Lucas Pesche Emilien Pont Sophie Ramm

Green Wall 1/5

Multiwall panel in co-extruded polycarbonate - High-quality diffused daylight transmission while keeping privacy - High impact resistance -> protecting from high wind speeds - High water-tightness ensured by precise interlock joint - Easy maintainance -> no need to clean - Design versatility -> creating individualism by coloring - UV-protected on one side -> no overheating - Salt resistant layer -> protecting wall behind from corrosion

Greenwall (structural media) - Living, breathing, more attractive wall -> providing aesthetic stimulation to disregarded places Educes overall temperatures of the building -> protecting from overheating - Irrigation system : greywater is pumped through green wall 3DVVHVWKURXJKÂżOWHUVJUDYHOPDULQHSODQWV 3XULÂżHVVOLJKWO\SROOXWHGZDWHU Treated water is sent to a grey water holding tank Water used for household/ irrigation

Wall Green Ground Connection 1/10

Exterior South West Wall 1/5

MODEL [scale 1:50]

South Elevation - BEFORE

72

South Elevation - AFTER

North Elevation - BEFORE

North Elevation - AFTER

73


Enelopes

INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES

OUTER LAYER

OUTER LAYER 10

Waterford Institute of Technology Ecole d’Architecture de la Ville et des Territoires Technische Universitats Munchen Universita Roma-Tré

CLIMATIC ANALYSIS

Group 10

MASTER PLAN 1/500

THE SITE IS LOCATED IN THE COASTAL TOWN OF TRAMORE, COUNTY WATERFORD, IRELAND

2014 GROUP 10 Philipp Mumme Gaia Erario Omri Galron Hichame Amram Eoghan Harford

Pilipp Mumme Gaia Erario Omri Galron Hichame Amram Eoghan Harford

INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES

2014 GROUP 10 Philipp Mumme Gaia Erario Omri Galron Hichame Amram Eoghan Harford

Waterford Institute of Technology Ecole d’Architecture de la Ville et des Territoires Technische Universitats Munchen Universita Roma-Tré

PROJECT INTERVENTION

SITE PLAN 1/500

OUTER LAYER

OUR INTERVENTION INVOLVED CREATING A NEW SKIN ON THE EXTERIOR OF THE FACADE. THE NEW LAYER CONSIST OF PANELS OF POLLY CARBONATE AND ALUMINUME HNEYCOMBE. AT THE SOUTHWESTERN AND UPPER FACADES THE POLYCARBONATE PANELS ARE TRANSLUCIDE TO ALLOW THE THIN LAIR OF AIR BETWEEN THE NEW SKIN AND THE EXISTING WALL TO ALLOW SOLAR GAIN. THE NORTH WESTERN FACADE IS COVERED BY A DARK LAYER OF POLLYCARBONATE TO REDUCE HEAT LOSS.

GROUND FLOOR PLAN 1/100

FIRST FLOOR PLAN 1/100

A

A

A1

A1

SECTION A/ A1 1/50

THE RESULTS OF THE ANALYSIS SHOW THAT THE FORCES OF WIND, RAIN AND SUN ALL COME FROM THE SAME DIRECTION, THE SOUTH WEST.

DESIGN APPROACH

SITE PLAN 1/200

THE INTENTION IS TO PROVIDE THE HOUSE WITH LAYER THAT NOT ONLY PROTECTS IT FROM NATURAL FORCES BUT ALSO TRANSFORMS THEM INTO ENERGY FOR DAY TO DAY USE

74

THE CHOSEN HOUSE IS LOCATED ON THE NORTH WEST PERIPHERY OF THE EXISTING HOUSING ESTATE

EXPLODED AXONOMETRIC

75


INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES

OUTER LAYER

Philipp Mumme Gaia Erario Omri Galron Hichame Amram Eoghan Harford

Waterford Institute of Technology Ecole d’Architecture de la Ville et des Territoires Technische Universitats Munchen Universita Roma-Tré

WALL SECTION 1/20

2014 GROUP 10

ROOF DETAIL 1/5

VENTILATION SLOT IN THE ALUMINUM FRAME

CORNER PIECE POLYCARBONATE VERTICAL FRAME

HORIZONTAL FRAME

HONEYCOMBE

WINDOW DETAIL 1/5

ALUMINUM SHUTTER RAIL

DOUBLE GLAZED WINDOW POLYCARBONATE HERMATIC FRAME

VENTILATION

MODEL [scale 1:20]

HORIZONTAL FRAME

76

77


WINDBREAKER 11

INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES 2014 Waterford Institute of Technology Ecole d’Architecture de la Ville et des Territoires Technische Universitats Munchen Universita Roma-Tré

