Issuu on Google+

Corazón

INTERNET

Volumen 1, nº 1

corazon El corazón es el órgano principal del aparato circulatorio en todos los animales que poseen un sistema circulatorio (incluyendo todos los vertebrados). En el ser humano es un músculo hueco y piramidal situado en la cavidad torácica. Funciona como una bomba aspirante e impelente, impulsando la sangre a todo el cuerpo. Las células cardíacas en los vertebrados, derivan en el embrión de dos territorios distintos de poblaciones celulares llamados "campos cardíacos". El ventrículo izquierdo deriva del primer campo, en tanto que el derecho deriva del segundo. Durante mucho tiempo se ha encontrado que las células musculares cardíacas del segundo campo tenían marcadores que lo situaban como un derivado de la mandíbula inferior. Trabajos de investigación realizados en el tunicado Ciona intestinalis muestran que las células cardíacas también producen células musculares del sifón atrial, puesto que poseen los mar-

cadores Islet y Tbx1/10. El trabajo concluye que en antepasado común de tunicados y vertebrados poseían precursores totipotenciales del músculo cardiofaríngeo, que derivarían en el segundo campo cardíaco por relocalización.

"El corazón de las criaturas es la fundación de la vida, el principio de todo del sol del microcosmos, donde toda la vegetación depende, del vigor y la fuerza del flujo"

Corazón humano En el ser humano su tamaño es un poco mayor que el puño de su portador. El corazón está dividido en cuatro cámaras o cavidades: dos superiores, llamadas aurícula derecha (atrio derecho) y aurícula izquierda (atrio izquierdo), y dos inferiores, llamadas ventrículo derecho y ventrículo izquierdo.[3] El corazón es un órgano muscular autocontrolado, una bomba aspirante e impelente, formado por dos bombas en paralelo que trabajan al unísono para propulsar

la sangre hacia todos los órganos del cuerpo. Las aurículas son cámaras de recepción, que envían la sangre que reciben hacia los ventrículos, que funcionan como cámaras de expulsión. La aurícula derecha recibe sangre poco oxigenada desde: la vena cava inferior (VCI), que transporta la sangre procedente del tórax, el abdomen y las extremidades inferiores. la vena cava superior

(VCS), que recibe la sangre de las extremidades superiores y la cabeza. La vena cava inferior y la vena cava superior vierten la sangre poco oxigenada en la aurícula derecha. Esta la traspasa al ventrículo derecho a través de la válvula tricúspide, y desde aquí se impulsa hacia los pulmones a través de las arterias pulmonares, separadas del ventrículo derecho por la válvula pulmonar.


Página 2

Corazón

Pie de imagen o gráfico.

Una vez que se oxigena a su paso por los pulmones, la sangre vuelve al corazón izquierdo a través de las venas pulmonares, entrando en la aurícula izquierda. De aquí pasa al ventrículo izquierdo, separado de la aurícula izquierda por la válvula mitral. Desde el ventrículo izquierdo, la sangre es propulsada hacia la arteria aorta a través de la válvula aórtica, para proporcionar oxígeno a todos los tejidos del organismo. Una vez que los diferentes órganos han captado el oxígeno de la sangre arterial, la sangre pobre en oxígeno entra en el sistema venoso y retorna al corazón derecho. El corazón impulsa la sangre mediante los mo-

Origen embrionario El sistema circulatorio es el primer sistema funcional del embrión de un vertebrado en desarrollo, el corazón es el primer órgano que funciona en este embrión. La formación de este se presenta por la elevación de las dos capas de la hoja asplácnica del mesodermo

vimientos de sístole (auricular y ventricular) y diástole. Se denomina sístole a la contracción del corazón (ya sea de una aurícula o de un ventrículo) para expulsar la sangre hacia los tejidos. Se denomina diástole a la relajación del corazón para recibir la sangre procedente de los tejidos. Un ciclo cardíaco está formado por una fase de relajación y llenado ventricular (diástole) seguida de una fase contracción y vaciado ventricular (sístole). Cuando se utiliza un estetoscopio, se pueden distinguir dos ruidos:  el primero correspon-

lateral, es decir la capa asplácnica dorsal y la capa asplácnica ventral. (Scott, 2006) El origen de la formación del corazón empieza en la línea primitiva del embrión amniota, alrededor del nodo de Hensen (Colas, 2000). Su origen parte por un tipo de células conoci-

de a la contracción de los ventrículos con el consecuente cierre de las válvulas auriculoventriculares (mitral y tricuspidea); el segundo corresponde a la relajación de los ventrículos con el consecuente retorno de sangre hacia los ventrículos y cierre de la válvula pulmonar y aórtica.

