Page 1

REVISTA DE

Estadistica

estadistica Âżcomo se utiliza? regresion lineal


Regresion lineal ¿Como se utiliza? La regresión lineal permite trabajar con una variable a nivel de intervalo o razón. De la misma manera, es posible analizar la relación entre dos o más variables a través de ecuaciones, lo que se denomina regresión múltiple o regresión lineal múltiple.


Contenido Historia

Modelo de regresion lineal

Tipos de modelos

Aplicacion de regresion lineal


Historia La primera forma de regresión lineal documentada fue el método de los mínimos cuadrados que fue publicada por Legendre en 1805, Gauss publicó un trabajo en donde desarrollaba de manera más profunda el método de los mínimos cuadrados,1 y en dónde se incluía una versión del teorema de Gauss-Márkov. El término regresión se utilizó por primera vez en el estudio de variables antropométricas: al comparar la estatura de padres e hijos, donde resultó que los hijos cuyos padres tenían una estatura muy superior al valor medio, tendían a igualarse a éste, mientras que aquellos cuyos padres eran muy bajos tendían a reducir su diferencia respecto a la estatura media; es decir, "regresaban" al promedio.2 La constatación empírica de esta propiedad se vio reforzada más tarde con la justificación teórica de ese fenómeno. El término lineal se emplea para distinguirlo del resto de técnicas de regresión, que emplean modelos basados en cualquier clase de función matemática. Los modelos lineales son una explicación simplificada de la realidad, mucho más ágiles y con un soporte teórico mucho más extenso por parte de la matemática y la estadística. Pero bien, como se ha dicho, se puede usar el término lineal para distinguir modelos basados en cualquier clase de aplicación.


Modelo de rgresion lineal

El modelo lineal relaciona la variable dependiente Y con K variables explícitas Kx (k = 1,...K), o cualquier transformación de éstas que generen un hiperplano de parámetros Bk desconocidos:


Supuestos modelos de regresion lineal

Para poder crear un modelo de regresión lineal es necesario que se cumpla con los siguientes supuestos: 1- Que la relación entre las variables sea lineal. 2- Que los errores en la medición de las variables explicativas sean independientes entre sí. 3- Que los errores tengan varianza constante. (Homocedasticidad) 4-Que los errores tengan una esperanza matemática igual a cero (los errores de una misma magnitud y distinto signo son equiprobables). 5-Que el error total sea la suma de todos los errores.


Tipos de modelos Podemos clasificar los tipos de regresión según diversos criterios. En primer lugar, en función del número de variables independientes: Regresión simple: Cuando la variable Y depende únicamente de una única variable X. Regresión múltiple: Cuando la variable Y depende de varias variables (X1, X2, ..., Xr) En segundo lugar, en función del tipo de función f(X): Regresión lineal: Cuando f(X) es una función lineal. Regresión no lineal: Cuando f(X) no es una función lineal. En tercer lugar, en función de la naturaleza de la relación que exista entre las dos variables: La variable X puede ser la causa del valor de la variable Y. Por ejemplo, en toxicología, si X = Dosis de la droga e Y = Mortalidad, la mortalidad se atribuye a la dosis administrada y no a otras causas. Puede haber simplemente relación entre las dos variables. Por ejemplo, en un estudio de medicina en que se estudian las variables X = Peso e Y = Altura de un grupo de individuos, puede haber relación entre las dos, aunque difícilmente una pueda considerarse causa de la otra.


Formula - regresion simple

Formula - regresion multiple


Aplicacion de la regrecion lineal Lineas de tendencia Una línea de tendencia representa una tendencia en una serie de datos obtenidos a través de un largo período. Este tipo de líneas puede decirnos si un conjunto de datos en particular (como por ejemplo, el PIB, el precio del petróleo o el valor de las acciones) han aumentado o decrementado en un determinado período.8 Se puede dibujar una línea de tendencia a simple vista fácilmente a partir de un grupo de puntos, pero su posición y pendiente se calcula de manera más precisa utilizando técnicas estadísticas como las regresiones lineales. Las líneas de tendencia son generalmente líneas rectas, aunque algunas variaciones utilizan polinomios de mayor grado dependiendo de la curvatura deseada en la línea.


Medicina

En medicina, las primeras evidencias relacionando la mortalidad con el fumar tabaco9 vinieron de estudios que utilizaban la regresión lineal. Los investigadores incluyen una gran cantidad de variables en su análisis de regresión en un esfuerzo por eliminar factores que pudieran producir correlaciones espurias. En el caso del tabaquismo, los investigadores incluyeron el estado socio-económico para asegurarse que los efectos de mortalidad por tabaquismo no sean un efecto de su educación o posición económica. No obstante, es imposible incluir todas las variables posibles en un estudio de regresión.10 11 En el ejemplo del tabaquismo, un hipotético gen podría aumentar la mortalidad y aumentar la propensión a adquirir enfermedades relacionadas con el consumo de tabaco. Por esta razón, en la actualidad las pruebas controladas aleatorias son consideradas mucho más confiables que los análisis de regresión.


Informatica

Ejemplo de una rutina que utiliza una recta de regresiรณn lineal para proyectar un valor futuro: Cรณdigo escrito en PHP


victor j, Matheus C.


Estadistica revista  

Regresion lineal

Read more
Read more
Similar to
Popular now
Just for you