Page 34

Figure 2. Results of the dosing experiments with a microfluidic cartridge. The liquid sample was PBS-buffer solution and human whole blood.

In the dosing experiments for 10 microlitre samples, the volume and repeatability of the samples were good (Figure 2) and comparable to the results of other disposable cartridges. The deviation of the sample size can be less than ±3%, depending of the liquid (PBS buffer solution or whole blood) and cartridge material.

Conclusion and exploitation potential VTT has developed disposable plastic cartridges with automatic, quick and simple handling of liquids. The product is suitable for low-cost manufacturing by injection moulding. The sealing of the cartridge is carried out by laser welding the cover to the injection moulded parts. The exploitation potential is great and covers areas of medical diagnostics, environ-

34

mental control, food and nutrition as well as the chemical and process industry. The markets are growing fast and the technology will enable several new business areas and commercial applications.

Acknowledgements VTT is grateful for the financial support of the Ruiskuchip project by the Finnish Funding Agency for Technology and Innovation (Tekes) and several Finnish companies.

Publications Kosonen, T., Jokinen, A. Miniatyrisoitujen ”Lab-on-Chip”-muovinäytekasettien edullinen valmistus ruiskuvalulla. VTT Research Report: VTT-R-00305-12. VTT, Espoo, Finland, 2007. (In Finnish.)

VTT Research Highlights 3  

Production matters. VTT in global trends. Kai Häkkinen (ed.)

VTT Research Highlights 3  

Production matters. VTT in global trends. Kai Häkkinen (ed.)