das como las células cardiogénicas del mesodermo, se dividen en dos grupos:

Especificación de las células cardiacas precursoras

Pie de imagen o gráfico.

La especificación de las células cardiacas precursoras, se encuentra inducida por dos cascadas de señalización que son BMP y FGF. Estas dos rutas están ubicadas en el endodermo posterior y solo funcionan si se remueve el endodermo anterior previamente. La señal que previene del endodermo estimula facto-

res de transcripción como el BMP 2 (Nascone, 1995), permitiendo de esta manera la especificación de las células cardiacas en: células endocárdicas y endoteliales, células auriculares miocárdicas y células ventriculares miocárdicas. Dando lugar al tejido endocárdico, miocárdico, las aurículas y los ventrículos.

Posterior a la especificación empieza la migración.


Página 3

Volumen 1, nº 1

Migración de las células cardiacas precursoras La migración empieza entre el endodermo y el ectodermo, ubicando el corazón en el medio del organismo amniota. Se asume que el direccionamiento es causado por el intestino anterior y es impulsado por un gradiente de fibroquistina que permite el movimiento de las células de la región anterior a la posterior.

como el cardia bifada, es decir dos corazones en organismo como pollo y ratón (DeHaan, 1959).

Este proceso tiene que ser regulado con alta precisión ya que permite la formación de un corazón sano y en buen estado Si este proceso no es el adecuado. Se han reportado mutantes

Formación de los ejes antero posterior y dominós cardíacos La formación de los ejes antero-posteriores son los que van a permitir que el organismo presente un sistema de sangre oxigenada y sangre no oxigenada, es decir llevará al ingreso y la expulsión de la sangre dentro del órgano, formando las vías de conducción, arterias y las venas y de esta manera dirigiendo la

entrada y salida de la sangre para realizar el transporte. Se ha comprobado este fenómeno mediante RA sintetasa (Marcos S. Simões-Costa, 2005) .

Diferenciación La diferenciación de las células cardiacas esta expresada por dos genes fundamentales, estos son la expresión de GATA4 y NKx 2-5, por medio de estos dos factores de transcripción son activadas las cascadas moleculares que codifican el BMP Y el FGF para realizar la migración de las células y de esta manera se logra la formación de los tejidos cardiacos como lo son el

endocardio el miocardio y el pericardio. Los ventrículos y las aurículas son desarrollados posteriormente y se diferencian por la expresión de BMP 10 en el medio del órgano. Luego este las orienta al lado dorsal y ventral según llegando a la formación de la aurícula derecha, aurícula izquierda (anterior), ventrículo derecho y ventrículo izquierdo (posterior). Según la cantidad de sangre bombeada o recibida la concentración de BMP cambia siendo más grande en el ventrículo izquierdo y más pequeño en la aurícula derecha. La dirección es brindada por la familia de genes Tbx los cuales orientan la ubicación de las cámaras. Limitando el espacio que cada una de estas debe ocupar (Jorge L. Sepulveda, 1998) Finalmente las N-caderinas son expresadas para la formación del pericardio dando la rigidez del músculo y estableciendo la conexión de los tejidos.


Plegaje y formación

Aunque la formación de las cámaras ya se encuentra determinada por las familias de genes anteriormente nombradas, el corazón en sus primeros estadios es un tabique vertical. Se presenta en mamíferos cercano a los 21 días de desarrollo, en la parte más anterior del tabique se ubica el saco aórtico en la parte más posterior se ubican las venas vitelinas, luego de dos semanas el tubo cardíaco sufre una inversión de esta manera las venas vitelinas se ubican debajo del saco aórtico dando origen a las aurículas, el saco aórtico da origen a la aorta, las arterias coronarias y la arteria pulmonar y por último el tejido ubicado en el medio del tubo da origen a los ventrículos después de los 33 días de desarrollo las cuatro cámaras cardíacas se encuentran definidas y el órgano late desde este estadio hasta el desarrollo del adulto. (Linask, 2003.