THE WINDBREAKER

GROUPE 11 V. BLACTOT - A. GIANNISI - M. KEATING M. OTTAVIANI - A. PORCAI - A. PORCAI

INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES 2014 Waterford Institute of Technology Ecole d’Architecture de la Ville et des Territoires Technische Universitats Munchen Universita Roma-Tré

THE WINDBREAKER GROUPE 11 V. BLACTOT - A. GIANNISI - M. KEATING M. OTTAVIANI - A. PORCAI - A. PORCAI

LOCATION & ANALYSIS

PLAN ORGANIZATION

Wind barrier Reorganization of the ground floor with an open plan living room

Closed and oppressive walls

Innapropriate views

Defragmented plans GROUND PLAN 1 - 100

SITE PLAN 1-500

CROSS SECTION 1 - 50

CONCEPT & TYPOLOGY 1 - Re- organize the in between spaces into entrance spaces NORTH ELEVATION 1-200

2 - Extend these entrance spaces to re-define garden and create privacy

PROJECT PERSPECTIVE

PROJECT AXONOMETRY

3 - Install a fabric envelope to protect and link the house and the garden

4 - Place a wind wall to shelter from the wind and to produce energy

ROOF PLAN 1-200

78

79


INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES 2014 Waterford Institute of Technology Ecole d’Architecture de la Ville et des Territoires Technische Universitats Munchen Universita Roma-Tré

THE WINDBREAKER GROUPE 11 V. BLACTOT - A. GIANNISI - M. KEATING M. OTTAVIANI - A. PORCAI - A. PORCAI

WALL SECTION SCALE : 1- 20

DETAILS & PRECEDENTS

Esseker Centar Osijek, Croatia, Serge Ferrari HEAD DETAIL SCALE : 1- 5

CILL DETAIL SCALE : 1- 5

Artistic wind wall , Ned Kahn

CLIMATE STRATEGY The Wind wall protects garden and creates sheltered spaces while generating electricity

Site and potential strategy m/s 19.1 14 . 28 - 16.8 12.04 -14.28 9.52 - 12.04 7.28 - 9.52 4.76 - 7.28 2.52 - 4.76 0 - 2.52

FOUNDATION DETAIL SCALE : 1- 5

Each house needs on average: 20 000 kWh Four house pilot scheme : 80,000 kWh Four 250 Micro Generators in wall : 50 000 kWh Renewable electricity 60% 53.71 m/S

0.00 m/S

CONCEPT SKETCH

80

81


RESERVOIR RESERVOIR

INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES Waterford Institute of Technology Ecole d’Architecture de la Ville et des Territoires Technische Universitats Munchen Università Roma Tre

INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES Waterford Institute of Technology Ecole d’Architecture de la Ville et des Territoires Technische Universitats Munchen Università Roma Tre

GROUPE # 12

Brian Ward Anthony Hogan Stephan Mauser Goulven Le Corre Mariacristina Maletta

GROUPE # 12 Brian Ward Anthony Hogan Stephan Mauser Goulven Le Corre Mariacristina Maletta

RESERVOIR

PROJECT PROPOSAL

LOCATION AND THERMAL ANALYSIS

Section BB 1:200

Section AA 1:200

North Elevation 1:200

B

Site location 1:2000

A UP 1

15

3

14

4 2 3

7

15 14

4

13

5

13

5 6

16

UP

UP 16

2 UP

12 11 10

1

1

16

2

15 11

12 11

7

8

9

13

5 6

7

10

14

4

5 6

8

15

3

4

13 12

16

2

3

14

PROBLEMS AND POTENTIAL ANALYSIS

1

A

10

8

9

9

12

6

11

7

10

8 9

North Elevation

B First Floor Plan 1:200 Water

Water

B

A UP UP

UP 2 3 4

4 6 7

3

8

4

UP 1

1 2 3 5

1

9

5 11 10

11 10

6 7 8 9

1 2 3

Size

2

A

First Floor Plan

4 5 11

6

10

7 8 9

5 11

6

10

7

Size

8 9

B

Windows Groundfloor Plan 1:200 Windows

Groundfloor Plan

Boundaries

South Elevation

82

South Elevation 1:200

Boundaries

83


INTENSIVE INTERNATIONAL WORKSHOP ON BUILDING ENVELOPES Waterford Institute of Technology Ecole d’Architecture de la Ville et des Territoires Technische Universitats Munchen Università Roma Tre

GROUPE # 12 Brian Ward Anthony Hogan Stephan Mauser Goulven Le Corre Mariacristina Maletta

RESERVOIR

PROJECT PROPOSAL

Detail 1:20

A

Detail 1:5

MODEL [ SCALE 1:20 ]

84

85

Wie 2014 Erasmus Workshop  
Read more
Read more
Similar to
Popular now
Just for you