Page 77

Factory and enterprise systems

Ubiquitous manufacturing concept for SMEs (Umanu) Mikael Haag

Introduction The Umanu research studied the impact and applications of the ubiquitous manufacturing concept. In this sense, ubiquitous manufacturing means the usage and utility of ubiquitous computing concepts and technologies in a manufacturing environment. Simply put, this means embedding more intelligence into objects on the production line, making them communicate and using all the data this generates to further enhance the functionality and visibility of the production.

Methods The basis of the ubiquitous manufacturing system is that all single key objects and processes also have a digital identity/identifier. The information relating to them can therefore easily be retrieved from the database, and all the relevant real world information should also be tracked and stored into these same data models. Some example queries that a system like this could handle are to find all of a certain type of tool in the plant or the exact location and stage of a single order. The availability of all this information in digital form has been regarded by various sources with various terms, such as real-world visibility [1] or high resolution management [2]. This information supplied by the manufacturing processes is generated by discrete events and can include data such as a timestamp, location, resource identifier or object name and its state. These events can be combined to form a big picture that describes what is actually happening in the manufacturing line, and this

big picture constitutes the data pool for highresolution management. Here, the key factor is making all the real time information about the actual state of the manufacturing plant available, which works as a foundation for many potential enhancements for production. This high resolution information should be generated automatically from the processes, thus there is no need to have external measurements on the functionality of the system. The methods for collecting the data from the production line can also include location-based systems and unique identifiers for actors, such as bar codes or RFID tags.

Results In the analytical utility, the main advantages to which this abundance of information leads are enhanced decision-making and more controllable manufacturing. Besides allowing a more detailed view of manufacturing, the information generated by ubiquitous manufacturing can potentially allow previously hidden details to be found. The increased knowledge of the status of objects in the manufacturing plant naturally opens up possibilities in process automation and better visibility through transparency [3]. Moreover the transparency enables a large number of possibilities for recording data from the processes for analysis, for example, in order to find the bottlenecks and other critical points in the processes [3]. This recorded information can also be used in real time to further evaluate and evolve processes. These data can be used at plant level for making better calculations on the current capacity,

77

VTT Research Highlights 3  

Production matters. VTT in global trends. Kai Häkkinen (ed.)

VTT Research Highlights 3  

Production matters. VTT in global trends. Kai Häkkinen (ed.)