El origen del corazón y del resto del aparato circulatorio está dado por la diferenciación del mesénquima producto de la hoja esplácnica del mesodermo lateral, la diferenciación de estas células mesenquimáticas da origen a hemangioblastos los cuales se pueden diferenciar en:  

angioblastos (forman los vasos sanguíneos) hemocitoblastos (forman las células sanguíneas) la forma más primitiva del corazón es una estructura conocida como asa cardiaca, esta asa cardíaca consta de 4 partes en sentido caudo-craneal:

     

Seno Venoso Aurícula Primitiva Ventrículo Primitivo  Bulbo arterial o Bulbus Cordis (este a su vez tiene 3 partes): Porción Proximal (forma la porción trabeculada del ventrículo derecho) Porción Media (forma los conos de eyección de los grandes vasos) Porción Distal (forma los troncos de los grandes vasos arteriales).


Página 5

Para darle la forma correcta al corazón, el asa cardíaca realiza dos pliegues a nivel del bulbo arterial y de la aurícula primitiva de la siguiente forma:

Pie de imagen o gráfico.

Bulbo arterial: Ventral, Caudal y a la derecha  Aurícula Primitiva: Dorsal, Craneal y a la izquierda Este plegamiento hace que la aurícula primitiva quede por encima del ventrículo y el seno venoso en la parte posterior del corazón entre la aurícula y el ventrículo, a su vez hace que la porción proximal del bulbo arterial quede a nivel del ventrículo primitivo. En la cuarta semana de vida intrauterina ocurren cuatro procesos de tabicación interna del cora-

zón, formando definitivamente ambos ventrículos y aurículas, y a su vez dividiendo la arteria pulmonar de la aorta, estos procesos son los siguientes:  Tabicación Auriculo - Ventricular: este proceso se da por la formación y crecimiento de estructuras internas conocidas como almohadillas endocárdicas ubicadas en el agujero auriculo - ventricular común, existen 4 diferentes almohadillas endocárdicas las cua-

  

les son: Almohadilla Ventral: crece en sentido posterior Almohadilla Dorsal: crece en sentido anterior Almohadillas laterales Izquierda y Derecha: cada una crece al lado opuesto.

Las almohadillas dorsal y ventral, crecen más rápido que las laterales por lo cual se unen y forman un tabique conocido como Septum Intermedio, el crecimiento de las almohadillas laterales permite reducir la luz de los orificios auriculo-ventriculares formados.

ubicación Interauricular: este proceso de tabicación ocurre en sentido postero-anterior tomando como referencia al Septum Intermedio, primero en el lado izquierdo se forma un tabique conocido como Septum Primus, este se forma incompleto quedando una hosquedad en la parte antero-inferior del tabique conocida co-

mo Ostium Primus, luego esta hosquedad se cierra mientras se forma otra por delaminación de la porción superior del tabique conocida como Ostium Secundum, luego al lado derecho de este tabique se forma otro conocido como Septum Secundum en el cual se forma el agujero oval el cual se cierra pocas horas des-

Tabicación Troncoconal: esta tabicación Da origen a las arterias Aorta y Pulmonar, se forma un tabique que se desarrolla en sentido cráneo-caudal y de forma espiralada, separando ambas arterias y ubicándolas en su respectivo ventrículo, la tabicación en forma recta puede dar lugar a una anomalía conocida como

"transposición de los grandes vasos"

pués del nacimiento . Tabicación Interventricular: el tabique resultante de este proceso tiene una porción caudal muscular y una porción craneal membranosa, la porción muscular se forma por el piso de los ventrículos, la porción membranosa se forma por tejido conectivo producto del tabique muscular y el Septum Intermedio.


Página 6

Anatomía del corazón humano El corazón es un órgano musculoso hueco cuya función es bombear la sangre a través de los vasos sanguíneos del organismo. Se sitúa en la parte inferior del mediastino medio en donde está rodeado por una membrana fibrosa gruesa llamada pericardio. Está envuelto laxamente por el saco pericárdico que es un saco seroso de doble pared que encierra al corazón. El pericardio esta formado por una capa Parietal y una capa visceral. Rodeando a la capa de pericardio parietal está la fi-

brosa, formado por tejido conectivo y adiposo. La capa serosa del pericardio interior secreta líquido pericárdico que lubrica la superficie del corazón, para aislarlo y evitar la fricción mecánica que sufre durante la contracción. Las capas fibrosas externas lo protegen y separan. El corazón se compone de tres tipos de músculo cardíaco principalmente:

 

Fibras musculares excitadoras y conductoras especializadas. Estos se pueden agrupar en dos: músculos de la contracción y músculos de la excitación. A los músculos de la contracción se les encuentran: músculo auricular y músculo ventricular; a los músculos de la excitación se encuentra: fibras musculares excitadoras y conductoras especializadas.

Músculo auricular. Músculo ventricular.

Localización anatómica El corazón se localiza en la parte inferior del mediastino medio, entre el segundo y quinto espacio intercostal, izquierdo. El corazón está situado de forma oblicua: aproximadamente dos tercios a la izquierda del plano medio y un tercio a la derecha. El corazón tiene forma de una pirámide inclinada con el vértice en el “suelo”

en sentido anterior izquierdo; la base, opuesta a la punta, en sentido posterior y 3 lados: la cara diafragmática, sobre la que descansa la pirámide, la cara esternocostal, anterior y la cara pulmonar hacia la izquierda.

sanguíneos, capilares linfáticos y fibras nerviosas.

Estructura del corazón De adentro hacia afuera el corazón presenta las siguientes capas: El endocardio, una membrana serosa de endotelio y tejido conectivo de revestimiento interno, con la cual entra en contacto la sangre. Incluye fibras elásticas y de colágeno, vasos sanguíneos y fibras musculares especializadas, las cuales se denominan Fibras de Purkinje.

En su estructura encontramos las trabéculas carnosas, que dan resistencia para aumentar la contracción del corazón. El miocardio, es una masa muscular contráctil. El músculo cardíaco propiamente dicho; encargado de impulsar la sangre por el cuerpo mediante su contracción. Encontramos también en esta capa tejido conectivo, capilares

El pericardio es una membrana fibroserosa de dos capas, el pericardio visceral seroso o epicardio y el pericardio fibroso o parietal, que envuelve al corazón y a los grandes vasos separándolos de las estructuras vecinas. Forma una especie de bolsa o saco que cubre completamente al corazón y se prolonga hasta las raíces de los grandes vasos.


Página 7

Volumen 1, nº 1

Cámaras o cavidades cardíacas El corazón se divide en cuatro cámaras o cavidades cardíacas, dos superiores atrios o aurículas y dos inferiores o ventrículos. Los atrios reciben la sangre del sistema venoso, pasan a los ventrículos y desde ahí salen a la circulación arterial. El atrio derecho y el ventrículo derecho forman el corazón derecho. Recibe la sangre que proviene de todo el cuerpo, que desemboca en el atrio derecho a través de las venas cavas, superior e inferior. El atrio izquierdo y el ventrículo izquierdo forman el

corazón izquierdo. Recibe la sangre de la circulación pulmonar, que desemboca a través de las cuatro venas pulmonares a la porción superior de la aurícula izquierda. Esta sangre está oxigenada y proviene de los pulmones. El ventrículo izquierdo la envía por la arteria aorta para distribuirla por todo el organismo.

superior o tabique interauricular, y la inferior o tabique interventricular. Este último es especialmente importante, ya que por él discurre el fascículo de His, que permite llevar el impulso eléctrico a las partes más bajas del corazón.

El tejido que separa el corazón derecho del izquierdo se denomina septo o tabique. Funcionalmente, se divide en dos partes no separadas: la

Válvulas cardíacas Las válvulas cardíacas son las estructuras que separan unas cavidades de otras, evitando que exista reflujo retrógrado. Están situadas en torno a los orificios atrioventriculares (o aurículoventriculares) y entre los ventrículos y las arterias de salida. Son las siguientes cuatro:

separa la aurícula separa el ventrículo izderecha del ventrículo quierdo de la arteria aorta. derecho. La válvula pulmonar, que separa el ventrículo derecho de la arteria pulmonar.

La válvula tricúspide, que

La válvula aórtica, que

La válvula mitral o bicúspide, que separa la aurícula izquierda del ventrículo izquierdo.

La banda miocárdica ventricular Gracias al estudio del médico valenciano Francisco Torrent y Guasp se ha podido conocer mejor, la formación (en términos evolutivos), y funcionamiento a nivel mecánico del corazón. El doctor Torrent y Guasp descubrió, gracias a sus investigaciones, que la parte ventricular del corazón

era una banda con continuidad muscular que se replegaba sobre ella misma en forma de hélice durante el desarrollo embrionario, esto es, que el corazón es un músculo enrollado sobre si mismo.


Página 8

Volumen 1, nº 1

Excitación cardíaca Sistema cardionector. El músculo cardíaco es miogénico. Esto quiere decir que a diferencia del músculo esquelético que necesita de un estímulo consciente o reflejo, el músculo cardíaco se excita a sí mismo. Las contracciones rítmicas se producen espontáneamente, así como su frecuencia puede ser afectada por las influencias nerviosas u hormonales, como el ejercicio físico o la percepción de un peligro. La estimulación del corazón está coordinada por el sistema nervioso autónomo, tanto por parte del sistema nervioso simpátiEste sistema de conducción eléctrico explica la regularidad del ritmo cardíaco y asegura la coordinación de las contracciones auriculoventriculares. Esta actividad eléctrica puede ser analizada con electrodos situados en la superficie de la piel, llamándose a esta prueba electrocardiograma, ECG o EKG.

Batmotropismo: el

co (aumentando el ritmo y fuerza de contracción) como del parasimpático (reduce el ritmo y fuerza cardíacos). La secuencia de las contracciones es producida por la despolarización (inversión de la polaridad eléctrica de la membrana debido al paso de iones activos a través de ella) del nodo sinusal o nodo de Keith-Flack (nodus sinuatrialis), situado en la pared superior de la aurícula derecha. La corriente eléctrica producida, del orden del microampere,

corazón puede ser estimulado, manteniendo un umbral. Inotropismo: el corazón se contrae bajo ciertos estímulos. El sistema nervioso simpático tiene un efecto inotrópico positivo, por lo tanto aumenta la contractilidad del corazón. Cronotropismo: se refiere a la pendiente del potencial de acción. S.N. Simpático

se transmite a lo largo de las aurículas y pasa a los ventrículos por el nodo auriculoventricular (nodo AV o de AschoffTawara) situado en la unión entre los dos ventrículos, formado por fibras especializadas. El nodo AV sirve para filtrar la actividad demasiado rápida de las aurículas. Del nodo AV se transmite la corriente al fascículo de His, que la distribuye a los dos ventrículos, terminando como red de Purkinje.

aumenta la pendiente, por lo tanto produce taquicardia. En cambio el S.N. Parasimpático la disminuye.  Dromotropismo: es la velocidad de conducción de los impulsos cardíacos mediante el sistema excitoconductor. S.N. Simpático tiene un efecto dromotrópico positivo, por lo tanto hace aumentar la velocidad de conducción. S.N. parasimpático es de efecto contrario. Lusitropismo: es la relajación del corazón bajo ciertos estímulos.


Página 9

Título del boletín

Otros datos de interés

·

Los ventrículos poseen aproximadamente el mismo volumen, sin embargo, el ventrículo izquierdo posee una forma más alargada y característica, y puede tener una mayor capacidad que el derecho. A su vez, el ventrículo izquierdo, posee un miocardio más grueso, debido a su función.

Existen sensores en nuestro sistema circulatorio que se encargan de "sentir" (o recibir las sensaciones de) las presiones, es por esto que se llaman barorreceptores. En el corazón tenemos

Durante el desarrollo intrauterino del humano, estructuras que cumplen la función del corazón aparecen entre las semanas 4 y 5 pero, al no disponer el embrión de un sistema nervioso en funcionamiento, éste funciona de manera automática, y sus latidos tienen una frecuencia de 160 lat/min. Esta frecuencia aumenta hasta las semanas 8 a 15.

En el año 2003, tres médicos, el cardiólogo intevencionista Luis De la Fuente y Adrián Barceló ambos de Argentina y Simon Stertzer de EE.UU. anunciaron el descubrimiento de la Quinta Cavidad cardíaca, la real estructura anatómica del Seno Coronario con miocardio propio, contracción, epicardio y actividad

barorreceptores de presión baja, localizados en las paredes del atrio y en vasos pulmonares, éstos son sensibles a la distensión de las paredes. Por ejemplo, si disminuye el llenado normal de los vasos pulmonares y atrios entonces habrá una señal (que llega al tronco encefálico) que le avise al sistema nervioso que debe aumentar la actividad simpática y la secreción de hormona antidiurética para así compensar ese "bajo volumen" que había. También hay barorreceptores en el cayado aórtico

y en el seno carotídeo que, según se produzca una disminución o un aumento de la presión sanguínea se estimularán el sistema nervioso simpático o parasimpático respectivamente para así restablecer el cambio de la presión (retroalimentación negativa).

En el último trimestre, cuando el sistema nervioso ya es funcional, la frecuencia disminuye En esta etapa se produce un control parasimpático del ritmo cardíaco.

ción (0,01%) que tiene el corazón inclinado hacia la derecha, peculiaridad llamada Dexocardia o Dextrocardia.

Casi todo el mundo tiene el corazón en el centro (entre los pulmones) y oblícuo hacia la izquierda, pero hay una pequeña proporción de la pobla-

eléctrica. El trabajo científico fue publicado en el International Journal of Morphology en el año 2004 por el sistema de peer review o revisión de expertos y mencionado


Página 10

Volumen 1, nº 1

Aparato circulatorio El aparato circulatorio o sistema circulatorio[Nota 1] es la estructura anatómica compuesta por el sistema cardiovascular que conduce y hace circular la sangre, y por el sistema linfático que conduce la linfa unidireccionalmente hacia el corazón. En el ser humano, el sistema cardiovascular está formado por el corazón, los vasos sanguíneos (arterias, venas y capilares) y la sangre, y el sistema linfático que está compuesto por los vasos linfáticos, los ganglios, los órganos linfáticos (el bazo y el timo), la médula ósea y los tejidos linfáticos

(como la amígdala y las transparente que recorre placas de Peyer) y la linfa. los vasos linfáticos y generalmente carece de La sangre es un tipo de pigmentos. Se produce tejido conjuntivo fluido tras el exceso de líquido especializado, con una que sale de los capilares matriz coloidal líquida, sanguíneos al espacio una constitución compleja intersticial o intercelular, y y de un color rojo caracte- es recogida por los capilarístico. Tiene una fase res linfáticos, que drenan sólida (elementos formes, a vasos linfáticos más que incluye a los leucoci- gruesos hasta converger tos (o glóbulos blancos), en conductos que se valos eritrocitos (o glóbulos cían en las venas subclarojos) , las plaquetas y vias. una fase líquida, representada por el plasma sanguíneo.

La función principal del aparato circulatorio es la de pasar nutrientes (tales como aminoácidos, electrolitos y linfa), gases, hormonas, células sanguíneas, entre otros, a las células del cuerpo, recoger los desechos metabólicos que se han de eliminar después por los riñones, en la orina, y por el aire exhalado en los pul-

mones, rico en dióxido de carbono (CO2). Además, defiende el cuerpo de infecciones y ayuda a estabilizar la temperatura y el pH para poder mantener la homeostasis.

La linfa es un líquido

Título del artículo interior Este artículo puede incluir 75125 palabras. La selección de imágenes o gráficos es importante a la hora de agregar contenido al boletín.

Piense en el artículo y pregúntese si la imagen mejora el mensaje que intenta transmitir. Publisher incluye miles de

imágenes prediseñadas que puede importar a su boletín, además de herramientas para dibujar formas y símbolos. Una vez seleccionada la imagen, colóquela cerca del artículo. Asegúrese de que el pie de imagen está próximo a la misma.

Pie de imagen o gráfico.


El corazon